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not move in a hydrogen-bke orbit. In many cases the
wave function of the ground state of the electron at the
impurity will resemble more the wave function of the
electron at the impurity in free space" than that of a
point charge imbedded in a dielectric. However, there
exist always excited states, if not the ground state, of
the type considered in this paper.

The optical absorption associated with the electron

"F.Williams, J. Chem. Phys. 19, 455 (1951).

in a state such as the case (3) considered in this paper,
is 1ikely to result mainly from transitions 1s-+2p, rather
than from transitions to the conduction band. However,
the energy difference between the 2p state and the con-
duction band is rather small, and the formulas derived
in this paper may still be of value for an interpretation
of optical absorption associated with an electron in a
hydrogen-like 1s orbit at a multivalent impurity in
ionic crystals.
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A calorimetric technique in which a carbon-composition resistor serves simultaneously as both heater
and thermometer has been developed and is described briefly. Using this technique, the atomic heat of
indium has been measured in the normal state from 1.7'K to 21.3'I and in the superconducting state
from 1.8'K to 3.396'K, the transition temperature in zero magnetic Geld. Tables of smoothed values are

given. A method of deducing the separate lattice and electronic contributions to the heat capacities, based

on several empirically and/or theoretically tenable assumptions, has been developed and is described in

some detail. This method of analysis, when applied to the indium data, led to the conclusion that a cubic

analytic form for the critical magnetic Geld equation would allow conclusions consistent with all the assump-

tions but that the more commonly used parabolic form would not. Numerical values are given for the
constants involved. The temperature dependence of the Debye characteristic temperature of the indium

lattice over the entire range of measurement is shown to follow the theoretically expected behavior.

0% temperature calorimetric measurements can
- ~ yield information concerning three problems of

fundamental importance in solid state physics: vibra-

tional spectra of crystalline lattices, electronic structure,
and superconductivity. Numerous theoretical and
experimental investigations have shown that the dis-

crete nature of the crystalline lattice causes significant

deviations of its heat capacity from the Debye con-

tinuum theory only below about one-tenth the Debye
characteristic temperature, ' i.e., below 30'K or 40'K
for most materials. The electronic structure of a
material is the basis for theoretical calculations of the
heat capacity of its electrons. However, only below

about 15'K is the heat capacity of the electrons of
sufhcient magnitude relative to the lattice contribution
to allow a reasonably precise test of any theory. ' In
superconductivity, a

difference

between the heat
capacities in the normal and superconducting states is

observed, While no present theory adequately explains
this e6'ect, any acceptable theory of superconductivity
must. eventually predict this difference. Superconduc-

tivity occurs among the metallic elements only below
10'K.'

' M. Blackman, Repts. Progr. Phys. 8, 11 (1941).
' F. Seitz, 3IoderN Theory of Solids (McGraw-Hi11 Book Com-

pany, Inc. , ¹wYork, 1940), Secs. 27, 28, and 101.
D. Shoenberg,

Superconductivity

(Cambridge University
Press, Cambridge, 1952), Chap. I and Appendix I.

In addition, the quantity actually measured in a
calorimetric experiment on a solid body is the heat
capacity at constant pressure C~, while theoretical
calculations ordinarily give the heat capacity at con-
stant volume C,. Therefore, in comparing theory and
experiment, it is necessary to correct C„ to C,. At
moderately high temperatures, i.e., room temperature,
this correction is of suflicient magnitude to require
rather precise accounting but the data necessary for
making an accurate calculation are usually not avail-
able. 4 At low temperatures, i.e., below 20'K, C„—C,
becomes vanishingly small so that only a slight correc-
tion, if any, need be made to the measured data to
compare with theory.

Calorimetric measurements below 20'K were there-
fore undertaken. This report describes brieRy the
experimental technique employed and gives the results
obtained on'indium. There were several reasons why
indium was chosen for investigation. First, there were
no useful calorimetric data below room temperature
in the literature; second, it is a metallic element and
should have at low temperatures a measurable heat
capacity due to the conduction electrons; and third,
it becomes superconducting at about 3.4'K. Thus
information related to all the problems mentioned

4 J. K. Roberts, IIeat and Thermodynamics (Blackie and Son,
Ltd. , London, 1940), pp. 161-2.
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above may be gained from a calorimetric study of
indium. Also, indium has a low melting point and can
be easily obtained in a state of high purity so that
preparation of a sample was a relatively minor problem.

EXPERIMENTAL TECHNIQUE

— TO VACUUM OR EXCHANGE GAS

VACUUM-SHIELDED
VAPOR P RESS UR E LINE

It can be readily shown that with an electrical heater
supplying heat to a body at the rate EI, under condi-
tions of imperfect thermal isolation, the heat capacity
of the body at temperature T (assuming perfect thermal
conductivity) is

where E is the voltage drop across the heater, I the
current through it, I' the time rate of change of
temperature when EI@0, and To the time rate of
change of temperature when BI=0, all quantities to
be determined at the temperature T. Since the meas-
urement of heat capacity intrinsically requires dynamic
observations, it is impossible to determine directly all
the quantities in Eq. (1) at a single temperature. In
the technique described here, a carbon-composition
resistor' is used simultaneously as both heater and
thermometer, the principal observation during a calori-
metric experiment being the electrical resistance of this
resistor as a function of time. The Z in Eq. (I) is
maintained practically constant and the resistance-time
data furnishes information for determining I and 7.'

