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p-type samples with one another, one finds the heights
of the maxima roughly proportional to the logarithms
of the Hall coefficients in the impurity range and the
depths of the minima roughly proportional to the
logarithms of the Hall coeKcients at the negative
maxima.
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The thermoelectric power Q of a semiconductor is found by calculating the Thomson coe%cient gz from
electrical and thermal current density expressions and then integrating the relation or= T dQ/dT. This
procedure yields a general expression for Q in terms of the Fermi level, forbidden band width, temperature,
ratio of electron to hole mobility, and effective electron and hole masses. In the impurity range the general
formula for Q reduces to a simple dependence on the Hall coeilicient and temperature if carrier scattering
is largely due to the lattice of the semiconductor; the same expression may be used with the addition of a
correction term when carrier scattering by impurity ions becomes important at the lower temperatures.
When both holes and electrons must be considered as carriers, Q can be evaluated at any temperature from
the resistivity and Hall coe6cient at that temperature. An expression is also obtained for the thermoelectric

power of an intrinsic semiconductor in a form depending on the mobility ratio, forbidden band width at
O'K, and the temperature rate of change of this band width. Hall and resistivity data measured for six

polycrystalline germanium samples and two silicon samples have been inserted into the theoretical expres-
sions derived in this paper. The thermoelectric power curves so calculated are found to give generally good
agreement with the measured curves.

I. INTRODUCTION

ARK-HOROVITZ, Middleton, Miller, Scanlon,
- & and Walerstein" have measured the thermo-

electric power curves of a number of aluminum-doped

and antimony-doped polycrystalline germanium sam-

ples, with carrier densities ranging from 10" per cm'

to 7&(10"per cm'. The resistivity and Hall coefficient,
as well as thermoelectric power, were measured over a
temperature range as wide as 78 K to 925'K for some

samples. ' The calculations described in this paper were

carried out in an attempt to explain the behavior of the
thermoelectric power of a semiconducting sample on

the basis of its Hall curve and resistivity.
Early theoretical work on the behavior of semicon-

ductors contains references to thermoelectric power. ' '
However, the results of these authors are not given in

*This work was assisted 6rst by a National Defense Research
Committee contract with the Purdue Research Foundation and
later by a Signal Corps Contract, and was reported in part to
American Physical Society meetings at New York in January,
1946 and at Durham, North Carolina in March, 1953.

'Lark-Horovitz, Middleton, Miller, Scanlon, and Walerstein,
Phys. Rev. 69, 259 (1946}.

s A. E. Middleton and W. W. Scanlon, preceding article LPhys.
Rev. 92, 219 (1953)g.

3 M. Bronstein, Physik. Z. Sowjetunion 2, 28 (1932).
4 R. H. Fowler, Proc. Roy. Soc. (London) A140, 505 (1933).
s A. H. Wilson, Theory of Metals (Cambridge University Press,

Cambridge, England, 1936),p. 181.

form suitable for comparison with experiment or for
prediction of thermoelectric power behavior from
measured Hall and resistivity data.

For use in comparison with experiment, a theoretical
thermoelectric power expression must be adaptable for
application in the impurity, transition, and intrinsic
ranges. In the impurity range of temperatures the
numbers of intrinsic electrons and holes due to thermal
excitation of electrons from the filled band to the con-
duction band are negligible compared to the number of
conduction electrons excited from impurity donor
levels (n type) or the number of holes formed by ioniza-
tion of acceptor levels (p type). Thus, one need con-
sider, in the impurity range, only one sign of carriers.
Many samples show "exhaustion" in the impurity
range, i.e., all of the donors or acceptors become ionized
and the number of carriers per cm' remains eGectively
constant with temperature rise until intrinsic conduc-
tion becomes important. Low resistivity samples may
show "degeneracy" at low temperatures, ' hence a
general theory of the thermoelectric power of semi-
conductors must provide for the use of Fermi-Dirac
statistics where appropriate.

