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Eigenfunctions of 8' by a Spin Operator Method*
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An operator is derived which is a function of step-up and step-down operators pertaining to spin angular
momentum, and which creates a state of definite multiplicity when operating on a single determinant of
spatial and spin orbitals. This paper is concerned with the problem of 6nding all of the orthogonal singlets
for a 2E-electron system in terms of the spin operator. The five orthogonal singlets corresponding to the
six-electron spin degeneracy problem are studied in detail by means of the branching diagram. The fourteen
orthogonal singlets corresponding to the eight-electron problem and the forty-two orthogonal singlets
corresponding to the ten-electron problem are written down. Some remarks are made concerning the
application of this method to a configuration interaction investigation.

INTRODUCTION

' "N the investigation of molecules by con6guration
~ ~ interaction, one is faced with the problem of setting
up the states of definite multiplicity for the various
configurations and of taking the matrix components of
the energy between the diferent con6gurations. The
following paper deals primarily with the singlet states,
as they are usually of greatest interest in these problems.
A simple and direct method of constructing all of the
orthogonal singlets for a 2A-electron system is pre-
sented. A brief discussion is given of the application of
the operator techniques developed to the problem of
configuration interaction. The reader is referred to
Condon and Shortley' and the work of Racah' for a
more general treatment of these problems.

For a set of 2$ electrons occupying 2E distinct
orbitals, it is possible to form many states of a given

multiplicity by associating either o. or P spin with the
collection of orbitals in a variety of ways. In fact, one
can construct

(21V)!/1V!(%+1)!
orthogonal singlet states. One means of setting up all
of the singlets is the valence-bond method which leads
to the correct number of linearly independent singlets,
but the states so obtained are not orthogonal. ' Another
method of constructing all of the singlets is by using
the branching diagram, 4 a pictorial description of
adding the spin angular momentum of electrons one
by one. This scheme shows, for any number of electrons,
how many states of various multiplicities there are,
and what the parentage of each state is. The method
of the branching diagram will be used in the following
discussion.

A spin operator method is given here for setting up
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all of the orthogonal singlets. The five orthogonal
singlets corresponding to a six-electron system are
analyzed in some detail, and from this analysis a spin
operator 0 is derived which when operating on a single
determinant creates an eigenfunction of 5'. All of the
orthogonal singlets for the six-, eight-, and ten-electron
systems are written down in terms of the operator O.

THE SIX-ELECTRON PROBLEM

In Fig. 1 the branching diagram for a six-electron
system is given. This diagram not only shows how many
states of a given multiplicity there are for e electrons,
but by applying the methods of vector addition of
angular momentum, the branching diagram also shows
how the states are actually constructed. In Figs. 1(b)
through 1(e) the five possible ways of obtaining a
singlet state for the six-electron problem are illustrated.
Let us consider in some detail the state described in

Fig. 1(b). The branching diagram tells us that this
state results from the combination of two three-electron
systems, say A and 8, each of which are in a state of
5= ~. I et us order the six orbitals for this problem pi,

p3 p4 +5 and q 6 ~ These orbitals are assumed to be
orthonormal and distinct. Let q~, . q2, and p3 and three
electrons make up set A and q4, p5, and p6 and three
electrons comprise set B. The singlet in Fig. 1(b) can
be expressed as

4'i(S=O) =Copy(s=-'s, Ms ——$) pit(s=-'„Ms= —-', )
+~iv~(s=s ~s=k)'v'a(s=s ~a= s)
yCs&&(S= ss, m, = ,') &~(-S= ss, m—s=—+,')--
+3'Pd(s sy ~s s) ' PB(s s& ~s +2) (1)

The states representing by tt~(S, Des) and toit($, 3fs)
are

q i(1)n(1)q, (2)u(2) q i(3)cr(3)
to& (S= s, ilI s = 2) = tc2 (1)tr (1)~.(2)tr (2) 1 s (3)cr (3)

ps(1)&(1)ps(2)&(2) ps(3)&(3)
= lanai, (2)

v (4)P(4)v (5)P(3)w (6)P(6)
p (s=, ~ = —.) = p (4)P(4) p (~)P(5) 9 (~)P(6)

(4)P(4) (5)P(5) (6)P(6)
—= IPPPI, (3)
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Fro. 1. (a) Branching diagram for a six-electron system; (h) first path; (c) second path; (d) third path; (e) fourth path; and
(f) fifth path.

~»(S=—,Ms= )=CIPn'nl+ InPnl+ I«PI j/~& (4)

vs(S= s, Ms= s) = EIPPnl+—IPnPI+ lnPPI l&~

&~(s=s, M, = s)=ClnPPI+—IPnPI+IPPnl j/~» (6)

& (s= ;, M,=+ ', )-=I:I pl+-Ip I+I p I j/~&, (&)

&.(s=l, M.= l)=IpppI, -(8)
vs(S= s, Ms=+s) = Innnl (9)

All determinants are assumed to be normalized.
The expression y~(S=-', , Ms) ys(S=-'„—Ms) in-

volves the combination of the determinants which make
up the states. The "product" of two determinants is

taken to mean

~r(&)n(&)
~.(f)P(f)

p I I pp I

'Ps(l)n(1)
~4(&)p(~)
~.(f)P(f)
f s(&)n(&)

q t(6)n(6)
v' (6)p(6)
g s(6)n(6) ()0)
v 4(6)p(6)

'

(6)p(6)
q s(6)n(6)