directly and To indirectly.
The thermometer-heater is cemented into a close-

fitting hole along the central axis of a cylindrical
specimen of the material to be studied. This sample is
suspended in an ordinary vacuum calorimeter, Fig. 1,
consisting essentially of a brass can which may be
either evacuated for making calorimetric mea, surements
or 61led with helium exchange gas for cooling the
sample and calibrating the carbon-composition ther-
mometer. The upper part of this can is a vapor pressure
thermometer into which a small amount of liquid
helium or hydrogen may be condensed. ' A Wheatstone
bridge having equal ratio arms and a three lead con-
nection to the thermometer' is used to measure the
resistance of the thermometer-heater. By using a dc
amplifier whose output is fed into a General Electric
photoelectric recorder, as the null detector for this
bridge, a permanent record of the unbalance voltage as
a function of time is obtained.

For making calorimetric measurements, a bridge
voltage is chosen so that the heat developed in the
thermometer-heater will cause the sample temperature
to rise an amount between 0.05' and 0.5' in 300 seconds

~ J. R. Clement and E. H. Quinnell, Rev. Sci. Instr. 23, 213
(&952).

'Temperatures were obtained below 4.2'K from the vapor
pressure of liquid helium using the "1949 scale" PH. van Dijk
and D. Shoenberg, Nature 164, 151 (1949)] and between 10'
and 20'K from the vapor pressure of liquid hydrogen (Wooley,
Scott, and Brickwedde, J. Research Natl. Bur. Standards 41,
379 (1948)g.

'Reference 4, p. 23.
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FIG. 1. Sketch of calorimeter can showing principal details of
construction and assembly.

depending on the temperature range to be studied.
During the 300-second heating period, the balancing
resistor of the bridge is changed by fixed increments so
that 10 or more resistance nulls are obtained. The
values of the balancing resistor at the first and last
nulls, as well as the size of the increments, are recorded
separately a,nd the exact time of each null can later be
read from the recorder chart. At the end of this heating
period the bridge voltage is turned o8 and no measure-
ments made for the next 300 seconds, a "cooling"
period. At the end of this "cooling" period another 300
second heating period follows immediately, and this
process is continued without interruption until the
desired temperature range has been covered. During
the experiment, the temperature of the liquid helium
surrounding the calorimeter can is maintained very
nearly constant.

At the temperature prevailing at the mid-time of the
nth heating period, the quantities in Eq. (I) are
presumed to be as follows. First,

T„„=(Tz „T;„)/(tt „t;, ), ——

where T~, „ is the final temperature, 7;,„ the initial
temperature, t~, „ the time at which heating stopped,
and t; „ the time at which heating began for the nth
heating period, the initial and 6nal temperatures being
obtained by extrapolation of a smooth curve through
the actual data. In practice, instead of calculating a
temperature corresponding to each resistance null, some
simple function of resistance, such as I/R or logR,
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TAsLE I. Synopsis of calorimetric experiments on indium.

Experi-
mental

run Date

Mag-
Bridge Temperature netic
voltage range field
(volts) (oK) (gauss)

Cooling
times

(seconds)

Helium
bath

temper-
ature
('K)

5- 9-50
5-18-50

ii- 2-50
11- 2-50
11- 2-50

9-27-51
9-27-51
9-27-51

10- 4-51
. 10- 5-51

1.50
1.50
1.92
1.92
1.92

2.00
4.00

10.00
4.00
4.00

2.3- 3.8
1.7- 4.3
1.9- 3.5
1.8- 2.3
1.7- 2.4

4.5—9.6
10.3—13.7
17.2-21 3
5.9-19.2

18.7—21.2

0
250
0
0

250

300
300
300
300
300

300
150
150

200-400
200—400

1,85
1.57
1.63
1.59
1.59

4.21
4.21
4.21
4.21

'

4.21

giving nearly linear curves for the heating periods, is
plotted and actual temperatures calculated only for
the initial, mid-time, and final resistance values.

The total voltage applied to the resistance bridge Eb
is automatically maintained highly constant so that

where E„is the resistance of the thermometer-heater at
the mid-time of the Nth heating period and r„ is the
resistance at the time of the eth heating period of any
one of the three (constantan) leads from outside the
cryostat to the thermometer. A switching arrangement
is incorporated in the bridge so that the series resistance
of two of these three leads may be measured during a
"cooling" period.

Finally,
~'~in ~f n—j ~in+j. ~f n

2'p, „=- +, (4)
2 t;, „—ty, y t;, n+y

—
ty, „

i.e., simply the average of the rate of change of temper-.
ature during the "cooling" period just preceding and
that just following the heating period under consider-
ation. The time intervals in Eqs. (2) and (4) are
independently measured on separate clocks, run by the
same power source as the time scale of the General
Electric recorder chart, so that they are known to
&0.1 second.

If T'p be expanded in a power series of the time, Eq.
(4) takes proper account only of the constant and first

power term. A simple means of testing whether higher
power terms are of sufficient magnitude to inQuence

the results, and also for detecting other possible
anomalies in the heat exchange correction, such as
excessive heat loss through electrical leads, is to vary
the cooling times during a calorimetric run. In the
later work on indium, and also that on lead, ' the cooling
times were alternately 200 and 400 seconds, requiring,
of course, an appropriate modification of Eq. (4). The
Fp s obtained i' these experiments lay on a reasonably
smooth curve, when plotted as a function of average

' J. R. Clement and E. H. Qninnell, Phys. Rev. SS, 5O2 (1952).

sample temperature, with no systematic difference for
the two cooling times, justifying the use of Eq. (4) and
indicating that no anomalous effects were contributing
to the measured values of Tp.