"Transition range" is a suitable term to apply to
those temperatures at which one must consider both

' V. A. Johnson and K. Lark-Horovitz, Phys. Rev. 71, 374, 909
(1947).
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the intrinsic carriers and the carriers released from
impurity levels. In this range one allows for the presence
of carriers of both signs, but one cannot take the elec-
tron density to be equal to the hole density. The term
"intrinsic range" is reserved for those temperatures at
which the intrinsic electrons and holes completely
swamp the carriers from impurity levels. Under this
condition the electron density equals the hole density.

The general thermoelectric power expression, which
is now obtained, can be put into special forms applicable
to the various temperature ranges. These results are
then used to calculate thermoelectric power curves to
be compared with measured values.

II. GENERAL EXPRESSION FOR THE
THERMOELECTRIC POWER

The thermoelectric power is found by obtaining the
Thomson coeKcient from the thermal and electrical
current densities and then integrating the appropriate
Thomson relation. ' %hen both holes and electrons are
present, the electrical (j,) and thermal (w,) current
densities may be written:
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and to are at the top of the filled band with positive
values in the filled band, negative in the forbidden
band. The condition for thermal equilibrium requires
that the partial Fermi levels be related to i, the Fermi
level of the sample, by

and f,= E, f, — —(4)
where Eg is the width of the forbidden band.

The integrals in Eqs. (1) and (2) are simplified by
use of the relations

Pro. 1. Thermoelectric power as a function of reciprocal tem-
perature for 6ve n-type, antimony-doped polycrystalline ger-
manium samples. The dashed line is drawn in to approximate the
common line approached by all samples as they become intrinsic.
The number of conduction electrons per cm' at exhaustion is
3.3&&10"for 26J, 7.7)&10' for 34E, 1.1X10"for 33E, 6.2&(1{}17
for 34E, and 8.2X10' for 33N. The three purer samples become
intrinsic within the range of investigation and so empirically
determine the curve for intrinsic germanium as

Q = —86.3 (2430'/T —0.34) microvolts/'K.
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where subscript 1 refers to electrons and subscript 2 to
holes. Furthermore, no Inagnetic 6eld is applied, the
electric field intensity and temperature gradient possess

'only X components, l denotes mean free path, fo the
unperturbed distribution function, v the carrier velocity,
o the carrier kinetic energy (mv'/2), and m the effective
mass.

The unperturbed distribution functions are

2g=
351$
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Now Eqs. (1) and (2) may be rewritten as
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where 1 r and f's are the "partial" Fermi levels. The
quantities sr and i r are zero at the bottom of the con-
duction band and have positive values in the conduction
band, negative in the forbidden band. The zeros of e~

7 See, e.g., F. Seitz, The Modern Theory of Solids (McGraw-Hill
Book Company, Inc. , New York, 1940), p. 174.
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TABLE I. Values of electron mobility to hole mobility ratio (c)
and temperature variation of forbidden band width (a) found
from the measured thermoelectric power curve of intrinsic ger-
manium.

ducting samples. The sign of Eq. (11) is consistent with
the convention that the thermoelectric power is positive
if conventional current Qows from the semiconductor to
the reference metal at the cold junction.

where

Eo (ev)

0.70
0.72
0.74
0.76

C =gll/jtl2

3.98
3.80
3.62
3.47

a (ev/'K)

—4.43X10 4

—4.45X»-'
—4.48X10 4

—4 52X 10 4

a

L; (1)= )l e'lg de
86

III. THE INTRINSIC RANGE

At temperatures high enough that the CGects of
impurity atoms may be neglected and only intrinsic
carriers considered, one can assume that:

(A) Classical statistics apply and the distribution
functions of Eqs. (3a) and (3b) may be replaced by

f/ = 2mi'h ' exp{ (—e~+1)/kr), (12a)

f,'=2 m2h ' exp{(—e2 —Eg—i)/kr}. (12b)
and L, (2) is the corresponding integral containing l2

and jP.
These current density equations are used to find the

Thomson coe@cient Oz from the expression for the rate
of heat development per unit volume

dH/dt =E,j, cjw,/Bx—

(8) The only important scattering of carriers is due
to the lattice, ' and hence the mean free paths l~ and l2

are independent of the energies e~ and e2.

