
'PH VS I CAL R EVI EW VOLUME 92, NUMBER 1 OCTOB ER 1, 1953

Use of Non-orthogonal Wave Functions in the Treatment of Solids,
with Applications to Ferromagnetism*

W. J. CAaR, Ja.
lVestirlghouse Research Laboratories, East Pittsburgh, Pennsylvania

(Received March 11, 1953)

It is proved by a rearrangement of Lowdin's solution to the many-body problem that a vector model
type energy expression is valid for a solid provided (in the simplest case of one electron per atom) the
number of nearest neighbors times the overlap integral between them is small compared with unity.

The approximation is also carried to include third order permutation terms, and the spin coupling via
closed shells these "triple exchange" terms can produce is discussed.

General expressions are given for the exchange integrals to be used in a vector model solution. These
under the proper conditions reduce to the conventional integrals except for a slight modi6cation, which
helps to make the integrals negative.

INTRODUCTION

' 'N the theory of solids, two separate points of view
~ ~ exist, one emphasizing the "free" aspect of electrons
in the solid, the other the "bound" aspect. The first,
known as the collective-electron or energy-band theory,
makes use of one-electron wave functions having the
Sloch form of a free-electron wave multiplied by a
function having the periodicity of the crystal lattice.
The second places more stress on the bound nature of
the electrons, and in its simplest form, the Heisenberg
model, regards the solid as just a collection of atoms,
with each pair behaving as a hydrogen molecule.

A slightly more refined atomic picture is found in the
Dirac-Van Vleck formulation, wherein the energy of
the solid is assumed to be

with Eo including the kinetic energy of all electrons plus
the classical Coulomb energies of nuclei and smeared
out electronic charge; and with J;; a Heitler-London
exchange integral between the ith and jth wave func-
tions and S; the vector spin operator (in multiples of
h/2') for the ith electron. The angular brackets indicate
an average over a spin function.

The relative merits of the collective vs atomic points
of view are, in brief, the following. The collective picture
has the advantage that the Bloch wave functions are
orthogonal, which leads to greater mathematical sim-
plicity. It has a disadvantage in not containing the
physical fact that electrons, irrespective of spin, try to
avoid one another due to their repulsive Coulomb inter-
action. This disadvantage causes states of maximum
spin to be unduly favored, because the theory allows
two electrons with antiparallel spin to move inde-
pendently of one another while the Pauli principle
enforces its automatic correlation on electrons with
parallel spin.

On the atomic model, the electrons a,re made to avoid
one another in a certain sense by being localized around

~ Work partially supported by the U. S. Air Force.

the diBerent nuclei, the degree of separation depending
upon the overlap of neighboring wave functions. In
addition, the localized point of view has the advantage
of physical simplicity, since (1) reduces the problem
of a solid to the familiar diatomic molecule problem.
In spite of these advantages, use of the Dirac-Van Vleck
model has been restricted, because of the following ob-
jection. It has been pointed out by several writers'
that in solving for the energy of a linear chain of hydro-
gen-like atoms, as a simple example, one obtains a
result of the form

Es O(NJ)+0(N—sT'J)
jV—

l —O(NT')+O(NsT4)

when an antisymmetric wave function is used. The
symbol 0 denotes the order of magnitude of the term,
S the number of atoms in the chain, and T an overlap
integral for nearest neighbors, which might reasonably
have the value 10—' to 10 '. The exchange integral J
also refers to nearest neighbors. Setting the denominator
equal to unity and neglecting all terms beyond the
second in the numerator gives approximately the result
expected by (1), but such procedure seems obviously
foolish when S is a very large number. Nevertheless,
Van Vleck' in special cases was able to show that such
a naive approach does give substantially the correct
answer, because the remaining terms, in a rather obscure
manner, tend to cancel each other. Van Vleck's analysis
is convincing in that use of this theory leads to no
"catastrophe. " Doubts have remained as to whether,
in general, the model is actually a good approximation. 4

The purpose of the present paper is to investigate the
problem further in order to determine under what
conditions, and with what modifications, a vector
model similar to (1) can be used; and to consider some
applications to ferromagnetism.