The over-all validity of the method rests primarily
on two assumptions: (1) after the 6rst few seconds, the
temperature difference existing radially across the
thermometer-heater' is essentially constant during the
heating period; and (2) the temperature difference
which exists radially across the sample during heating
is negligibly small compared to the total temperature
rise resulting from heating. The validity of these
assumptions may be tested by making calorimetric
measurements on the same sample over the same
temperature range for two, or more, heating rates, i.e.,
bridge voltages. This was done for the indium data as
will be noted later.

A study of these two sects has also been made by
means of an electrical analog computer. "The results
of this study indicated that the temperature difference
in the thermometer is determined by the electrical
power developed and is essentially independent of time,
after a few seconds, if the thermometer is mounted in a
sample of any practical size with any likely thermal
di6usivity. The study further showed that the linearity
of the temperature-time curves while heating, particu-
larly the linearity during the first part of the heating,
is an indication of the validity of the assumption (2)
above. Therefore, the temperature at the mid-time of
each heating period is compared with the average of
the initial and 6nal temperatures for that heating
period. For each heating period so far analyzed, except
those in which the transition from the superconducting
to the normal state occurred, the mid-time temperature
deviated from the average temperature by less than
1 percent of the total temperature rise for that heating
period. Also, each heating period was examined graphi-
cally for abnormal curvature during the early portion.
If I' be expanded in a power series of the time, Kq.
(2) takes proper account only of the constant and first
power term. However, the linearity test shows that no
higher terms of any significance occur in T .

EXPERIMENTAL RESULTS

Calorimetric measurements vere made on a cy-
lindrical specimen of indium weighing 121.7 grams,
cast from metal, obtained from the City Chemical
Company, having a stated purity higher than 99.9
percent. Ten successful calorimetric experiments were
carried out with this sample, and Table I, a synopsis
of these runs, gives the resistance bridge voltage, the
temperature range covered, the magnetic field applied
externally to the sample, the cooling times employed,
and the temperature of the helium bath during the run.

~ See reference 5, Eq. (3).' V. Paschkis and H. D. Baker, Trans. Am. Soc. Mech. Engrs.
64, 105 (1942).
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A being determined from the melting temperature. '
Again the correction may not be very exact but is so
small compared to the total heat capacity of the
sample that the resulting error is negligible.

It is possible in the experimental technique described
to obtain the relative uncertainty of each quantity
involved in deducing the heat capacities since each

TABLE II. Atomic heat at constant volume of normal indium.

Temp. Atomic heat Temp. Atomic heat
('K) (cal/mole deg) ('K) (cal/mole deg)

Temp. Atomic heat
('K) (cal/mole deg)

1.7
1.8
1.9
2.0
2.1

2.2
2.3
2.4
2.5
2.6

0.002515
0.002893
0.003311
0.003772
0.004278

0.004831
0.005433
0.006087
0.006797
0.007563

3.2
3.3
3.396
3.6
3.8

4.0
4.5
5.0
5.5
6.0

0.01351
0.01475
0.01602
0.01899

. 0.02233

0.02615
0.03860
0.05501
0.07479
0.09840

9.0 0.3245
9.5 0.3738

10.0 0.4253
11.0 0.5330
12.0 0.6460

13.0 0.7631
14.0 0.8836
15.0 1.007
16.0 1.134
17.0 1.263

2.7 0.008389
2.8 0.009278
2.9 0.01023
3.0 0.01125
3.1 0.01234

6.5
7.0
7.5
8.0
8.5

0.1261
0.1581
0.1944
0.2345
0.2780

18.0 1.395
19.0 1.529
20.0 1.666
21.0 1.806

"J. R. Clement and E. H. Quinnell,
Standards Circular 519 (1952), p. 89.

~ J.R. Clement and E.H. Quinnell, Phys.
"Reference 5, Eq. (1).

National Bureau of

Rev. 79, 1028 (1950).

In all, 180 data points were obtained in the normal
state and 50 in the superconducting state.

Preliminary reports of part of this work hive already
been given. ""Since the method of calculation used in
obtaining the data in the earlier reports was not
precisely that outlined in the preceding section, in
particular, the thermometer calibration equation" was
not used, all the data have been recalculated for this
report according to the stated procedure. This recalcu-
lation changed the previous values slightly and reduced
considerably the spread in the data. Table II gives
smoothed values of the atomic heat in the normal state
from 1.7'K to 21.0'K, and Table III smoothed values
of the atomic heat in the superconducting state from
1.8 K to 3.396'K. The data in these tables have been
corrected for the heat capacity of the thermometer-
heater, estimated from the time required to establish
the known temperature difference in it at the beginning
of the heating periods. While such an estimate is
probably not accurate to much better than 30 percent,
the resulting error in the actual heat capacity of the
sample is very much smaller since the heat capacity of
the thermometer was less than 1 percent that of the
sample,

The correction C„—C, has also been applied and
was calculated from

C„—C,=AC„'T,

TABLE III. Atomic heat at constant volume of
superconducting indium.