In general the "product" of an AX& determinant and
an m)&m determinant is an (m+e)&((m+n) deter-
minant. We also note that the order must be preserved,
i.e., lnpnl lppnl is not equal to lppnl. lnpnl. It is to
be borne in mind that the p~, s(S, Ms) are normalized
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states of definite multiplicity. The coeKcients C; in (1)
are the transformation amplitudes for the vector addi-
tion of angular momentum, and sometimes called the
Clebsch-Gordon coeKcients. They may be obtained in
this case from the general expression for combining
two systems of spin S to form a resultant singlet. This is

Let us now look into the question of forming the
various pA, B(5, Ms) states. pA (S=-,', M& ——+-,') is
obtained by the step-down operator acting on
qA(S=2, MB=+-,'), and 22B(S=-,', MB————',) is gotten
by the step-up operator acting on q»(5= 2, MB ———-', ).
Thus except for a constant we have

V A(5=2, MB —+2)=SA VA(5 —2~ MB —+2),
22B(5=-2', MB= —-', )=SB+44B(S=-,', MB= —2),

where SA =Si +52—+52 and SB+=54++54++54+.
Writing this out, we get

5 l«~I=C-lp«[+ I,~p~l+l«pl]. (12)

(13)SB+I!PPPl =Lf~PPl+ !P~P!+!PP~l]

In order to have normalized states, we must multiply
the right-hand side of both (12) and (13) by (3) '*,

which is the number of ways of reversing one spin in
set A or 8 taken to the —-,'power. We can write the
second term in (1), except for the factor of —1, as

+(5=0)= g (—1)' 'q A(5, Ms)
Mg S

qB(5, —MB). (11)

Oi= Q (—1)~$(1V—M)!/(1V!M!(1V+1)&)]
MM

where

X (SA SB+)M (19)

We can combine (14), (15), and (16) and write the
singlet (1) as

@i(5=0)=((SA SB+)'——,'(SA SB+)'

+ (1/12) (SA SB+)'—(1/36) (SA SB+)2)

XPA(5=2, MB=2) 22B(5=,2, MB= —2). (17)

We must multiply the right-hand side of (17) by 2 in
order that the Anal state will be normalized.

We have now expressed the singlet shown in Fig. 1(a)
as the result of an operator acting on the "product"
of @A(5=2, Ms=2) and yB(5=-2', MB= ——',). We seek
now to generalize this operator to the 2.V-electron case.
That is, given a 2S-electron system, a collection of E
electrons and S orbitals will be terms as set A, and the
remaining Ã electrons and Ã orbitals denoted by set B.
We wish to form the 2E-electron-orbital singlet state
by combining sets A and 8, each of which is to be in a
state of maximum multiplicity, i.e., SA, B——1V/2. Our
composite state will be

%(5=0)=OiLPA(5=1V/2, MB ——+1V/2)
~ PB(5=1V/2), MB ———1V/2)]. (18)

Denoting the number of spin reversals in A or 8 by 3f,
the general form of the operator, which will be repre-
sented by 0&, is

L(5.-5.+)/3]&.(5=-;,M, =-;),.(5=-;, M, = --;).
(14)

SA =51A +52A +58A + ' ' '+SNA
I

SB =SiB +52B +52B +' ' '+SNB
(20)

The third term in (1) may be written as

L(SA SB")'/3X4]22A (5= 2) MB= 2)

q B(S=2, MB ————,'). (15)

The factor of 3 in the denominator is the product of
the number of ways of reversing two spins in set A
taken to the ~ power and the number of ways of revers-
ing two spins in 8 taken to the ~ power. The factor of
4 in the denominator arises because in the expansion
of (SA SB+)' we encounter equivalent terms of the
type S i

—S2—5,+S,++5,—5,—5,+S4++5,—S,—S4+S,+
+S2 5,—54+54+. Thus if there are M spin reversals in
set A and in set 8, we must divide out the permutations
among set A and set 8 as in the case above.

The fourth term in (1) may be written

I (SA 5 +)2/36]22A(S=-,', MB——-', )
q (5=-'„MB———,). (16)

Here there is just one way of reversing all the spins in
A and in B. The factor of 36 in the denominator is
necessary because there are 3t ways of expressing the
reversals in A, i.e., Sy S2 S3 S2 Sy 53 etc., and 3I
ways in B.

The (—1)~ is the Clebsch-Gordon coefficient. The
factor (1V—M)! 1/V! M!is

L(1V—M)!M!/1V!]l L(1V—M)!M!/1V!]&
1/M! 1/M!. (21)

The first factor in (21) is the number of ways of making
M reversals in set A, which contains Ã elements, taken
to the ——,'power. The second factor is the number of
ways of making M reversals of spin in set 8 taken to
the —~~ power. The third factor divides out equivalent
permutations in set A, as explained above. The fourth
factor does the same in set B.

Therefore, we have found an operator O~ which,
when acting on the "product" of two X-electron
systems, each in a state of maximum S and one with
Ms=S and the other with Ms= —S, produces a com-
posite state of 2S-electrons which is a singlet. It turns
out that the present operator O~ is not general enough
to be a really powerful tool. In the course of events a
number of modifications will suggest themselves.