' J. C. Slater, Phys. Rev. BS, 509 (1930).' D. R. Inglis, Phys. Rev. 46, 135 (1934).' J. H. Van Vleck, Phys. Rev. 49, 232 (1936).
4 J. C. Slater, Washington Conference on Magnetism, Univer-

sity of Maryland, 1952 LRevs. Modern Phys. 25, 199 (1953)).
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THE WAVE FUNCTION FOR THE SYSTEM

For any one-electron model of a many-electron
system, one of the most satisfactory ways of describing
the complete wave function is by means of Slater
determinants of one-electron functions P, , each multi-
plied by a spin function $;. The latter is specified by
either n; or P;, the eigenfunctions for the component of
spin in a particular direction.

Thus

4'i(1) b(1)
A(2) b(2)

(3)

4~(&) b (&)

where the number in parenthesis labels the electron
whose coordinates appear and the subscript designates
the wave function.

If a linear combination of determinants such as (3)
is taken and a large enough number of terms con-
sidered, then, no doubt, a good solution for the energy
could be obtained for any type of f;, whether spread
out over the entire crystal or localized about one or
more nuclei. In practice, the solution of the secular
equation to determine the correct linear combination is
dificult, if not impossible, to obtain when a large
number of determinants with different P, 's are involved,
and therefore in reality the method is highly restricted.
More often, one attempts to approximate the wave
function by a single determinant, and it is in this prac-
tical sense that one model may lead to correct results
and the other incorrect. In fact, for the single deter-
minantal wave function there is an optimum set of f;,
namely, that set which leaves 4 stationary with respect
to small variations 5P; and brings about the lowest
energy. It conceivably could happen that this set would
contain a mixture of both localized and Bloch functions.
In any event, to determine what this best set is, one
6rst must solve the general problem of the energy for
nonorthogonal f;, which is essentially what the vector
model attempts to do. Viewed in this manner, the
energy band method is simply a special case of an
equation such as (1), obtained by restricting the f; to a
certain type of orthogonal one-electron wave function.

FORM OF THE ENERGY EXPRESSION

According to the prescription of Van Vleck, ' one can
calculate the energy from (3) by naively overlooking-
in all terms but the first exchange integral —the fact
that the P's are not in general orthogonal. It is worth
doing a calculation similar to this in order to establish
the form to seek when using a more rigorous method.
However, the present calculation will be made con-
siderably better than usual in order to obtain a correct
expression for the energy up to and including the third

order in overlap. ' There is little point in calculating
higher terms since they must be negligible if the
method is to prove useful. For simplicity, one may think
in terms of one electron per atom, although the proof
will apply to any number. With the wave function (3)
the energy may be expressed

f@*H4dr

f%*%dr
7!ff,*(1).. .fg*(Ã)pi(1) . .)N(N)H4'dr

& f4'i*(1)" 4~*(&)b(1)" f~(&)+dr
(4)

since 0 can be expanded into S~ permutations of the
diagonal element, each of which gives the same result
because B is symmetric in all electrons. Unless expressly
designated, d7 will always indicate an integral over all
orbital, and sum over all spin, variables involved in the
integrand. Expanding 4 in terms of permutations gives

~=a.(1)" a (&)~ (1) ~ (&)
+E,'P, (-1)"4 (1)" 4 (&)5 (1) t(&"), (5)

where P„ is a permutation operator that interchanges
the electrons, p the parity of the permutation, and the
P' is over all permutations except the identity one.
Taking the iP's to be normalized and shortening the
notation to yo =fi (1) Pg (lV), pp, = $i (1). $y (S),
Eo=f'q p*Hyodr (Ep is independent of spin and is the
energy obtained without antisymmetrizing the wave
function), one finds

Ep+E~ ( 1) fpp PBHPrpogad&E—
1+2'( 1)"f'~o*~.P—.~o~.d

or
2'( 1)"fv p*v;H—P.~op.d.