Temp.
('K)

1.8
1.9
2.0
2.i
2.2
2.3

Atomic heat
(cal/mole deg)

0.002832
0.003323
0.003866
0.004464
0.005120
0.005837

Temp. Atomic heat
('K) (cal/mole deg)

2.4
2.5
2.6
2.7
2.8
29

0.006614
0.007459
0.008371
0.009352
0.01041
0.01154

Temp.
(oK)

3.0
3.1
3.2
3.3
3.396

Atomic heat
(cal/mole deg)

0.01274
0.01403
0.0)541
0.01687
0.01835

should, for a single experimental run, ideally give a
smooth curve when plotted as a function of average
sample temperature. Such plots showed EI to be
smooth to one part in 10000 or better, F to about 2
parts in 1000 with occasional points in excess of this
value and Fo to about 5 parts in 100. Since the magni-
tude of T was usually at least 10 times that of To,
the maximum relative error in heat capacity should be
about 0.7 percent. For the data reported here 95 percent
of the points deviated less than 1 percent from a smooth
curve and a distribution curve of the deviations indi-
cated a standard deviation between 0.3 and 0.4 percent.
The smallness of the relative error is due to the high
thermometric sensitivity of the carbon-composition
resistors, to the precision with which the times of
resistance nulls can be taken from, the recorder tape
(+0.2 second), to the relatively good thermal isolation
achieved, and most of all, to the high precision in
measuring resistance resulting from the use of the
comparatively high voltage needed to heat the calori-
metric sample as the measuring voltage of the resistance
bridge.

The absolute error is more difficult to evaluate
precisely. The temperature differences involved in
calculating the heat capacities are rather sensitive to the
thermometer calibration equation, and errors in the
absolute thermodynamic temperatures are indistin-
guishable, when one compares theory and experiment,
from errors in heat capacity values. However, the use
of a temperature difference graph in con~unction with
a closely fitting calibration equation reduces the error
due to each of these sources to probably less than 0.2
percent. The instrumental error and the error due to
the heat capacity of the thermometer-heater are both
probably less than 0.3 percent. Thus, it the temperature
values are regarded as exact, the absolute uncertainty
in the atomic heat values appearing' in Tables II and
III is probably less than 1 percent.

Of these possible errors in absolute values, that due
to the heat capacity of the thermometer-heater is
undoubtedly systematic and those due to the ther-
mometer calibration are very likely systematic. There-
fore, differences in heat capacities, in particular differ-
ences between the heat capacities in the normal and
superconducting states, would probably have, due to
the small relative error in the data, a much higher
accuracy than would be re6ected by data consistent
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with a j. percent absolute uncertainty. For this reason,
and also in order that the tabulated data would repre-
sent the best possible estimate of the accuracy of the
results, four significant digits have been given for each
value in Tables II and III. So that the roughly constant
relative accuracy exhibited by the experimental data
could be retained in the smoothed data, the smoothing
process was essentially that of smoothing the Debye
characteristic temperature and calculating smoothed
atomic heats from smoothed characteristic tempera-
tures.

DISCUSSION OF RESULTS

Kith these data, one has the opportunity to study
the electronic atomic heat, the lattice atomic heat, and
the thermodynamics of superconductivity as it relates
the atomic heat differences between the normal and
superconducting states to the temperature dependence
of the magnetic field which just destroys superconduc-
tivity. Various methods of empirical analysis" have
been used in the past to study these three effects, but
the results have not always been mutually consistent.
A method of analysis has been applied here which seeks
results consistent with all the presently accepted ideas
concerning these properties. In order to describe the
method most ef6ciently, the principal assumptions
involved are stated and discussed brieRy below.

A sslmPti ops

(1) The electronic atomic heat in the normal state is

(6)

where y is a constant at low temperatures. This assump-
tion implies that the lattice and electronic heat capaci-
ties are independent and therefore additive, but this
implication does not appear susceptible to a purely
empirical test, since only the total effect of both the
lattice vibrations and the electrons can be measured
experimentally, Equation (6) results when Fermi-Dirac
statistics is applied to a free electron gas" and the
existence of a linear term in the low temperature atomic
heat of many metallic elements has been demonstrated. "

(2) If the Debye characteristic temperature 0' is
allowed to vary with temperature so that it represents
the actual atomic heat of a crystalline lattice, then

limp„p(dO/dT) = 0.

This condition on 0 appears to be a generally valid
result of investigations of the lattice heat along the
lines of the Born-von KArmhn lattice dynamics, and it
has received empirical support from the results of
calorimetric measurements on materials which have

' See, e.g, Burton, Grayson-Smith, and Wilhelm, I'heeomeea
at the Temperature of liquid Helium (Reinhold Publishing Com-
pany, ¹wYork, 1940), Chaps. 6 and 10.' A. Sommerfeld, Z. Physik 47, 1 (1928).

& Reference 14, Chap. 6 and Appendix C.

only a lattice, and no electronic, contribution to the
heat capacity. For a three-dimensionaI lattice, this
assumption is equivalent to the condition that a power
series representing the heat capacity near O'K contain
no first, second, or fourth power temperature terms.

(3) Below the transition temperature in zero mag-
netic field, the heat capacity of the lattice is the same
function of temperature in the normal and supercon-
ducting states. Measurements of the elastic con-
stants" " and the thermal expansion coefIicient" on
passing from one state to the other indicate that any
difference in the lattice contributions in the two states
is probably less than a few tenths. percent and therefore
within the experimental error of calorimetric measure-
ments.