Let us now investigate the creation of the remaining
singlets for the six-electron problem. The reader is
referred to Figs. 1(c), 1(d), 1(e), and 1(f) for a pictorial
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description of the structure of these states. In Fig. 1(c)
our resultant singlet is the "product" of a singlet state
made up of the 6rst four orbitals and four electrons, and
the singlet made from the last two orbitals and elec-
trons. Equation (11) shows that if we combine two
systems each of which is in a singlet state to form a
resultant singlet, that the comf&osite state is merely the
"product" of qi(s=O) and q2(5=0). Our plan is,
therefore, to generate the two singlets inferred from
Fig. 1(b) and to take their "product" to get the final
state: The singlet formed from the first four orbitals
and four electrons is the result of combining two states
q~(5=1, 358=1) and pic(5=1, M8= —1).The singlet
formed from the last two orbitals and two electrons is
the result of combining two states qg'(5=2, &Vs——2)
and qii'(5= ~, Ms ———2). Thus the six-electron singlet
for Fig. 1(b) is simply

e, (s=o) =o, l«ppl. o,'I~pl, (22)

which when expanded is

e,(s=o) = (1/~e)[I«ppl 2{!~—pal y I~ppnl

. +IP«PI+IMP~I}+IPP«I j [IoPI IP~I—Q (23)

For the purpose of illustration let us write out O~ and
Oi'. For Oi, )V=2; and for Oi', X=1.Thus from (19)
we get

Oi= (1/v3)[1 —-', {SiS3++Si 54++S2—S3++52 54+}

+4{si S2 Sg+54++52 Si Sa+Si+

+Si S2 54+Sg++52—Si 54+Sg+}].

Since S,—S,+ commute for i @j,

where O~&') is

Oi "&= [1—5; 5;+i+a/v2. (29)

It is of interest to note that this state is one of the
familiar valence-bond singlets. In valence-bond language
one would describe the state as having a bond between
q~ and q2, a bond between q3 and q4, and a bond
between cps and y6. The expanded form of this state
1s

~ (5=0)=[(l pl-lp I) (I pl —lp I)
(I pl —Ip l)l/v'g (30)

Let us now consider the last singlet, that shown in
Fig. 1(f). The singlets formed so far have been either
the "product" of subsidiary singlets formed by the
application of Oi, or in the case of Fig. 1(b), a total
singlet formed directly by the use of 0&. The state
shown in Fig. 1(f) is the result of combining two states
each made up of three orbitals and three electrons and
both in a state of 5= -', . Our plan is now to 6nd out how
to use 0& so that it can operate on a determinant made
up of an odd number of electrons; therefore, not in a
state of Kg=0. We want the result of operating with
Oi on, for example, l«pl to be a state of 4(5=~2). The
formation of a state of 4'(5=2) from three electrons
may be accomplished in two diferent ways as indicated
by the branching diagram, Fig. 1. The two possible
states are shown in Figs. 2(a) and 2(b). The state
illustrated in Fig. 2(a) is the result of the combination
of a singlet formed by the first two orbitals and two
electrons and a state q(5= i~) formed from the third
orbital and an electron. That is

Oi= [1—-', {SiS3++Si S4++S2-S3++S2 S4+}

+Si Sg Sg+54+g/v3, (24)
and 0»' is

+2 =[I~pl- lp~lj l~l/~~

{o,I~pl }
(31)

o,'= [1—5;5,+j/vz. (25)

The singlet in Fig. 1(d) is constructed in the same
manner as%'2(5=0), only now the first two orbitals and
two electrons are combined to form a singlet, and the
last four orbitals and four electrons are combined to
form a singlet. The composite singlet is just the
"product" of these singlets. Hence

e, (5=0)=o,'I pl 0
I ppl, (26)

e,(s=o)=(1/v'e)[I pl —Ipnll
CEO! Q O,'Q Q Q

+ I p~p~l }+I pp«l 3 (2&)

Theorem I, which is proved in Appendix I, and which
states that different paths on the branching diagram
terminating at the same destination lead to orthogonal
states, shows us that +2 and +3 are indeed orthogonal.

The singlet formed in Fig. 1(e) is obtained by taking
the "product" of three singlets, each made up of two
orbitals and two electrons. Thus

The state shown in Fig. 2(b) is the result of the com-
bination of a state p(5=1) formed from the erst two
electrons, and a state q (S=—', ) formed from the third
orbital and an electron. The method of creating such a
state by the vector addition of angular momentum is
well known, and the result is

+(5=-', , ~.=-', ) =(2/v'e) l~ I lpl

(1/&e)[l ~p—I+ I@~ I 3 I
~ I. (32)

We can factor this state as follows:

+(s=l ~ =-:)=(1/v'e){ l~l. (I~PI —IN~I)

+(l~ I I PI —IP. I~I ~l)} (33)

This dehnes a new way of writing a "product"; for
example,

I~P {I~PI IP~I} PPI = I~—P~PPPI I~PP~PPI (3—4)

We can generate the state %(5=—'„Ms ——~i) by the
application of an operator,

e,(5=0)=o,i»l pl o,&»I~pl o,&»i~pl, (2s) (1—52 53+)+ (1—Si 53+), (35)
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l 2

2
N3

where the orbitals associated with spin n comprise set A
and the orbitals associated with spin P comprise set B.
For example, the first determinant in (40) has qr, «,
and y4 in A and q3, p5, and p6 in B.

With expression (40) we have completed the task of
writing down all of the orthogonal siaglets for the six
electron case with the help of the operator O~. Now we
wish to generalize this operator so that it can be used
for a wider variety of situations. Equations (37), (38),
and (40) show that it is sometimes necessary to use
more than one definition of sets A and B. It woul'd be
much more convenient to have a form of O~ which
would automatically operate on all possible choices for
sets A and B. We can easily modify 0& to do this, and
the generalized form of 0~ will be written as 0. It is

1 N (—1)M (X—3II)!
Z 1+2

(++1)k r m r Qi~t

X{(SA SB+)~'+(S'A SB; )~'}

N

X g (S. +S;S~;S~ +
SAi&Bi

+S~~; Sr~'+Sos;+Sarr' ), (41)

(b)

FIG. 2. (a) and (h) Three-electron system of S=-,', 3Es=P.

which operates on Io.npl. We have

(1-s;s,+) I«pI = I«pl- lapel

(1—S~ Ss+) l«PI = l«PI IP«l—
Therefore, except for the proper normalization constant