Ep 2' ( 1)"—fo o'v.P—.~pe .d~
E=Ep+ . (7)

1+&,'( 1)"fp o'y.P.—yoq. d~

In a purely formal way, P„pop, =P„0+OP„,p„where
P„o permutes the orbital part, and P„, the spin part,
of the wave function. Then, assuming H to be inde-
pendent of spin, containing only kinetic and electro-
static energy terms,

2 '( 1)"Lfpo*HP.p pp«
Epf'~ p*P.ov pd~ j(P-)—

Ep+ (g)1+2.'( 1) f'~.*P,.~.d -(P..)
where (P„,)=Q p,P„,y, (the sum being taken over the
spin coordinates) is the mean value of the permutation
operator over the spin function obtained by taking the
diagonal elements of (3). (P„) in this case can have
only the values zero or one,

In summing (8) over the various permutations it is
convenient to denote a particular permutation P„by

$/ A T E )

PI, ...„meaning k—+i, m~j, e—+l. The bracketed ex-
' By the order in overlap, we mean the number of integrals

over pairs of wave functions centered about diferent atoms. For
example, in Eq. (2) J is of second order, JT' of fourth order, etc.
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pression in the numerator of (8) for 'this particular per-
ij~ ~ ol

mutation shall be denoted by JI, ...„.It is shown in
Appendix A that J can be put into a very simple form.
The expansion of (8) runs as follows:

(—1)Z J. "(P "')
j&i

(J .„i jk(P,„ijk),+J„.ijk(,P . .i'))+. . .
k&J&i

1—P T;; T;;(P,,' )i+

(9)
From the Appendix,

J "'=J"=) 4'*(1)4 *(2)X(1,2)4;(1)4'(2)dr

XX(1,2)$,(1)lt;(2)d

—= (ijlx(1 2) I ji)—T' T'(ijlx(1 2) Iij)

J '""=Jt p *(1)f,+(2)pk*(3)X(1,2& 3)lt, (1)fk(2)lt;(3)dr

~
"4A;dr t AVkdr~ AV'dr~ "4*(1)

Xf;*(2)pk*(3)X(1,2, 3)f;(1)p,(2)pk(3)dr

=—('j~lx(1, 2, 3) I&V')

—T,~T;i,Tk, (ijklX(1, 2, 3) Iijk), (10)

X(1,2) = (Vt'+ Vs')+ Vt+ Vs
2m

+ E I i~
—l4 (i)I'd

tw', s E~ yi)

X(1, 2, 3)= (Vs+Vs+Vs)+~1+l 2+~k

r e' i e'

+)~ —I4 (1) I'd + —IA(i) I'd

+ +
~12 ~23 ~13

—its' ) ( e'
E,=W+PI i Vts+V, i I+PI sq —sq I,

2m ) i» E rts )

where t/"~ is the potential between electron 1 and all
nuclei, —(5s/2m) Vts is the kinetic energy operator for
electron 1, e'/rts is the Coulomb interaction between
electrons 1 and 2, and 8' is the electrostatic energy
among nuclei.

It will be recognized that J;; is of second order in
overlap and J;I, &~ of third order. The Hamiltonian
X(1, 2) is nothing more than the Hamiltonian for two
electrons in the time average potential of all other
charges in the lattice (overlap neglected). Similar
remarks apply for X(1, 2, 3).

By employing the same process of division that was
used to remove Eo, one can take the next two groups of
terms in the numerator of (9) out of the fraction. Thus

Q J (p, ,ii)+ Q (J. ,haik(p. ,i')

+J . ijk(P, , .ijk))+g (11)

For small overlap the series up to E. is well behaved,
the aggregate of triple permutation terms being small
compared with the J;; terms which, in turn, are small
compared with Eo. The remainder R is a fraction con-
taining in the numerator terms involving only fourth
and higher orders in overlap. For large X, however,
both numerator and denominator are seemingly diver-
gent series similar to those illustrated in Eq. (2).

If R can be neglected the derivation is complete.
Before attempting to find the conditions under which
the remainder in (11) really can be overlooked, it is of
interest to point out that the equation is in a form which
lends itself to simple interpretation.