(C) The conduction electron and hole densities are
equal i.c., sy= +2, Thcncc,

{= ,'Eg ,'kT—l-n(m—,/m—2). (13)

dT d t' dT
=ti-' —j. +—

I

dxE dx&'

Assumptions A and h lead to the following values for
(9) the integrals appearing in Eq. (10):

where p is the electrical resistivity and Ii.,&, the portion
of the thermal conductivity due to electron transport.
The development of dH/Ct yields the result

Lg(1)= —2lgmPh 'kT exp( /kT);
Lg(2) = —2I2m2'h 'kT exp{—(Eg+l )/kr);
L2(1)= —4/&mph '(kT)' exp(f/kr);
L2(2) = —44m/k '(kr)' exp{ (Eg+—g)/kr) .

(14)

T 8 (1 gy) T(g3)
0g~

e dr&r g, & e Eg,)'

where the functions g&, g2, and ga are dined by

g~
——L2 (1)/mp —L2 (2)/m22,

g, =L,(1)/mP+Lx(2)/m2',

Li(1) d (t ) L,,(2) d (Eg+t )
g3= I

—1+
m, ' dTET) m, ' dTE T )

(10) Also, when assumptions A and 8 are valid, the mean
free paths can be expressed in terms of the electron and
hole mobilities, p& and p2, respectively:

lg, 2 fp~, 2(2am——g, 2kT) '/e-

Insertion of expressions (14) and (15) into Eq. (10)
and simplification yields a Thomson coefficient ex-
pression valid at high temperatures 9

T d
or= —— (2k tanhz)

e dT

T 1 d (Eg) dz
+———tanhz

~ (+k, (16)dr&r) dr
'

Eg 1 (cm&)
+ +—ln(

kT 2kT 2 &m2&por= T dg/dr

One of the Thomson relations states that, if Q is the
thermoelectric power in a semiconductor-metal circuit
with junctions at temperatures T and T+dr, the
product Tdg/dr equals the difference between the
Thomson coefficients of the semiconductor and metal. where s is defined by
In this derivation, the Thomson cocKcient of the
metal is taken as zero, and so

is the equation for determining thermoelectric power.
Although the following thermoelectric power values are
thus found for the semiconductor relative to a metal of
zero Thomson coefficient, the values are approximately
applicable relative to any metal because metals have 0&
values very much smaller than those of most semicon-

in which c denotes the mobility ratio ti,,/y, .

s A. SommerfeM and H. Bethe, B'undblch der E'hysik (Verlag.
Julius Springer, Berlin, Germany, 1933), Vol. 24, No. 2, pp.
509-521, 558-560.' A similar expression is given in a discussion of the thermoelec-
tric power of tellurium samples by T. Fukuroi and S. Tanuma,
Science Repts. Research Insts. , TAhoku Univ. , 4, 353 (1952).
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For an intrinsic semiconductor, one. introduces Eq.
(13) into Eq. (17) to obtain z= rslnc and thence

T d 2k(c—1) T k(c—1) d ( Eg—)+—
I I (»)

e dT c+1 e (c+1) dT ( 2kT J

Now Eq. (11)may be readily integrated to yield for the
thermoelectric power

k(c—1) (Eg
Q= —

I
+2 I.

e(c+1) &2kT
(19)

Both experimental and theoretical considerations'~"
indicate that Eg varies with temperature in an ap-
proximately linear manner:

IV. THE TRANSITION RANGE

In the transition range, both holes and electrons are
present as carriers, but the carriers released by im-
purities are comparable with those due to intrinsic
conduction; thus one cannot take n& equal to n&.