[(1—Ss Ss+)+ (1—Sr S3+)]
I
«P I

=2l«pl i~pal- Ip-«I (36)

Thus the state %(s=—,', 3E&———,') can be created by use
of Ot, since (36) can be written

%(S=-' Ms=-') = [Or&' s'+Or&"'] l«P l&3
= [2l«p I

—I~p~l I p«l]/v—'6 (3&)
Similarly,

e(s=-'„m, = —,') =[0,«'~+0, «'&]I ppl/v3
= [2 I ~pp I Ip~p I

lp«-l]/v'6 -(3g)
Since we have found the two states +(S=s, Ms= s)
corresponding to those involved in the formation of the
singlet in Ns(S=O), Fig. 1(e), we can create the com-
posite six-electron singlet as

When written out, this is

e, (S=O)=-'so, [4I«PnPPI —2I«PP~PI
2

I
«ppp~

I
2

I
~—p«pp I+ I

~p—opop I+ I op~pp~ I

2 IP~«PP I+ I
P«—P~P I+ IP«PP~I » (40)

where the sum over i is. the sum over all diferent
divisions of the orbitals q ~ to q2~ into two groups of E
orbitals. 0 is to operate on a determinant with total M8
equal to zero. The rules for applying 0 to determinants
with total M8 not zero will be given in a later section.
The properties of 0 will now be written down and the
proofs of these statements is given in the various ap-
pendices.

I. 0 is hermitian.
II. 0 commutes with 5'.

III. 0 commutes with the Hamiltonian H.
IV. 0' equals (%+1)&{v[1+(e—1)/(%+1)]}&0.'
V. 0 commutes with the antisymmetrizing operator A.

We are now in a position to illustrate how 0 operates
on a determinant. Consider for example 0 operating on

I
npnp

I
.First, since 0commutes with the antisymmetriz-

ing operator, we canwrite Olopnpl as Aoqt(1)o. (1)qs(2)
XP(2) qs(3)cr(3) q4(4)P(4), where 0 now operates on a
spin-product function. We can divide our four orbitals
q ~, p2, q 3, and p4 into two groups in three diGerent
ways q $ PQ P3 P4 Pg P3 P2 P4 Pg P4 P2 P3 ~ Let
us 6rst consider the

N

g (s,+s ~; s&; s~,++s &; s;„+s&,+s. ;—)
iAi, &Bi

part of 0 operating on

q'r (1)&(1)q's(2)P (2) «(3)&(3)«(4)P (4)

5 See Eq. (49) for the de6nition of n.
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[(Sg,—Ss~+)~+ (Sg;+Ss;—)M].

The term (S~,+Ss; )~ gives zero for all M, since in
this example we have associated n spin with all orbitals
in set A. Thus we see that 0 effectively reduces to

0= [1—-', (Si 5,++Si 54++5, 5,++53 54+)

+Si S3 52+54+)/v3,

which is the same as (24) if we interchange the 2's and
3's in that expression. One should note that we would
have obtained the same result had we associated |I spin
with all orbitals in A. This is as it should be, for the
assignment of spin to set A or 8 is entirely arbitrary.

Using our new operator 0, let us look back at the
Ave singlets we have set up for the six-electron problem.
4'i(5=0), originally given in (17), is just

+i(5=0)=0[«aPPP[. (44)

Here 0 reduces to just the original operator. %2(5=0),
given in (22), is

e, (S=O)=0[«PP[ 0[aP[.
%3(s=. 0), given in (26), is

e, (S=O)=O[aP[ O[aaPP[.

+4(5=0), given in (28), is

(45)

Suppose we take the division q», y2 —y3, q4 and let
p» and q2 comprise set A, and pa and q4 make up set B.
Then we have

[Si+Si S2+52 Sa Sg+54 S4+

+Si Si+S2 52+Sg+53 S4+S4 )
X ~i(1)a(1)~~(2)&(2)&3(3)a(3)&4(4)p(4).

This is clearly zero. Hence this choice of dividing our
four orbitals into two groups yields nothing. Similarly
the choice q», p4 —q2, q 3 gives nothing. For the selection

p», g3—q2, q4 we have

[Si+Si—53+53 52—S2+S4—54+

+Si Si+Sg S3+52+Si—54+54—)
X v i(1) (1)p (2)P(2) %3(3)a(3)p4(4)P(4)

= q, (1)a(1)q, (2)P(2) q, (3)a(3)y4(4)P(4). (43)

Thus when operating on a spin product. function with
the g, operator, we get zero for all choices of i except
one, which leaves the spin product function invariant.
Let us now examine the factor

As a result of operating on [aap [, this gives

o I«PI =[2[«P[—[ala[ —[Paa[)/v2.

This is indeed a state of 5= ~, MB= ~, however, it is
not properly normalized. We must multiply by 3 & to
eGect normalization. Let us derive this extra coeKcient
and set down the rules for the operation of 0 on any
spin-product function with 3f8 /0.

Suppose 0 operates on a spin-product function with
za spins and yP spins, let us assume x is greater than y.
First, the constant E in 0 is to be taken as equal' to y.
We have x—y excess a spins, hence Ms ——(x—y)/2. In
the sum over i in the operator 0, the number of choices
of i that will give a nonvanishing result in the number
of ways of choosing y electrons out of the collection of
x electrons, i.e.,

(49)ii= gI/(g —y) lyl.

Operation with 0 on this spin-product function will

produce ri states with S= (x—y)/2 and Ms ——(x—y)/2.
Thus

0 spin-product=lyi+lPg+ +lP„=C,

each of the P; being normalized. We have (f,, f;)
=1, (P,, P;)= 1/(%+1). Thus

(C', C') =Z'(4', 4')+2 Z'& (4', ki)
=~[1+ (~—1)/PV+ 1)].