It is desired first to compare J;; with the exchange
integral in the Heitler-London description of the
hydrogen molecule. For that problem the wave func-
tions are ft(1)fs(2)Aft(2)fs(1) multiplied by spin
functions. The plus sign goes with the singlet state,
the minus with the triplet. The energy,

Jlt t(1)lt s(2)Hft(1+k(2) dr& J'lt t(1)fs(2)Felt t(2)fs(1)dr

1&T122
may be written as

(12 I
/

I
21)—Ttss (12

I
~ I

]2)
E= (12IPI12)&-

1~T]2

and, when the overlap is small,

E (12IH(12)~L(12I8'I21)—Ttss(12IHI12)j. (12)
The first term on the right in (12) is in exact analogy

to the Es term of (11); and the bracketed term, the
exchange integral, ' diBers from J» only in the following

' The Hamiltonian is H=Hi+Hs+e'/r~+e /r~s e'/rm e'/rs„— —
where r, lI, is the internuclear distance, r12 the interelectronic
distance, r1f„r2, the distances between electrons on one atom and
nuclei of the other, and H1, H2 are the Hamiltonians for the iso-
lated atoms. As normally used, p1 and p2 are eigenfunctions for the
hydrogen atoms, so the exchange integral becomes

12 + 21 —Tg22 12 + 12 .

The es/r~ term, being a constant, would also cancel out, but no
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manner: the H of (12) is the Hamiltonian for two elec-
trons in the potential of two nuclei, while the X(1,2)
in the corresponding Jis term of (11) is, as stated
before, a Hamiltonian for two electrons in the average
potential of the rest of the crystal. JI,; &'~ bears a similar
relation to the three atom problem.

To summarize, the right side of (11)contains, firstly,
the spin independent kinetic and classical Coulomb
energies; secondly, the spin dependent energy obtained
by assuming the electrons to interact in pairs; thirdly,
the additional spin dependent part that comes from
assuming the electrons as interacting in groups of three.
Had the expansion been carried further the eftect of
groups of four, etc., would have appeared.

If one takes only the first two terms on the right side
of (11) and substitutes Dirac's relation' P;
+2S,"S,, then

E Es—g J;,(s+2(S; S;)),
7&i

which corresponds to the vector model when the spin
function is restricted to a simple product y, . The J of
(13), however, is somewhat different from the J of
Van Vleck, a point that will be discussed later.

CALCULATION OF THE ENERGY BY
LOWDI¹S METHOD

I

An estimate of the conditions under which one is
justified in neglecting the remainder in (11) may be
obtained by expressing the determinant (3) in terms of
minors, rather than permutations, and then using an
expansion due to Lowdin. '

If the product g;$; in (3) is denoted by ie„ the wave
function can be written

+=2 A'(i)+*. '= Z p (i) v' (i)+'&, '» (14)
j, k

jQk, i&l

where 4;, ; is the cofactor of rp, (i) in 4', and similarly
+;&, ;& is plus or minus the minor of 4 formed by deleting
the ith and lth rows and jth and kth. columns. Let the
Hamiltonian be written

From (4) the energy is

j, k
jpk

fyt*(1) yy*(cV)ear

&ow f iet*(1) p~*(1V)@dr=dett=—5, where t is a
matrix with elements t;;=fP, P,f;$;dr. Further,

X cp~*(Ã)%', ,dr =6;;,
which is the cofactor of t;; in 6, and

Xq i t*(&—1)yi+t*(&+1) yiv*(&)+'i, tad'&=~si, ts.

Therefore

+ Z )':*() (l)H( i) ( ) (i)d (16)
i, l, j, k

j&k, i&l

Equation (16) is essentially Lowdin's expression, '
which, as he pointed out, contains no "catastrophe"
since the matrix elements are multiplied only by the
ratios 3„;/t), or h, i,t/A. If t ' is the reciprocal matrix of

(tt '= 1), then from the theory of determinants
t ',=6;;/5 and t ',t '» t '

&t '»—=6,i, ts/h. The key
point in the further development is Lowdin's expansion
of t '= (1+S) ' -in the power series

H =W+g H(i)+Q H(i, t),
i, l
i&i

with H(i) depending only on coordinates of the ith elec-
tron, and H(i, i) depending only on those of i and t,,
while 8' is independent of electron coordinates. In the
present case,

H(i) = —(fP/2m) V',s+ V;, and H(i, t) = es/2r;i.

harm is done by leaving it in, since to do so makes (12
~
e /r~+e'/r&s-e /res e'/re, ~12) simply the cla—ssical electrostatic energy be-

tween two atoms with smeared-out charge. This quantity multiplied
by T', at least in the hydrogen molecule, can be neglected compared
with (12 es/r, y+e/r~s —e'/res —e' r /~e21), which is the familiar
form of the exchange integral. For present purposes, however, it
is not demanded that $1 and p2 be eigenfunctions and conse-
quently the general form of the exchange integral is retained.