(4) No linear temperature term occurs in the atomic
heat in the superconducting state. All the available
evidence on superconducting elements supports this
assumption. ""The evidence considered here is that
smooth curves drawn through plots of C„,,/T verses
T' appear to extrapolate through the origin of coordi-
nates, C...being the atomic heat in the superconducting
state.

(5) Rather early in the study of superconductivity,
it was noted that the magnetic field which just destroys
superconductivity II', varies almost parabolically with
temperature. " MaxwelP' has recently shown that the
critical 6eld data can be more adequately represented
by the addition of a cubic term to the parabola. A
convenient form for the cubic equation is

where IIO is the critical 6eld at O'K, a is a numerical
constant near unity, and t is the reduced temperature
T/T„T, being the transition temperature in zero
magnetic field. Since the cubic form includes the
parabola as a special case (a=—1), Eq. (8) will be
assumed as the analytic form for the critical field curve.

(6) The thermodynamics of superconductivity" gives
correctly the difference in the atomic heats in the

"W. J. de Haas and M. Kinoshita, Proc. Amsterdam Acad.
Sci. 30, 598 (1927)."J.R. Clement tU. S. Office of Naval Research Cryogenics
Conference, Yale University, 1948 (unpublished)g reported some
observations of the elastic constants of tantalum which showed
that they remained constant within 0.2 or 0.3 percent on passing
from the normal to the superconducting state.

"W. C. Overton, Jr. Lthesis, Rice Institute, 1950 (unpub-
lished)g measured the elastic properties of tin and tantalum in
the liquid helium range by an ultrasonic pulse technique. The
moduli of both elements remained constant within 0.1 percent
on passing from the normal to the superconducting state.

~ McLennan, Allen, and Wilhelm, Trans. Roy. Soc. Can. 25, 1
(1931).

2' Reference 3, pp. 62 and 63.
~ In one of the preliminary reports of the present data (reference

11), the possible existence of a small linear term in the atomic heat
of superconducting indium was proposed. Recalculation of the data
changed the absolute values of the atomic heat sufficiently that
this conclusion of the earlier report is no longer valid.

ss W. Tuyn and H. K. Onnes, J. Franklin Inst. 201, 379 (1926).
~ E. Maxwell, Phys. Rev. 86, 235 (1952)."C.J. Gorter and H. Casimir, physics I, 306 (1934).
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Cr, =A Ts+BT', (10)

where the constants 2 and 8 have been used in place
of the exact expressions for his particular case." It
follows from Eq. '(10) that

(d/d T) I:(C., -—vT)/IT' j=2&T (11)

normal and superconducting states, that is,

C„,,—C., = PV T/Srrggd'(H. s)/dT'), (9)

where V is the atomic volume, C,, „the atomic heat in
the normal state, and the other quantities are as already
defined. Many experimental investigations have yieMed
supporting evidence, "although in some cases the lack
of agreement between calorimetric and magnetic results
appears to be greater than experimental error. Since
the heat capacity difference is a function of derivatives
of the critical field curve, this lack of agreement may
be due to the difficulty in accurately diGerentiating
these curves. Fundamentally, this assumption implies
the thermodynamic reversibility of transitions between
the normal and superconducting states.

(7) The transition temperature in zero magnetic field
can be determined with suKcient exactness from calori-
metric and/or magnetic measurements to be taken as a
known, unadjustable, quantity in any analysis of data.

A variety of ways to attempt to arrive at conclusions
consistent with all these assumptions can be imagined.
However, only the particular one finally adopted here
will be discussed. Assumptions (1) and (2) applied
simultaneously to normal state calorimetric data yield
a value, or limits on the value, of p in Eq. (6). The
exact means of applying these two assumptions may
vary, a more or less standard procedure being to plot
C„,„/T versus T'. If 0' is sufiiciently constant over the
temperature range ip which data are available, such a
plot will result in a straight line with an intercept equal
to y and a slope simply related to 0 for the lattice.

However, for materials with a relatively low value
of 0', such as indium, 0~ may not become constant in
the liquid helium temperature range so that erroneous
values of y result from such a procedure. An alternative
method which takes account of the variation of 0 with
T is suggested by the work of Blackman'~ on simple
cubic lattices. He finds that near the absolute zero
the heat capacity CL, of any three-dimensional lattice
should become

lOS CAL
MOL ~ Df GS

44 x 10

+0.5—

4.3 && 10

4P x 10

-0.5
0

TEMPERATURE
3 OK

Fio. 2. Graphical application of Blackman's result (lattice
heat=AT'+BT'1 for finding the normal electronic heat, yT.
The y value associated with each curve is indicated in the figure.

Blackman makes no specific remarks in his paper
concerning the temperature range over which Eq. (10)
should be applicable. However, for the particular case
which he has calculated it appears to be from O'K up
to about 8/30 and this range has been assumed valid
for the present analysis. 'The curves in Fig. 2 indicate
a value of y a little greater than 4.3, and certainly
between 4.2 and 4.4X10 ' cal/mole deg'. Had indium

. not been a superconductor, values of 7 between 4.3 and
4.4&(IO 4 would have been tried to find the most likely
value. In this case, however, we seek results as con-
sistent as possible with all the assumptions so we take
only the outside limits on p and continue the analysis
to find if any value within these limits is consistent
with the other assumptions.