However, the temperature is high enough that assump-
tions A and 8 and, hence, Eq. (16) are still valid. When
Eq. (16) is inserted into Eq. (11) and the integration
performed, one obtains

2k k k t et )Egg
Q=—tamz+-z —— tanhz

~
~dT

e e e~ dT (2kT)
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Thence Eq. (19) becomes

k (c—1) ) Es a y
Q= ——

f
+2+—l.

e (c+1) L2kT 2ki
(21)

This predicts that a plot of Q as a function of the
reciprocal of the temperature, in the intrinsic range,
should be a straight line with parameters determined
by Es, g and c. Figure 1 shows a plot of Q es 1/T, at
high temperatures, for several of the n-type germanium
samples investigated by Middleton and Scanlon. ' The
approach of these curves to a common straight line may
be seen; the empirical equation of this line is

The approximation made in evaluating the integral
above is that of taking tanhz as a slowly varying func-
tion of T in comparison with (d/dt)(Eg/2kT). The
error from this approximation vanishes at the low
temperature end of the transition range, but increases
to —,'(k/e) ln(ms/alt) as the sample becomes intrinsic.
The measurements of Benedict and Shockley" indicate
that ms/mr is probably less than 1.6 for germanium.
Hence the maximum di6'erence between the exact and
approximate forms of Eq. (23) is probably less than
30 microvolts/'C.

Equations (12a) and (12b) can be used to convert
Eq. (23) into an expression for calculating the thermo-
electric power from the electron and hole densities:

k (2430'
Q= —

~

— -0.34 ~.
e( T i (22) Q

k
2(ntc Ns) —etc ln-

e (estc+Bs)' 2 (2wmtkT) &

One can determine a and c for germanium by comparing
Eqs. (21) and (22) and inserting an experimentally
determined value' """of Eo. The results are shown
in Table I.

The value of a obtained in this manner is in good
agreement with the value obtained for germanium from
optical data, " but higher than the value found from
other data. "—"The c values of Table I are much larger
than values found by methods" ' which employ data
taken at lower temperatures (usually 300'K) and which
give c between 1.5 and 2.1. Such a temperature dif-
ference in c values is to be anticipated if the electron
mobility follows the expected T "law while the hole
mobility varies with temperature about as T ~', as has
been indicated by recent experiments. ' "

~e j.Bardeen, Phys. Rev. 75, 1777 (1949l.
"W. Shockley and J. Bardeen, Phys. Rev. 77, 407 (1950).
~ H. Y. Fan, Phys. Rev. 78, 808 (1950)."V.A. Johnson and H. Y. Fan, Phys. Rev. 79, 899 (1950).
'-4 T. S. Moss, Phys. Rev. 79, 1011 (1950).
5 J. R. Haynes and H. B; Briggs, Phys. Rev. 86, 647 (1952).

G. L. Pearson, Phys. Rev. 76, 179 (1949).' L. P. Hunter, Phys. Rev. 91, 207 (1953).' M. B.Prince, Phys. Rev. 91, 208 (1953).' W. C. Dunlap, Phys. Rev. 79, 286 (1950).

+ms ln
essks

(24)
2(2 ~,kT)~l

TAaz.E II. Dependence of the Hall coefBcient factor r, deined
as Ne~R~, and thermoelectric power upon relative proportions of
lattice and impurity scattering.
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~ T. S. Benedict and W. Shockley, Phys. Rev. 91, 207 (1953).