P. A. M. Dirac, Proc. Roy. Soc. (London) A123, 7j.4 (1929).' Per-Olov Lowdin, J. Chem. Phys. 18, 365 (1950).

where the matrix elements S;;=t;i—6;; are the oG-

diagonal elements of the t matrix. They are zero if i and.

j have different spins or when P; and f; are orthogonal
(for example wave functions on the same atom). The
sum over spin coordinates of $;$; may be replaced by
(P„'&) so that t„=T„(P; &). .

By substituting (1/) into (16) and grouping terms,
one can obtain an energy expression up to any order
in the overlap. It is sufhcient to state that the first
three groups of terms so obtained are exactly equal to
those of (11) (see Appendix B).

The derivation given here, pointed out to me by C. Zener, is
somewhat more straightforward than Lowdin's, which is based
upon the premise that certain power series expansions exist.
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ijk
j ki

ij4
P

k
0 ~Ij

and the calculation thereafter leads to an expression of
exactly the form (11), except that (P) now means the
sum of q, 'Pq, ' over the spin coordinates and thus the
mean can have values other than zero or one. The spin
function q, ' is a linear combination of product one-
electron spins formed by taking the diagonal elements
of each determinant multiplied by the coeKcient in
front of the determinant, i.e.,

Pie. 1. The two permutation possibilities for three electrons
exchanging position.

.'=Z. &.&.(1) ~ .9 ). (20)

In the scheme of localized wave functions, if the f;
are selected so that only the overlap between nearest
neighbors is important, the term (S");;in (17) approxi-
mately equals the eth power of the nearest neighbor
overlap integral, S,~ J'P *P——~dr, times the number of
paths from j to i via I jumps between nearest neighbors
(these paths being through wave functions having the
same spin).

It is apparent that in the nearest neighbor approxi-
mation (S");;~(Z" '(S,|)", where Z represents the
number of neighboring wave functions which have a
nonvanishing overlap with f,. Therei'ore, a sufhcient
condition for the convergence of the right side of (17)
is ZSab&&

Thus, having ZS b small compared with unity is suf-
hcient, though possibly not necessary, for the neglect
of 2 in (11).The proof holds for any number of electrons
per atom, since wave functions on the same atom are
orthogonal.

If only the criterion for neglect of the three-body com-
pared with the two-body exchange is considered, it is
more nearly that Z'5 b must be small compared with
unity. The quantity Z' is the number of wave functions
of the right spin which overlap both u and b. -

EXTENSION TO A LINEAR COMBINATION OF
DETERMINANTS WITH THE SAME Q;

For a given set of one-electron wave functions P;,
an improved total wave function may be obtained by
taking a linear combination of determinants,

~.(1)~..(1)
A(2)6 (2)

, (18)

~-(~)~-.(w
where the 2's are coefficients, and the spin functions $
represent a given number of tr's and P's which in each
determinant are assigned to the f, in a different way.
In particular, it is possible to construct eigenfunctions
of both the s component and the square of the total
spin angular momentum operator in this manner. "

The extension of (18) to the energy calculation by
the 6rst method is very simple, for 0 can be written

+=K.P.(-1)V (1) 0 (&) Z ~ 5 (1)
XP „(A')=P.P.( 1)"qop, ', (19)—

"For example, see H. Eyring, and G. E. Kimball, J. Chem.
Phys. 1, 239 (1933).

It has been assumed that q, ' is normalized.
The remainder in (11) for the wave function (18) will

certainly be small under some conditions, and there
seems no reason to suspect that the conditions will
dier greatly from those calculated for the case of a
single determinant.

Thus, for a given set of orbital f; the problem of a
many-electron system is reduced to finding the best
spin function for the effective Hamiltonian,

(21)

Equation (21) corresponds to the usual Dirac-Van
Vleck model, extended to include third order permuta-
tations and modified as regard to exchange integrals in
the manner previously discussed.

. SIGN OF THE EXCHANGE INTEGRAL

In the early quantum theory of solids the presence
Of ferromagnetism in certain elements was attributed
by Heisenberg as due to a positive sign for J,;, the
exchange integral between d wave functions on neigh-
boring atoms. Of the several attempts"' made to
calculate this quantity all have used the standard
Heitler-London approximation to the hydrogen mole-
cule exchange integral (see footnote 6). The value of
these calculations is to show that the positive and
negative terms in 'the integrand cause cancellation to
a high order so that a slight modiQication of the inte-
grand can be of importance.