Therefore, if we multiply 0by (ii[1+(e—1)/%+ 1))}-**,

we will produce a normalized resultant state. We can
modify the form of 0 given in (41) so that it can operate
on any spin product function. That is,

yrg1) &(~[1+ (~—1)/y"y1)]}-:

(—1)~(X—M)!
Xg 1++

M=» S!M!

X((sg; Ss,+) +(Sg;+Ss; ) }

expanded form of 0 is

0= (1—(Si 52++Si+52 })
X (si+Si S2

—S2++Si—Si+S2+S2—)/V2

+(1—(Si 53++Si+Sg })
X(Si+Si 53 Ss++Si Si+53+Sa )/~2

+(1—(52 Si++52+Si })
X (S,+5,—53—SB++S2—52+Sg+53—)/K2. (48)

e.(S=O) =O[aP[ 0[ay[ O[aP[. (47)
(Sgx;+Sg~' Sis; Sos,+

In the case of 4'~(S=O) we encounter operands, i.e. +Sg'g; Sg'~;+Sis;+Sos; ) . (50)
Iaaf I

or I ad[ with Ms WO a»n (37)»d (38). If we
operate on [«P[ with 0, taking E to be 1 and letting
the sum over i range over all possibilities of dividing

~ ~ ~ ~ This. will be taken to be the final form of the operator 0.
the three orbitals into two groups with one orbital per

We can now write down N~ S=O directly as

group and excluding the remaining orbital, then the @5(S=O)=0[0[«P[ 0[aPP[).
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THE EIGHT-ELECTRON PROBLEM

Before passing on to applications of the operator 0
other than the creation of the orthogonal singlets. for
an m-electron problem, the use of this operator may
be further illustrated by writing down the fourteen
orthogonal singlets for the eight-electron problem. It is
to be recalled that the singlets for the six-electron
problem were found by partitioning the six orbitals in
the various ways suggested by the branching diagram.
The construction of this diagram is not necessary in
general, and we shall write down the singlets for the
eight-electron case without recourse to it. The fourteen
orthonormal singlets for the eight-electron problem are:

e, (S=0)=OlnPI OlnPI. O[nPI OlnPI, (52)

+g(S=0) =OlnP[ ol«nPPP[, (53)

+g(S=O) =O[nnnPPPI OlnPI, (54)

wq(s= 0) =0 lnnnnPPPP I, (55)

e, (S=0)=O[nPI OlnnPPI OlnPI, (56)

~g(s=o) =olnpl olnpl ol«ppl, (57)

+7(S'=0)=ol«PPI olnpl olnpl, (58)

+g(S=0) =oInnPP[ ol«PP!, (59)

~,(S=0)=O[OI«nPPI O[nPP[], (60)

~„(S=O)=O[O[nnp[ O[«pppl], (61)

+&&(s=o) =oLolnnpnl ofPnppl ]
+„(S=o)=O[O fnnnP

f OlnPPP[], (63)

e„(s=o)=o[olnnpl ol ppl] ol pl, (64)

+„(s=o)=olnP
f o[o[nnPf olnPP[], (65)

THE TEN-ELECTRON PROBLEM

PRATT, JR.

+ =ol«PPI ol«PPI olnp[

+~4=olnpf ol«ppl ol«PPI
4'ig =0

I
nnnnpppp

I
0

I np I,

+~g=olnPI ol««PPPPI

=ol«npppl olnpl olnpl,

e„=olnp[ ofnpl ol«npppl,

~.,=ol-ppl oCoI-pl of-ppl],

%o=oLOInnpl'Ofnppl]'Ofnnppl

~»=o[o[nnnp[ ofnpppl] o[np[,

e»=olnpl oLol «npl oinpppl],

+»=o[o f«pl ol«pppl] olnpl,

~,.=olnpl oCol«PI ol«PPPI],

e» o[ol—«- nppl oInpp. l] olnP[,

e„=O[np[ O[O fnnnppf O fnpp[],

+»=O Inp[ O[o lnnpnl oIPnPPI],

e„=o[o[ p [ o[pnpp[] o[np[,

egg =0
I
nn npnpnppp I )

'Ifgg=o[o[nnnnp[ Olnppppl],

e =o[ol pl ol ppppl],

~„=o[o[ n nppl o[npppl],

+gg=o[OI«nppl ol«PPPI],

+g4=0[o [nnp f
0

f
nnnpppp f ],

pppl olnppl],

(78)

(79)

(80)

(81)

(82)

(83)

(84)

(85)

(86)

(87)

(88)

(89)

(91)

(92)

(93)

(94)

(95)

(96)

(97)

(98)

(99)

(100)

The forty-two orthogonal singlets for, a
system are:

+ =olnpl olnpl olnpl oInPI oInP. I,

e =O[nnppf Ofnpf Ofnpf Ofnp[,

~,=o[npl o[nnppl ofnp[ o[npf,

e =ofnp[ of pl ol nppl o[npf,

e,=olnp[ o[npl ol pl ol«ppl,

eg=o[npl olnnnpppl olnp

+g=ofnnppl oInnnPPPf

Ng=o[nnnppp[ 0 fnnpp f,

+10 OLO[nnp[ OlnPPI] O[nPI 'Olnpf, '

e„=ol Pl oColn Pl olnPPI] ol Pl,.

e„=o[np[.o[np[ O[ol«p[..o[npp[],

(101)

(102)

(103)

ten- lectron

Vgg=o[o[nnnpnpp[ O[npp[],
(66)

(67)

(68)

(69)
'

(70)

(71)