Assumptions (5) and (6) yield the result that

C, .—C. „=$VHssT/4~T. ')[15(a—1)st4—20a(a —1)t'
+6a'P+ 6(a 1)t—2a). —(12)

Assumptions (1), (3), and (4) lead then to the following
identification of terms in Eqs. (6) and (12),

y= aVHss/2rrT '. (13)

Using this result, it is possible to rearrange Eq. (12) in

the following form,

Thus, a plot of the rate of change of (C„,„—yT)/T'
with reersls T shouM yield, for the correct value of p,
a straight line passing through the origin of coordinates.
Figure 2 shows such plots for several values of y, the
plotted points being obtained by graphical differenti-
ation of smooth curves of (C,, „—7T)/Ts versls T.

2(C, .—C,, ) 15t'—20P+2

qT(15t4 —20P+ 6P) 15t4—20P+6t'

15t4—6t

15t'—20P+ 6P
where

(14)

' Reference 3, Chap. III.
'7 M. Slackman, Proc. Roy. Soc. (I,ondon) A159, 416 (1937).
"From a purely empirical point of view, Eq. . (10) may be

interpreted as a theoretical justification for ignoring in the
analysis the higher power terms permitted by the less stringent
condition, Eq. (7).

n=1 —(1/a). (15)

According to the definition of n in Eq. (15), Eq. (14)
really involves two constants, y and a, which are to be
determined. However, Eq. (14) is quadratic in a, and
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which can, within the spread in the existing data, '~"
give critical Geld curves in agreement with experiment.
The extent of this area was determined by drawing, for
several values of u included on the curve, straight lines
with reasonable maximum and minimum intercepts
through plots of H,/(1 —P) versus (t' —t')/(1 —t'). Such
curves have intercepts equal to Bo and slopes equal to
aBO. The maximum and minimum values of Bo so
determined were then substituted into Eq (.13) and
the maximum and minimum values of y calculated.
From such a composite of experimental data as con-
tained in Fig. 4 a set of values of a and y which will be
most nearly consistent with all the assumptions may
be chosen. Since, in this particular case, the crossing
point of the u(0) and u(n) curves is within the shaded
area, the exact values of a and y at that point were used.

FIG. 3. Illustration of the method of determining u and n in
Eq. (14), for the case y=4.2&&10 4 cal/mole deg'.

no simple direct means could be found for evaluating
the best values of these two constants. A rather con-
venient method which was used, and which has the
advantage that both calorimetric and magnetic results
can be compared in a single graph, is as follows. We
suppose that Eq. (14) actually contains three constants,
y, u, and n. We choose a value for y from the limits
already determined from the normal state calorimetric
data and evaluate a and n by the straight line graph
method, which means that we plot the entire left side
of Eq. (14) as a function of the bracketed portion on the
right side. One such graph, for y=4.2&&10 ' cal/mole
deg, is shown in Fig. 3. The points plotted in this Ggure
were obtained from the differences in smoothed calori-
metric data, and a point is included for each 0.1'
interval between i.8'K and 3.396'K. %e now define,
for a particular value of y, two values of u in terms of
the constants of the straight line like that in Fig. 3.
One of these, u(0), is the intercept of the line, and the
other, u(a), results from substituting the slope of the
line, n, into Eq. (15) and solving for u(n). After carrying
out this procedure for several values of y, curves can
be constructed showing the dependence of u(0) and
u(n) on y, and from the crossing point of these curves,
if one exists, the set of values of y and a which satisfy
Eq. (14) can be found. Figure 4 shows such curves and
yields the values, y=4.33X10 ' cal/mole degs and
a=i.i05. -

The fact that the curves in Fig. 4 have a crossing
point within the range of y values obtained from the
normal state data means that assumptions (2) and (3)
can be satisGed with the values of a and y indicated by
the crossing point. However, a and y also determine
the critical Geld curve and it is not necessarily true
that the crossing point of the u(0) and u(n) curves will

give a curve in agreement with magnetic data. There-
fore, a shaded area has also been included in Fig. 4.
This area- represents the range of values of u and y

1.15

I.I 0

1.05

1.00

4.00 4.25 4.50

X IO CAL / MOL DEG

Fn. 4. Composite of experimental data for 6nding the values
of u and p most nearly consistent with the assumptions that
0~constant as T~O'K, the lattice heat is independent of the
magnetic state, and transitions between the normal and super
conducting states are thermodynamically reversible. The two
curves, o(0) and o(n), result from calorimetric data and the
shaded area from magnetic data.

$.75 4.75

To carry out the analysis just described, numerical
values for T, and V were necessary. In two calorimetric
runs on the indium sample, the transition from the
superconducting to the normal state was observed with
the sample in the earth's magnetic Geld. In both cases,
the T, value obtained was. 3.390& about 0.005'K.
Correcting for the earth's Geld, we get T,=3.396
~0.005'K. The transition of the sample was also
determined magnetically by measuring the inductance
of a coil wound directly on the sample as a function of
temperature. This experiment gave a transition of
3.390'K in the earth's field and also results in a zero
Geld transition of 3.396'K. The recent work of Stout

~ J. W. Stout and L. Guttrnan, Phys. Rev. 88, 703 (1952}.
3 Daunt, Horseman, and Mendelssohn, Phil. Mag. 27, 7'54

(&939}.
s' A. D. Misener, Proc. Roy. Soc. (London) A174, 262 (1940).
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and Guttman" on the critical 6elds of indium and
indium-thallium alloys gave a zero field transition for
pure indium of 3.396'K, that of Daunt et at." on
indium gave 3.4' and that of Misener" gave 3.386'K.
The most likely value of T, appears to be 3.396'K, and
this value has been used throughout the analysis.