The correct value of J;; is from (10) (ij
~
X(1, 2)

~ ji)
T;;T;;(ij ~K(1, 2)—~ij). We assume, in analogy with

the hydrogen molecule, that (ij~K(1, 2)
~
ji) is the

principal term. The Hamiltonian in this term, as already
mentioned, divers from the two-electron Hamiltonian
in that it contains the potential of the complete crystal
lattice. Far away atoms will, of course, add nothing to
this potential, but neighboring atoms might be expected
to add a considerable negative term, because the d
electron will, to some extent, penetrate the charge
cloud around nearby atoms and therefore experience a
nuclear attraction.

The remaining point to consider is that, according
to experimental evidence, diatomic molecules, with very
few exceptions, have a negative exchange integral.

"E.P. Wohlfarth, Nature 163, 57 (1949}.
~ H. Kaplan, Phys. Rev. 85, 1038 (1952).
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Since in a solid the tendency for a negative integral is
even greater, as was just shown, Zener's assumption"
that the exchange between d shells in the transition
elements is negative becomes a very attractive working
model. This assumption makes it necessary for the
ferromagnetic coupling in the iron group of elements to
come about indirectly, such as via the conduction
electrons.

It is to be understood that all of the preceding dis-
cussion applies to wave functions i and j which are
nonorthogonal. In the case of accidental orthogonality
between wave functions on different atoms, the ex-
change integral reduces to that of the band theory
(ij j e'/r» Iji) and becomes positive.

THE TRIPLE EKCHANGE

The two groups of triple exchange terms in (21)
correspond to the two possibilities for three electrons
exchanging position: clockwise and counterclockwise as
shown in Fig. 1.

Normally, if the overlapping of wave functions is
small, the triple exchange will be relatively unim-
portant compared with the simple exchange terms. In
one common case, however, the triple exchange might
be expected to play an important part: namely, the
interaction between a wave function P; and a closed
shell of electrons, for in this case the simple exchange
terms sum to a constant indeperident of spin. To show
this fact one can replace the permutation operator with
the spin operators, obtaining

Z ~' (P ' )=Z ~' (5+2(~' ~ ))
st 7

=const+2(P, S; P; J;;S;),

and the spin dependent part is zero if j is summed over
a closed shell.

In many ferro- or antiferromagnetic materials a
lattice arrangement exists where atoms possessing a
magnetic moment are well separated by atoms having
essentially closed shells. Two mechanisms for a spin
coupling that can be transmitted through closed shell
atoms have been proposed: the double exchange of
Zener'4 and Heikes, " which takes place in cases of
degeneracy, such as in oG-stoichiometric compounds;
and the superexchange of Kramers, "Anderson, ' and
Van Vleck, ' which can take place in ordinary stoichio-
metric materials. Both of these mechanisms arise when
one considers interactions between different electronic
configurations, i.e., between determinants having dif-
ferent sets of f;.The superexchange is just a statement
of the fact that the "closed shell" atoms in a second
approximation really are not closed, and therefore
allow a coupling to take place.

'~ C. Zener, Phys. Rev. 81, 440 (1951),
'4 C. Zener, Phys. Rev. 82, 403 (1951).
'5 R. Heikes, thesis, University of Chicago (unpublished).
'6 H. A. Kramers, Physica 1, 182 (1934}.
'~ P. W. Anderson, Phys. Rev. 79, 350 (1950)."J.H. Van Vleck, J. phys. radium 12, 262 {1951)..

Fxo. 2. Arrangements of three atoms.

The triple exchange terms, on the other hand, admit
an appreciable coupling in certain instances even in the
closed shell approximation. Consider three atoms
arranged as in Fig. 2, with M and M' having one elec-
tron each but overlapping each other very little, and C
having a closed shell of two electrons which overlap
both M and M' considerably.

For the ca.se of M and M' having parallel spins, the
spin function can be written

a(&)~(2) t ~(3)P(4)—~(4)P(3)3/~

and for antiparallel spins,

L (&)P(2)— (2)P(&)lL (3)P(4)—(4)P(3)V2.