(72)

(73)

(74)

(75)

(76)

(77)

4, =0[0[nnPI OlnnPnPPPI],

~,„=o[ol p pl ol pppl],

~..=o[o[- ppl OI p ppl],

+4&

ohio

I
«pnp I

o
I npnpp I »

e.,=o[ol p I ofpnpppl]

(104)

(105)

(106)

(1.07)

APPLICATIONS TO CONFIGURATION INTERACTION

Let us now turn from the consideration of how to set
up the orthogonal singlets and very briefly investigate
some of the aspects of a configuration interaction cal-
culation. The determination of the expectation value
of the Hamiltonian H with respect to a particular state
will be considered as an example of how the spin
operator 0 can be used. Suppose we wish to And the
expectation value of H with respect to the six electron
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3 3 6 6

1—Z Z» ~ '—Z Z»
gA~l+kA=l j~=4&kg=4

3 6+- P P P;»r~ q, (1)~(1)q,(2)n(2) v, (3)
3 iA=1 &a=4

x&(3)9 4(4)P (4)~~(5)p (3)~6(6)p (6)

X
I Hl q ~(1)~(1)p2(2)n(2) y6(6)p(6)). (110)

This expression may seem complicated, but the reader
will also note that this matrix element is taken with
respect to a singlet state which is a linear combination

singlet given in (44), i.e., 0
I
«nppp I.

8 IHIP') =Lol«~PPPI IHI ol«~PPPI j
= $0A («nPPP) (H I

oA («nPPP)]
=

I AO~A(~«ppp) IHI («~ppp) j
= (1vj1)&l Ao(a«PPP) I Hl («nPPP)),

8 IHly) =2AO(~ PPP) IHI ( «PPP). (1os)

The spatial orbitals in the spin-product function
(«nppp) are assumed to be orthonormal. In the expan-
sion of Ao(«nPPP) the only terms which will make non-
zero contributions to the matrix element are those for
which a given electron is assigned the same spin on
both sides of the matrix element. Therefore, we need
only consider those terms in the expansion which lead
to n(1)n(2)n(3)P(4)P(5)P(6). I et us write the antisym-
metrizing operator as

A =QJ (—1)~P&P . (109)

Because of the orthogonality of the spatial orbitals in
the spin-product function, the only spatial coordinate
permutations in A that will give rise to nonvanishing
integrals are the P&'s which eGect a single interchange.
When 0 operates on («nPPP), all those values of M
in 0 greater than one cause two or more spin inter-
changes between sets A and B. Therefore, in order to
match spins on both sides of H, we will need a permu-
tation from A which is the product of a,t least two
interchanges of spin and space coordinates. This will,
therefore, lead to a zero contribution due to the spatial
orthogonality. Hence the only terms that give con-
tributions from the operator 0 are those from M values
of zero or one. For M=O, we wi11 -get nonvanishing
integrals from all possible interchanges of a single pair
of spatial coordinates within set A or within set B.
For 3f=1 in 0 the terms arising from the operation of
0 on the spin-product are all the possible single spin
interchanges between sets A and B. Therefore, in
order to ma, tch spins for a nonzero integral, we will

need those permutations in A which put the spins back
in place. But these permutations involve the inter-
change of a single pair of spatial coordinates between
sets A and 8, and will therefore give rise to exchange
integrals. I.et us now write down (PI H

I P).

of twenty determinants. This leads to the direct product
of twenty determinants and contributions from 180
nonzero cross products.

This general procedure for treating matrix elements
can be extended to nondiagonal matrix elements and
can be generalized to systems with a rather large
number of electrons.
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APPENDIX I

Theorem I
DiGerent paths on the branching diagram terminating

at the same destination lead to orthogonal states.

Proof

It is assumed that all spatial orbitals are orthonormal.
A one to one correspondence exists between a deter-
minant D and spin-product function p, and it is D= A p
where A is the antisymmetrizing operator. If two spin-
product functions composed of the same set of spatial
orbitals differ in the assignment of spin to these spatial
orbitals, then the spin-product functions, or the deter-
minants corresponding to them, are orthogona1. It is
understood that if two states of the same multiplicity
are orthogonal, then the orthogonality is independent
of the MB quantum number of the states. Having made
these preliminary remarks, let us proceed. .

The 6rst case in the branching diagram where one
encounters two diGerent paths leading to the same
end point is for three electrons as shown in Figs. 2(a)
and 2(b). The two states are

+2.= (1/v2) {I
~p~

I

—
I P«l &

= ( A~/)2E(~p~) (P«)l-
+ =(1/06){2I«pl- I~p~l IP«l&-

= (A/v'6) I:2(«p) (~p~) —(P«)3, —

where (nP«P ) will in general denote a spin-product
function. +~, and +2~ are orthogonal.

Let us now consider an arbitrary x-electron terminal
point on the branching diagram corresponding to an
arbitrary multiplicity, say S. We shall assume that all
of the diGerent paths leading to this terminal point
correspond to orthogonal states of multiplicity S. It
will be shown that all of the states arising from the com-
bination of an additional electron with the various
states corresponding to a given terminal point are
orthogonal. It will also be shown that any two (@+1)-
electron states of the same multiplicity which arise from
the combination of the (@+1)stelectron with x-electron
states of diGerent multiplicities are orthogonal.