The comparison of measured thermoelectric power with
values calculated from Eq. (24) is discussed in Sec. 6.
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and dropping out the electron-conduction terms in Eq.
(10) leaves:

T d 1 L, (2) T d (Eg+1 )
(Ir (P-type) =— — +—

I I
(25b)

e dT TL, (2) e dTE T )

Equation (11) may be integrated to yield the result:s,

and

1 I,(1)
Q (e-type) = —— + —,

eT L~(1) eT

1 L,,(2) Z;+i.
Q(P-type) =— +

eT L, (2) eT

(26a)

(26b)

For most germanium, silicon, and tellurium samples,
the carriers obey classical statistics above liquid air
temperature. In this case the distribution functions are
given by Eqs. (12a) and (12b), and the Fermi level may
be related to the carrier density by the equation:

. V. THE IMPURITY RANGE

At the lower temperatures the number of intrinsic
carriers is negligible compared to the number of carriers
released by impurities. When the terms pertaining to
hole conduction are dropped from Eq. (10), one obtains

T d 1 Ls(1) T d
o r (e-type) = —— — +—

~

—
~, (25a)

e dT T Lg(1) e dT &T)

electric power expression is obtained:

Q= +(k/e)Lln(~E~ Tl) —5.327. (31)

1/l= 1/iI+1/lr.

If l»= ae', the energy dependence of / is given by

(32)

%hen this expression is valid, the thermoelectric power
as a function of temperature may be found from a
measured Hall curve which gives E. as a function of T;
and, conversely, measurement of the thermoelectric
power curve gives an approximate determination of the
Hall curve and carrier density curve of the same
sample.

The assumption of predominant lattice scattering is
best satished for relatively high purity samples at the
higher temperature end of the impurity range. It has
been found, especially in germanium, that, with de-
creasing temperature and increasing impurity content,
a substantial portion of the carrier scattering is caused

by the randomly distributed impurity ions.""An
approximate correction for the eQ'ect of impurity scat-
tering upon the thermoelectric power is based upon the
result of Conwell and Weisskopf" that the mean free
path due to impurity scattering is about proportional
to the square of the kinetic energy, whereas Sommerfeld
and Bethe' have found the mean free path due to lattice
scattering (1J.) to be independent of energy. When both
kinds of scattering are present, the mean free path / is
given by

noh'

t =kT ln
2(2s-m, kT)&

(27) lz+as'
(33)

2 (2mmg, skT) &

(29)

where the sign of Q is the sign of the carrier. Equation
(24), when either m, or n, is set equal to zero, reduces
to Eq. (29).

Under the conditions assumed in deriving Eq. (29),
the carrier density is related to the Hall coe%cient of
the sample, E, by the relation 9'

~ =3m/(8e
i
R

i ), (30)

where E is measured in cm'/coulomb, e in coulomb, and
n per cm'. When Eq. (30) is substituted into Eq. (29)
along with the values of the various quantities, includ-

ing the free electron mass for vs~, 2, a simple thermo-

~' R. Gans, Ann. Physik 20, 293 {1906).

If most of the carrier scattering is due to the lattice,
the mean free path is independent of the carrier kinetic
energy, and Eqs. (14) and (27) may be used to obtain

Ls(1)/Lg(1) =Ls(2)/Lg(2) =2kT. (28)

Inserting this result into Eqs. (26a) and (26b) produces
the expression:

This expression enters into the determination of the
Hall coefficient so that Eq. (30) should be replaced by

e=r/e( Jl f, (34)

where r depends'4" on the ratio of a/lr, (or pI./pr) in
the manner given in Table II."

The quantity q= Ls(1)/(kTL~(1)) =Ls(2)/( kTL, (2))
also depends upon the relative amounts of lattice and
impurity scattering in a manner found by inserting Eq.
(33) into Eq. (8); the results of this computation are
also given in Table II. When the corrections due to
impurity scattering are considered and allowance is
made for the difference between free electron mass mo

effective mass, Eq. (31) is replaced by

Q= a (k/e) tin(~R ( Tl) —lnr —7.16+q
+-,' 1n(mg, s/m, )7. (35)

~ E. Conwell end V. F. Weisskopf, Phys. Rev. 69, 258 (1946);
77, 388 {19SO).

~'K. Lark-Horovitz and V. A. Johnson, Phys. Rev. 69, 258
{1946).