Taking account of the fact that P,=f&, one easily can
show that

equals (58~2"'+J2~~"') for the triplet and —(J8»'
+J»P') for the singlet. This result can be summarized
by the expression (J3~P'+723~"')(P2i"), indicating a
coupling between 1 and 2 of the same form as the direct
coupling. The ratio of this coupling to the direct
coupling is, other things being equivalent, of the order
T»T»T»/T»', a number that can be quite large if the
closed shell atom has a big overlap for M and M'. If
J3~2'23 is to have appreciable magnitude, however, 1, 2,
and 3 must all overlap each other to some extent, so the
interaction is probably strongest when the three atoms
are approximately at the corners of an equilateral
triangle.

A considerable number of materials with configura-
tions such as this exist. Rough estimates indicate that
the triple exchange integral can feasibly attain values
large enough to account for Curie temperatures ob-
served. If J3~2'23 is negative it contributes a ferromag-
netic coupling, if positive, an antiferromagnetic one.
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The Hamiltonian is

k2 . 1
H=W —Q VP+Q V+—Q —,

25$ 2. j. r'ji y"j

where W is the interaction among nuclei, —(I'to/2ttt)VP

the kinetic energy operator of the ith electron, V, the
Coulomb interaction between the ith electron and all
nuclei, and e'/r;; the Coulomb interaction between two
electrons.

Let H be written

The expression (26) shall be denoted by the usual
notation

(1 topaz(1 n) ~m .1)—2't T„t
X(1 n~z(1 n) ~1 n)

or simply by J ...&'"".
Now the summation over permutations involving a

simple interchange gives the terms —P,&,.J,,'"P;,'
the summation over permutations involving three
electrons is

(y . ,t&op »to+y ..tt, 'o'p. tto. )
k&g&i

H=H(1, 2 tt)+ g g +H', —
i 1 ~ ~ ~ n jul ~ ~ ~ er. ~'v

The integral J'qp*Httpptfr evaluated in a straight-
(22) forward manner is Ep in (10).

where the first term contains only the coordinates of the
electrons 1 to n, the second term is the interaction of
these electrons with all other electrons, and II' is the
remainder, which does not depend upon the coordinates
of electrons 1 to n.

Let
e'

x(1 n) =H(1 m)+ P Q
~

—~P;(j) ('dr,
s=j, "n g'gS n 6

(23)
Now,

~ ~

1» ~ »Ns» ~ » l» ~ » g
go*&~m "i go&~

APPENDIX 3
Equation (16) may be written

&=W+2 (olH(1) I o)+2 (olH(1) l j)
i'

+2 (VIH(1, 2) I &j)

+Z (ojlH(» 2) l j&)

i'
g» ~ »~

6*(1) 4~*(&)HP-- «t(1) 4~(~')&~
+2 g '

(iklH(1, 2) I j
i' &k

g» ~ »g= )t yp*(H H' )P„...typd—7. +2 2 (ojlH(1, 2)lj&)
i&j&k

therefore

1~ ~ ~ fb

+J po H g&ad&~' toto Pm tpodr, (2.4") + P (ollH(1 2) I j&) (27)
i,j, l, k

i Qj&l &k

1» ~ »n 1 ~ .n,

opo HPm tpo« ~'"~w o Httpotf& po Pm tyodp'"

]» ~ »g=,"go*(H H' )P„... tq o«—
1» ~ ~ n-—~~ ~o*(H H') ~o«)r'~o*P " t~o&—r, (25)

and the right side of (25) is equal to

t y,+(1) . P„*(N)SC(1. N)y. (1) P,(~)dr"

4't*(1) 4 *(tt)

X3'-(1" ~)4 (1) "4-(~)«(26)

By making use of (17),

8=W+Q;(1+/; S;tS,,—~ ) (i
~
8(1)

~
i)

+&(-S +" )( tH(1) lj)
~t 2
i y'j

+P(1+2 Pp S;pSp;—S;;S,~+ ) (zj ~H(1, 2) ~t'j)
$»i'

+2(—1+" ) (V lH(1, 2) I jo)
.i j.