Consider the addition of the (x+1)st electron. to the
ith state corresponding to the x-electron terminal point
of multiplicity S which results in an (@+1)-electron
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state of 5+-,' and 3IB=S+s.The composite state is

ggf;(5+-'„MB=5+-s,)=q;(S, MB=5) q(S=s, Ms=is),

where gag(s=-,', 3EB=,') is-just y,+1(x+1)n(x+1).Now

q; is equal to A operating on some linear combination
of x-electron spin-product functions, where A, anti-
symmetrizes a function of x coordinates. f;(5+s, S+s)
is equa1 to A~l operating on that same linear com-
bination of spin-product functions each spin-product
being multiplied by egg,+1(x+1)n(x+1). Consider any
f;(5+s, 5+s) for j Wi Th. is is A,~l oPerating on the
linear combination of spin-product functions corre-
sponding to yg. (5, 5), each spin-product being multi-
plied by qr~l(x+1)gr(x+1). iggg(5, 5) has been assn~ed
orthogonal to q, (5, S). Therefore, $,($+s, 5+s) is
orthogonal to P;(5+s, 5+s), for the orthogonality of
two linear combinations of x-electron spin-product
functions is not changed when it is multiplied by
p~l(x+1)gr(x+1) and operated on by A,+1.

Now consider the addition of the (x+1)st electron
to the ith state which. corresponds to the x-electron
terminal point at multiplicity S and which results in an
(x+1)-electron state f;(5 ls, 3EB S—',). We——hav—e—

0,(5—s, iaaf B=S—s) =f=le'(5, 5) V (s, —s)
+~su'(5, 5—1)v (s, +sr).

Consider any other ggt, (S—-'„5—sl) obtained by adding
the (x+1)st electron to q;(5, MB). We have

4i(5—s, 5—s) =~1~ (5, 5)~(s, —s)
+C q' (S 5—1)io(-' +-')

Since q;(5, S) is orthogonal to q;(5, 5) and ggg;(5, S—1)
is orthogonal to p;(5, 5—1),we have that P, (5—-'„S——,')
is orthogonal to P, (S—sl, S—ls) by the same arguments
given above.

Therefore, it has been shown that all of the states
arising from the combination of an additional electron
with the v'arious states corresponding to a given ter-
minal point are orthogonal.

Suppose now that we have two (x+1)-electron states
of the same multiplicity which arise from the com-
bination of the (x+1)st electron with x-electron states
of diferent multiplicities. Two x-electron states of dif-
ferent multiplicity are orthogonal. Therefore, by pro-
ceeding in the same manner as above. it is easily shown
that the two (x+1)-electron states are orthogonal.

Therefore, the theorem is proved.

APPENDIX II

Theorem II

The commutation of S' and 0 is clearly a question of
the commutation of g,» P;, and O. It will be estab-
lished that P,~' commutes with 0 for arbitrary s and t

and therefore, that S' commutes with 0. It has been
shown that the following properties hold for P, ~ .'

S+P, =P,'S]+

S,—P„=P„S,—,

(S, Ss+) P, g P, g (S——g Ss+)

(A-2)

(A-3)

(A-4)

The expression (SA; SB;+)M consists of all possible
M tuples, i.e.,

S&lAi S&2Ai ' ' 'S&MAi SS'1Bi S5'2Bi ' ' 'SWMBi

If neither S.A nor S~A appear in a given M tuple,
then that M tuple commutes with P, & . If just SsAi

appears, then

(5&lAg ' ' 'SgAi ' ' 5&MAi SgglBi ' SggMBi )Pgg

Peg (5&lAg ' ' 'SgAi 'SgMAi SgglB~' ' 'SvMBi ) ~

Therefore, the sum of the two M tuples, one with just
S~Ai and the other with S~Ai in place of S.Ai but
otherwise identical, commutes with E,t, . Hence P',

~

commutes with the sum of all possible M tuples which
contain either SsAi or S~Ai but not both at the same
time. If both SsAi and S~Ai appear in an M tuple,
then P, ~ commutes with that M tuple. Therefore, it
follows that P,~' commutes with all Oi in which both s

and t are in the same group.
Let us now consider case 2. %e can easily show that

(SgA+SgA SgB SgB+)P,g =P,g (SgA SgA Sggg SgB+).

Therefore,

(Sg+Sg S,+S, )P„~=P,g'(Sg+Sg S,+5, ), (A-5)

(S,+Sg Ss+Ss )P, g =P.g (5,+S, Ss+Ss ). (A-6)

%e will speak here about the operation of 0 on a spin-
product function, as this allows one to treat the elec-
trons as being distinguishable, which is convenient. Ke
can break down the sum over i in the operator 0 into
two cases:

1. All choices of i for which both s and t are in the
same group, i.e., 2 or B.

2. All of those choices of i for which s and 3 are in

di8erent groups, i.e. s in A and t in B.
'I

Let us consider case 1. For (5), we have

(SgA+SgA SgA+SgA )P.g =P.g (SeA+SeA SgA+SgA ).

Proof

The spin operator 0 given in (49) commutes with 5'. (5 A+5

=P,g'(SgA+S. A SgB SgB++SgA+SgA SgB SgB+).

The operator S' may be expressed as

S'=const++ P, g .
2

As in case 1, we can examine all of the M tuples which

(A 1)
s P. Dirac, QNagggggggg fff'echamics (Oxford Vniversity Press,

London, 1947},p. 222.
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appear in the expansion of 0, those where neither s nor
t occur, those where one or the other occur, and those
where both s and t appear. In quite the same way as in
case 1, it can be shown that P, t commutes with the
collection of all possible M tuples.

Therefore, in this fashion one can show that P,t
commutes with 0, which implies that 52 commutes with
O.

APPENDIX III

Theorem III

The spin operator 0 is Hermitian.