'4 H. Jones, Phys. Rev. 81, 149 (1951).» V. A. Johnson and K. Lark-Horovitz, Phys. Rev. 82, 977
{1951)."A later paper will describe corrections required in resistivity,
thermoelectric power, and HalI efI'ect by the deviation of E~ from
a simple 8 energy dependence.
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Since modihcations due to using Fermi-Dirac sta-
tistics in place of Boltzmann statistics are usually not
important above liquid air temperature, thermoelectric
power is degenerate semiconductors is not discussed
here but will be presented in a later paper.

VI. COMPARISON WITH EXPERIMENT

The theoretical expressions developed in the pre-
ceding sections have been compared with the thermo-
electric power curves measured by Middleton and
Scanlon. '

The thermoelectric power curves in the impurity
range are calculated by applying Eq. (31), or Eq. (35)
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FIG. 3. Comparison of calculated and measured thermoelectric
power curves for two p-type silicon samples, aluminum-doped
112 and boron-doped 26G.
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from measured Hall and resistivity curves. ' The carrier
densities nj and e2 are found, for a given temperature,
from the values of R and o (electrical conductivity) at
that temperature by using the equations:
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where E is the number of carriers per cm' in the ex-
haustion range (the + sign applies to p-type samples,
the —sign to e type). Algebraic elimination of n~ and
n2 yields expressions for the mobility ratio c:

1 8R (o y' (o.
(~-type» —= —

I

—
I +&

I

—&
I

(39a)
c 3~e Ep, ) ip, ,e )

8R (o'i f' o
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I

—
I I

—&
I (39b)

3ze (ps) &use

(40)

where 8 is about 1.8X 107 'Kl cm'/volt-sec for electrons
in single crystal germanium 'and less for the poly™
crystall'ine samples investigated by Middleton and
Scanlon. For these polycrystalline samples mobility was
extrapolated, following Eq. (40), from values at the'
high temperature end of the impurity range. The extra-
polated mobility and measured E and o- at a chosen T
are put into Eq. (39a) or (39b) to determine c at that
temperature for the chosen sample. This process yielded
c values for germanium, at temperatures in the 600'-
900'I range, tha, t averaged to about 3.0. No systematic
vanation of c with temperature or impurity content
was observed. When c has been found, e~ and e2 may
be evaluated from Eqs. (37) and (38), thus completing

where required, to the measured Hall curves of the
samples. ' Equation (35) is used for quite impure
samples at relatively low temperatures; mj and m2 are
taken equal to mo, but proper values of r and q are
inserted on the basis of analysis' of the resistivity curves
of the samples.

The theoretical curves in the transition range are
computed by putting into Eq. (24) values obtained

"K. Lark-Horovitz, National Defense Research Committee
Report 14-585, pp. 36, Nov. 1945 (unpublished); K. Lark-
Horovitz and V. A. Johnson, Phys. Rav. 69, 258 (1946); K. Lark-
Horovitz, Elec. Eng. 68, 1047 (1949); H. C. Torrey and C. A.
Whitmer, Crysta/ Rectifie~s (Mcoraw-Hill Book Company, Inc. ,
New York, 1948), pp. 58—61 and Figs. 3-7.

FIG. 2. Comparison of calculated and measured thermoelectric Only lattice scattering is important in the transition

curves are calcu]ated, and experimental points are indicated by ange, d th l tr n m b'l'ty a funct' " ofpower curves for polycrystalline germanium samples. The smooth

dots and crosses. The number of holes per cm' at exhaustion is temperature is given by
5.7X10' for 35K, 1.7X10" for 353f, and '/. 2X10'8 for 27L;
the number of electrons per cm' at exhaustion is 3.3X10'5 for . py=jBT &,

26L, 1.1X10'7 for 33E, and 6.2X10' for 34E.
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the data required for evaluation of thermoelectric
power from Eq. (24).

Figure 2 shows a comparison between the measured
and calculated thermoelectirc power curves for three
e-type, antimony-doped polycrystalline germanium
samples and three p-type, aluminum-doped polycrys-
talline germanium samples. It is apparent that con-
sistently good agreement exists in the transition range,
where there is little scatter of the experimental points,
and also quite good agreement in the impurity range in
view of the rather wide scatter of the experimental
points at these lower temperatures.