+2 P (—S,,+ ")(ou~H(1, 2)~q@
i j, k

i&j &k

+2 g (S&;+ ) (ij(H(1, 2) ( jk)
i jk

i gjgk

+ Q (S;;Sot S;tSp;+ —) (il~H(1, 2)
~
gk). (28)

i, j.l, k,
i&j &l pk
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Group these terms in the following manner:

E=[JI'+2;(s f H(1) li)+Z(sjlH(1, 2) I sj)3

+[+S,;S;,(ilH(1) li)
1~

+p(2 p, s,,s„—s,,s,,) (ijlH(1, 2) lij)
1f

2' Sj
-2 s ('IH(1) lj)-2( jlH(1, 2) lj')

ffg 1f

t wj i'—2 P S;,(iklH(1, 2)
l jk)]+

The first group on the right in (29) is Es of (11).The
second group in (29) is equal to —P,&; J;,(I'; ') of (11),
which one may prove by expanding J;; as dehned in
(10). In the proof it must be remembered that S;;=0
and S;;, (il l j), etc. are also zero if i and j have dif-
ferent spins.

%e state without further proof, that the next group
of terms in (29), which would involve three integrals
over pairs of wave functions with di6'erent i and j, is
equal to the third-order terms of (11).

If the series (17) converges sufficiently, one may
(29) neglect the remaining terms in (29) and consequently

R in (11).
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A Modified Theory of Production of Secondary Electrons in Solids*
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A few difBculties in the previous theories of energy loss and secondary electron production by primary
electrons in metals can be removed by replacing the Coulomb interaction between a primary electron and a
lattice electron by a screened Coulomb interaction, such as required by the plasma theory. In the new theory
Wooldridge's mechanism of secondary electron production seems to have lost most of its importance. The
energy loss distribution due to the interaction with the conduction electrons of the metal is found to have a
maximum at an energy loss slightly less than Pfsk f/2m), where k is the value of the wave vector of the
conduction electrons at the Fermi level. The theory is also applied to the bound electrons, and it is shown that
the screened Coulomb interaction does not change the previous results very strongly. It is also shown that
the polarization of the medium has only a small inQuence upon the previous results for insulators.

I. INTRODUCTION

&IEKKER and van der Ziel' recently unified the
various theories of secondary electron production.

This theory, which is essentially a modification of the
existing theories of energy loss of. fast particles in
matter, is based upon a Coulomb interaction between
the primary electrons and the lattice electrons. It has
the same difhculties for the conduction electrons of the
metal as previous theories:

(a) In a single collision between a primary electron
and a lattice electron the probability P(E»)dE&i of
an energy loss between E» and E»+dE» becomes
infinite for E~~ —+0.

(b) The probability P(k')dk' of a transition of a lat-
tice electron to an energy state having an absolute value
of the wave vector between k' and k'+dk' becomes
in6nite at the Fermi level.

(c) The rate of energy loss (dE„/dx) due to the lattice
electrons for a primary electron of energy E~ varies as
E„'log(E„/Es'), with a very small value of Eo'.

* Supported by U. S. Signal Corps Contract.' A. J. Dekker and A. van der Ziel, Phys. Rev. 86, 755 (1952).

It is the aim of this paper to investigate whether a
screened Coulomb interaction might remedy these
defects. It is reasonable to expect so, for, since the
difIiculties are caused by the interaction of primary
electrons and those lattice electrons that are passed by
at larger distances, this interaction should be removed
by a screened potential function.

Such a screened potential should be expected in
metals according to the plasma theory of electron in-
teraction. In that theory the interaction between a
primary electron and the electrons of the metal is split
into two parts. 2

(1) An "organized" part, consisting of the interaction
with the electron gas as a whole, resulting in relatively
sharp to very sharp energy losses caused by the excita-
tion of "plasma oscillations. "This part of the interaction
can explain the discrete energy losses of electrons in
metal foils. It is not known how important this process

«R. Kronig and J. Korringa, Physica IO, 406, 800 (1943);
H. A. Kramers, Physica 13, 401 (1947); D. Bohm and E. P.
Gross, Phys. Rev. 75, 1851, 1864 (1949); D. Hohm and D. Pines,
Phys. Rev. SO, 903 (1950);S2, 625 (1951);D. Pines and D. Bohm,
Phys. Rev. 85, 338 (1952); D. Pines, Phys. Rev. 85, 931 (1952).