Proof

with O. Therefore, the second term can be expressed as

Cl{P1AlB +P1A2B + ' ' '+PXAXB )ODp

%e know that ODp is an eigenfunction of 5 which is

S2= const+ P P~'.
io j

P P;1'(ODp) =constODp.
io j

We can write Q;» P~r' as

Pij ~ Q PjAkA + Q PjBkB + Q P2AkB'
ioj jAO~A jBO~B jA&B

Since P~'AaA and P~BeB commute with 0 and sinceEvery term in 0 appears symmetrically with its
they leave Dp invariant, we havehermitian conjugate. Therefore, 0 is Hermitian.

Theorem IV Q PjAkB'(ODp) =constODp.
jA&B

The spin operator 0 commutes with the Hamiltonian However the second term in 02D is just

Theorem V

The spin o erator 0 s uared isp

(X+1)k{22[1+(22—1)/(22+1)]}&0.

Proof

It will be shown first that 0'= const O. The value of
the constant will be determined later. %e shall consider
an 1V-electron problem and the eGect of 0' operating
on a single N)&E determinant Dp, the generalization
of 0' operating on any linear combination of Egg
determinants being trivial.

Let ODp be written as

Pro of

This is a matter of restricting ourselves to spin-free
Hamiltonians.

C1[p P1AkB']ODp,

and is, therefore, a constant times ODp.
The third term can be written as

C,[p p P1AkB P,AiB']ODp.
PAkB 8AtB

However, we see from

[p P1'AkB ]ODp = constODp,
gA~B

[p»AkB ]'ODp= [p P;AkB p P„iB ]ODp.
jA~B jA~B sAtB

Hence, the third term in O'Dp is just a constant times
ODp. Proceeding in this manner it is clear that

OD =C D+C {D"'+D "'+ +D "'}
+C2{D1"'+D2"'+Dp"'+' ' 'D»~x-»~2"'

+ +C»D1'»' Now let

O'Dp= constODp.

OD;
where, in DI, &j&, j refers to the number of reversals in
set A or 8 and k denotes the 0th determinant with j
reversals. Let us now order these determinants such that (g;, f;)= (OD;, OD,) = (0 D;, D;) = const(OD;, D;)= 1.

However,

and so forth.
Let us consider O'Dp term by term. The Grst term is

just CpODp. The second term may be written
+orthogonal D s.

Therefore,

P1A1B Dp ' 'DX PxAxB Dp&

D1 P1A1B P2A28 D0 D2 P1A1B P2ASB D0r ) & OD. D;
@+1)&{I[1+(~—1)/(iv+1)]}&

'

C10{P1A1B+P1A2B + ' ' '+PXAXB )Dp.

In Appendix II it was shown that any P,& commutes

( -1q t--
const (X+1) &

22~ 1+
~

(D;, D;)=1,
E gy1)
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so

n —1i
const= (%+1)& ni 1+

@+1)

Proof

The antisymmetrizing operator A can be written as

A=+ (—1) PoP'

APPENDIX IV

Theorem VI

The spin operator 0 commutes with the antisym-
metrizing operator A.

where I'& is a permutation of the spatial coordinates
and I' is a permutation of the spin coordinates. Any
spatial permutation operator clearly commutes with O.
Any spin permutation operator can be written as a
product of P;; 's. But, any I';; commutes with O. There-
fore, any spin permutation operator commutes with O.
Hence every permutation in A commutes with 0, which
implies that A commutes with O.
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The 1.2S-Minute Rb™Daughter of 2'7-Day Sr"
L. M. LITz, S. A. RING, AND W. R. BALKwzLL

California itesearch and Development Company, livermore, California

(Received June 29, 1953)

OCTOB ER 1$, 1953

The 3,15-Mev positron associated with the decay of the 27-day Srs' has been found to arise from the
decay of a 1.25-minute metastable Rb'~ isomer by an allowed transition to the Kr~ ground state. No isomeric
transition to the 6.3-hour Rb~ ground state was observed. A tentative decay scheme and spin and parity
assignments are discussed.

INTRODUCTION

HE 27-day Sr' was observed to have a positron
radiation of 3.15 Mev."Castner and Templeton

suggested this radiation was due to a short-lived Rb
daughter because of its high energy. However, they

6

8

were unable to find this Rb isotope because of the time
required for the chemical separation used. Also, they
established that the 6.3-hour Rb" was not the daughter
of the 27-day Sr".

It was the purpose of this work to clarify the decay
scheme. The pertinent results have been published in
Hollander, Perlman, and Seaborg's revised Table of
Isotopes. '

IQ

8

8
O

3
0'

o 2

IO

8
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TIME AFTER SEPARATION (MINUTES)

FIG. 1. Positron and Compton p decay of Rb'

'S. V. Castner and D. H. Templeton, Phys. Rev. 88, 1126
{1952); S. V. Castner, M.S. thesis, University of California
Radiation Laboratory Unclassihed Report UCRL-942, October,
1950 (unpublished).

2 K. C. Maclure, Ph.D. thesis, Mcoill University, September,
1952 (unpublished).

PROCEDURE

Chemical Separation

Purified strontium fractions containing the 27-day
Sr" were prepared from target materials containing
either strontium or zirconium which had been bom-
barded with 350-Mev protons or 190-Mev deuterons on
the University of California s 184-in. cyclotron. Fuming
nitric acid precipitations of Sr (NO&) 2 t'ollowed by cation
resin adsorption and elution of the strontium fraction
was used for this purification. Holdback agents were
used to keep the preparation free of the other spallation
products.

The purided strontium fraction was allowed to stand
to insure adequate growth of any daughter activity of
several hours half-life. Perchloric acid, strontium, and
rubidium carrier were added and the solution boiled to
fuming. After cooling to ice temperature, the rubidium
perchlorate was precipitated by rapid addition of chilled

'Hollander, Perlman, and Seaborg, Revs. Modern Phys. 25,
469 (1953).