Figure 3 shows a similar comparison between theory

and experiment for two polycrystalline silicon samples,
both p type, one (26G) boron-doped and the other (112)
aluminum-doped. While there is a fair degree of agree-
ment between theory and experiment, it is not as good
as for the germanium samples, perhaps because all
measurements on silicon were more diTicult than on
germanium because pressure contacts were used instead
of soldered ones.

The authors wish to thank A. E. Middleton, W. %.
Scanlon, E. P. Miller, and I. Walterstein for their
courtesy and cooperation in making available all of
their experimental results continuously throughout the
progress of this investigation.
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The characteristics of the electron traps present in the KI-TlI phosphor have been investigated. Determi-
nation of trapping depth and frequency factor yields evidence for representation as a reaction rate process
with a division into two distinct trapping systems, while absorption and emission studies indicate a common
excited state. Evaluation of concentration and cross section of traps substantiates the above hypothesis.

A. INTRODUCTION

~CRYSTALS composed of alkali-halides with small~ percentages of added thallium-halide have been
studied extensively as model impurity-activated phos-
phors. The original work of Pohl's school' and Hunger'
has been supplemented more recently by that of
Garlick' and Randall4 who have also extended studies
of the thermoluminescence phenomenon originally in-
vestigated by Urbach. ' The theoretical aspects of the
problem, 6rst treated by Seitz, have been advanced
quantitatively by Williams. The speci6c system, potas-
sium iodide-thallium iodide, had been investigated
earlier at this laboratory' and also by Bonanomi. '

A complete analysis of a complex electron-trapping
system requires a knowledge of the kinetics involved.
For a monomolecular process, the activation energy
and frequency factor are required constants for the
various trapping levels, as well as the concentration and

' See R. Hilsch, Proc. Phys. Soc. (London) 49 (extra part), 40
(1937).

W. Bunger, Z. Physik 66, 311 (1930); W. Bunger and W. Z.
Flechsig, Z. Physik 67, 421 (1931) and 69& 627 (1932).

'G. F. J. Garlick and M. H. F. Wilkins, Proc. Roy. Soc.
(London) A185, 408 (1945).

4 J.T. Randall and M. H. F. Wilkins, Proc. Roy. Soc. (London)
F184, 347 (1945).

~ F. Urbach, Wien. Ber. IIa. 139, 353, 364, 483 (1930).
~ F. Seitz, J. Chem. Phys. 6, 150 (1938).
7 F. E. Williams, J. Chem. Phys. 19, 457 (1951).

Smaller, May, and Freedman, Phys. Rev. 79, 940 (1950).' J. Bonanomi and J. Rossel, Helv. Phys. Acta. 24, 310 (1951);
Physica 18, 486 (1952).

cross section for trapping under given excitation. Ab-
sorption and emission characteristics indicate the pro-
cesses involved while knowledge of intertrap and non-
radiative transitions are necessary to estimate the
e%ciency of the phosphorescent processes. We have
attempted in this investigation to extend the prelimi-
nary results previously reported and to discuss certain
quantitative aspects of a long-lived phosphorescent
system hitherto not mentioned.

B. THERMOLUMINESCENCE STUBIES

If a phosphor is irradiated at a temperature T, the
phosphorescent intensity I will be determined by the
rate of release of trapped electrons, —(de/dt), and can
be described, for a monomolecular process, by

I~ —(dl/dh) =e/r,

where the decay time 7 is given by

r=s—' exp(Z/kT).

8 is the activation energy required to raise the electron
from trapped to emitting state, and s is de6ned as the
frequency factor. If the irradiation is stopped after eo
electrons are trapped and the temperature increased
at a rate P=dT/dh, the emission will continue' at a rate

T $
de/dt= —see exp —

I
—e ~h~ dT e e s . (3)

0