The U appearing in Eqs. (9), (12), and (13) should
be the atomic volume at and below T', . Since the
thermal expansion vanishes, as required by the third
law of thermodynamics, as the temperature approaches
absolute zero, the atomic volume needed is simply that
at absolute zero. The atomic volume at ordinary room
temperatures, calculated from density"" and x-ray
crystallographic'4 " measurements, ranges between
15.61 cm' and 15.76 cm', the most likely value being
15.76 cm'. Using the rather meager and conQicting
data available on the thermal expansion of indium, "
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FIG. 6. Comparison of the experim, ental magnetic held data
with two analytic curves deduced from calorimetric data. Curve A
is the cubic form which corresponds to the results presented in
Fig. 5 and curve B is the parabolic form which corresponds to
the results presented in Fig. 7.
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While Fig. 4 shows that a and y can be chosen to
give agreement with assumptions (2) . and (3), it does
not show directly how exact this agreement may be.
For a more detailed examination, it is necessary to
subtract the electronic atomic heats from the measured
values for both the normal and superconducting states
and compare the two Debye characteristic temperatures
of the resulting lattice heats. Equations (12) and (13)
lead to the conclusion that the electronic heat in the
superconducting state C, , is

I05
0 2

TEMPERATURE

4 'K

FIG. 5. Graphical test of compliance of the calorimetric data
with the assumptions that 0—+constant as T—+O'K, the lattice
heat is independent of. the magnetic state, and the electronic
heats may be deduced thermodynamically from a critical field
equation of cubic analytic form. The legend in the figure identi6es
the experimental run (see Table I) in which the data were ob-
tained.

with the Grueneisen" thermal expansion formula as an
aid in extrapolating the data, the fractional change in
volume between room temperature and the absolute
zero is found to be between 0.020 and 0.037, the most
likely value being about 0.027. From these data the
atomic volume at O'K should lie somewhere between
15.03 cm' and 15.45 cm'. The most likely value appears
to be 15.33 cm', and this value has been used in the
present analysis.

~ IIundbook of Chemistry urId Physics (Chemical Rubber,
Cleveland, 1947), 30th edition, p. 1686.

P. Hidnert and M. G. Blair, J. Research Natl. Bur. Standards
30, 427 (1943).

'4 Reference 32, p. 2016.
'~ L. K. Frevel and E. Ott, J. Am. Chem. Soc. 57, 228 {1935)."L. Guttman, J. Metals (Trans. Am. Inst. Mining Met.

Engrs. ) 188, 1472 (1950).
'YE. Grueneisen, Bcndbech der Physik (J. Springer, Berlin,

1926), Vol. 10, p. 1.

C,.,= (yT/2a) [15(a—1)'t'—20a(a —1)ts

+6a't'+6(a —1)t$. (16)

Using Beattie's" tabulated values of the Debye specific
heat function, with 38=5.960 cal/mole deg, O~ values
were calculated for each data point in the normal state
after subtracting the normal electronic heat as given
by Eq. (6) and for each point in the superconducting
state after subtracting the value calculated according
to Eq. (16), the constants being y= 4.33X10 4 cal/mole
deg', @=1.105 and T,=3.396'K. Figure 5 shows the
results with the data from the different experimental
runs distinguished from each other. Both assumptions
(2) and (3) are seen to be satisled within experimental
error and the agreement between the data for diBerent
heating rates is evident.

Figure 4 also indicates that there will be some sem-
blance of agreement between the measured critical 6eld
data and the cubic curve deduced from the chosen
values of a and y. However, there is even less indication
in this case than in the preceding one of how exact
this agreement may be. Figure 6 shows the data of
Stout and Guttman ' Daunt et al. ,

' and Misener, 3'

together with two smooth curves deduced directly from

"J.A. Iieattie, J. Math. and Phys. 6, 1 {1926-1927l.
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FIG. 7. Graphical test of compliance of the calorimetric data
with the assumptions that 0—+constant as T—+O'K, the lattice
heat is independent of the magnetic state, and the electronic
heats may be deduced thermodynamically from a critical field
equation of parabolic analytic form. The legend in the figure
identifies the experimental run (see Table I) in which the data
were obtained.

the calorimetric data. Curve A is calculated from Eq,
(8) with Ho=278.4 gauss, a= 1.105, and T,=3.396'K.
The value of JIp results from substituting numerical
data into Eq. (13). The measured values of Daunt
et al. are rather close to this smooth curve while the
other two sets of data fall. on either side. Some uncer-
tainty is present in the smooth curve because of
uncertainty in the low temperature atomic volume.
Based on the estimated uncertainty in the atomic
volume noted above, however, the uncertainty in the
critical field curve from this source should not exceed
1 percent.

One difficulty in the foregoing analysis is that it
provides no indication of how well the several assump-
tions can be satisfied if the parabolic form of the critical
field curve is used in place of the more flexible cubic
form. From Fig. 4 it is apparent that some agreement
between the critical Beld data and a parabolic curve
can be obtained with y values between 3.65X10 4 and
3.90&&10 4 cal/mole deg'. However, Fig. 2 shows that
y must be considerably higher than the highest of these
values to be in agreement with assumption (2). The
possibility of satisfying assumption (3) was investigated
by calculating the lattice 0's for the normal and
superconducting states after subtracting the appro-
priate electronic atomic heats given by Eqs. (6) and
(16) with a—= 1, T,=3.396'K and y values of 3.65, 3.90,
and 4.33X10 ' cal/mole deg'. In no case was assump-
tion (3) satis6ed even approximately within experi-
mental error. The results obtained with y=3.90)&10 '
cal/mole deg', the value most nearly consistent with
both calorimetric data and a parabolic critical 6eld
curve, are shown in Fig. 7. The appearance of the data
for y=4.33)&10 ' was somewhat similar, the super-
conducting state data having about the same slope

relative to the normal state data but crossing the
normal data at a lower temperature. Curve B of Fig. 6

. is the parabolic curve calculated from Eq. (8) with
Hp =278.3 gauss and a—=1. This value of B'p results
from substituting numerical data into Eq. (13), a=1,
T.=3.396', y=3.90X10 4 cal/mole deg' and V=15.33
cm'.

Figures 5 and 7 form a dramatic illustration of the
sensitivity of the derived electronic heat capacities to
the shape of the critical Geld curve. So far as the mag-
netic data are concerned, curve A, the cubic, and curve
B, the parabola, of Fig. 6 are essentially the same.
However, when thermodynamics is applied to these
equations to obtain the electronic heats, the calori-
metric results are remarkably different as shown by
comparing Fig. 5, the results of the cubic curve, with
Fig. 7, the results of the parabolic curve.

Finally, the temperature dependence of the Debye
characteristic temperature of the lattice over the entire
temperature range of measurement may be compared
with theoretical results when the discrete nature of the
lattice is taken into account in calculating a vibration
spectrum. Generally, these calculations have resulted
in qualitatively similar curves, ' "having the following
principal features in the temperature range for which
indium data are available. 0 starts from some roughly
constant value near O'K, drops with rising temperature,
passes through a minimum, then rises again with
further increase in temperature to some other value
which may, or may not, represent a maximum. Indium
crystallizes in the face-centered tetragonal structure so
that no existing calculations can be applied in any
quantitative manner. However, Fig. 8, a plot of ()
versus T for indium, shows that the variation of 0 with
T follows the general behavior outlined above. The
agreement between data obtained with different heating
rates is apparent. It might also 'be noted that the H
curve extrapolates, as indicated in Fig. 5, to 109.0'K
at the absolute zero, the absolute uncertainty in this
extrapolated value being perhaps +0.3'K.

SUMMARY

A calorimetric technique employing a carbon-compo-
sition resistor simultaneously as both heater and ther-
mometer was developed. The principal observations
during a calorimetric experiment, the time dependence
of the resistance of this thermometer-heater, are auto-
matically recorded. Heat capacities are deduced from
the initial data by a time derivative method, and
criteria for testing the validity of the method on the
basis of results of a single run were given.

Using this technique, the atomic heat of indium was
measured in the normal state from 1.7'K to 21.3 K
and in the superconducting state from 1.8'K to 3.396'K,
the transition temperature in zero magnetic field. The
results exhibited a high degree of consistency, the
standard deviation of the data from a smooth curve
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being between 0.3 and 0.4 percent. Tables of smoothed
values were given, .the absolute uncertainty in the
tabulated values being probably less than 1 percent.

A method of deducing the separate lattice and
electronic contributions to the heat capacities, based
on several empirically and/or theoretically tenable
assumptions was developed. Among these assumptions
were that the Debye characteristic temperature of the
lattice approaches a constant as the temperature
approaches the absolute zero, the lattice heat of a
superconductor is independent of the magnetic state,
the heat capacity of a superconductor has no linear
temperature term, and the equation of the critical
magnetic 6eld is of cubic analytic form. The method

TABLE IV. Love temperature physical constants of indium.

Constant

Te
V (O'K)
Hp
0 (O'K)

Numerical value

4.33X10 4 cal/mole deg'
i.i05
3.396'K

15.33 cm'
278.4 gauss
109.0'K

of analysis was applied to the indium data and yielded
conclusions consistent with all the assumptions. The
numerical values of several constants deduced for, or
resulting from, this analysis are collected in Table IV.
It was further demonstrated that such mutually con-
sistent conclusions could not be found if a parabolic
form for the critical field equation was assumed, even
though the parabola used was in essentially as good
agreement with critical 6eld data as the cubic curve.

Finally, the temperature dependence of the Debye
characteristic temperature of the lattice over the entire
range of measurement was shown to be in qualitative
agreement with that which would be expected on the
basis of the few existing calculations which take more
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FIG. 8. Curve showing the variation of 0 of the indium lattice
with T over the entire range of measurement. The legend in the
figure identifies the experimental run (see Table I) in v hich the
data were obtained.

complete account of the discrete nature of the crystal-
line lattice than the Debye continuum theory.

The authors wish to express their appreciation to the
various members of the Cryogenics Branch of this
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Pote added im proof: Since the c—ompletion of this
report, the results of some calorimetric measurements
on indium between 12'K and 273'K LK. Clusius and
L. Schachinger, Z. angew. Physik 4, 442 (1952)1 have
come to the authors' attention. The tv o sets of data
are in good agreement at about 21'K but gradually
deviate from each other with decreasing temperature,
becoming 6nally 4 to 5 percent different at about 12'K,
the data of Clusius and Schachinger being the higher.

The actual experimental data on which the present
report was based are contained in Naval Research
Laboratory Document No. 106435 (August 1953).


