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The Imperfect Gas*
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The partition function of the classical imperfect gas is approximated by means of a generalized cell model
in which the number of particles in a cell is taken as the statistical variable. The limiting free energy per
particle exhibits critical phenomena, and, for temperatures less than the critical temperature, the P-v isotherm
is a nonanalytic function of v consisting of three pieces. These properties depend only on the interparticle
potential energy having the general features usually assigned to it. However, the condensation pressure
is not constant, and, for temperatures suSciently low, the isotherm shows thermodynamic instability.
The model allows the calculation of the limiting free energy per particle for all values of the temperature
and Specifi volume.

l. INTRODUCTION

' 'T is believed that the partition function of classical
~ - statistical mechanics is capable of completely
describing the equilibrium behavior of an imperfect gas
from its ideal gas behavior at large specific volumes,
down through the liquid-solid transition. It is never-
theless true that a theoretical description of the whole
mechanism of condensation does not exist.

Several aspects of the condensation problem seem
clearly established. (1) All gases condense. The essential
molecular property involved here is the general shape
of the potential energy of interaction between a pair of
particles. (2) The p-v isotherm is a nonanalytic function
of v, the specific volume, for temperatures below a
critical temperature. Condensation occurs at a constant
value of p. Above the critical temperature, p is an
analytic function of e. For all (T, w), dp/dv ~& 0. (3) The
nonanalytic behavior of the isotherm can only appear
as the result of a limiting process. The process con-
sidered is V, E &~, V/X=w—fixed, where X is the
total number of particles in the volume V.

The established difFiculty of an exact approach to the
condensation problem justices the consideration of
models. We have therefore devised an approximation
which retains some of the pertinent physical features of
an imperfect gas and which is capable of representing a
good part of the behavior just described. The model
is described by a partition-like function which is sus-
ceptible to analysis. We believe that the model is of
interest in that the limiting partition-like function has
the following properties: (1) It exhibits critical phe-
nomena; (2) for temperatures below the critical temper-
ature, the p-v isotherm is a nonanalytic function of v

consisting of three pieces; (3) these properties depend
only on the intermolecular potential energy having the
general features usually assigned to it. The model is,
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of course, not without drawbacks. The disadvantages
are: (1) The condensation region is not characterized.
by constant pressure; (2) for temperatures sufficiently
low, the isotherm shows thermodynamic instability.
The most serious disadvantage is the lack of a constant
condensation pressure. In fact, the model is unable to
suggest to us how the constant pressure part of the
isotherm comes about.

2. THE CLASSICAL PARTITION FUNCTION

The configurational partition function for an im-
perfect gas is

r
Zg=

~

'

d7i dry exp[—PW(ri rg) j, (2.1)
"v

with 8' the total potential energy of a con6guration of
particles and P=1/kT. The total free energy of the
system, supposed to consist of a single type of particle is

expL —~)= (2mm/Ph')'~"Zz . (2.2)

Suppose that the volume V is divided into E cells of
equal volume r, Er= V, and that the cells are numbered
from 1 to E. Let e; denote the number of particles in
the jth cell. We may then write

Xdr~ expL —PWj, (2.3)

where, in the integral, n,. particles are conhned to cell j.
The sum is over all sets of integers (e;), e; ~& 0, subject
to the restriction

x
Q m;=X.

In principle, the specific subdivision of the space into
cells is irrelevant for the final result if a consistent
calculation is carried through. Therefore, we make the
choice r=v the specific volume, so that E=lV. Then
(n;) = 1 for all v, P. This specific choice of r is discussed
in Sec. 7.



190 8 ERLI N, % I TTEN, AN 0 GERSCH

The limiting free energy per particle is defined by where
"'=k U(R~")

P(v, P) = Lim 4(N, v, P)/N.
y, Pf —+x
V/X =v

(2.4) 1TJTGjj—g vVoy j=k,

Furthermore, the thermodynamic quantities are sup-
posed to be defined in the usual way. For example,

p= 8—$/Bv; Lim (E)/N= 8(PP)/BP, (2.5)
y, ~~a)
V/N =I

where E is the total energy of the system.

3. AN APPROXIMATION TO THE IMPERFECT GAS

The model is derived by approximating (2.3). We
will proceed to list the assumptions and their direct
consequences for (2.3). Each of the assumptions will be
discussed in Sec. 7,

W(ri, r~) = Q U(r;;),
1 &i&~&W

(3.1)

i (4 &m&N
min U(Rg„). (3 2)

This energy is now independent of the coordinates of
the particles and it can be taken outside of the integral.

We define an average interaction energy within a cell

by

exp[ PW)]=—v"' I'— dpi

where r, , is the distance between particles i and j and
U(r) is the potential energy of interaction between a
pair of particles.

(2) When two particles i and j are in different cells k

and m, we assume that U(r,;)= U(Ri ), where Rq is
the distance between centers of the kth and mth cells.

The total interaction energy with respect to particles
in diR'erent cells is

and P', q is over all cells.
(4) The sum over the set (e;), where the n; are

integers &~ 0 and

is a sum over lattice points, in an E-dimensional
Euclidean space, bounded by an E—1 dimensional
figure, a "hyperhedron. " The center of the hyper-
hedron is the point (1, 1, , 1) which describes the
configuration with one particle in each cell. This is the
average configuration, since (e;)= 1.

Our next assumption is to replace the sum over the
lattice points by an integration throughout the volume
0 of the hyperhedron. We write

Zy=A (N)v- exp[~NPWp] t I'dn

ding

X~ g F(e,+1)
~

exp[ —P P a; e;n ], (3.6)
j,k

where A (N) is a normalization constant.
(5) The division of physical space into cells of volume

e implies that the fluctuation in the number of particles
per cell, a.=((n,—1)'), is finite for all v, P; unless, of
course, purely attractive forces are present. This sug-
gests that a significant contribution to the above inte-
gral arises from points which lie on the intersection of
the hyperplane gf i e,=N with the N-dimensional
sphere P& i(m; —1)'=R', where R'=No. . The inter-
section is the surface of an (N —1) dimensional sphere
with center the center of the hyperhedron. The volume
of the intersection is of the order of magnitude of the
volume of the hyperhedron.

Now, the volume integral in (3.6) may be written

Xdrnq exp[ —PW(ri, ~ rnid]. (3.3)

WI, is a function of v, P, and n~

(3) Let Wo be defined by

WI, =——,'ni, (eg —1)Wp. (3.4)

f N

dR dpi des~. (3.7)

In general Wo will be a function of v, P, and n~ It is.
assumed that the dependence of 8'0 on ej, can be
neglected so that it is independent of the cell number k.

The consequence of assumptions (1), (2), and (3) is
that

N

Z =P(v~ g~! )

!w! E i=&

Xexp[i~NPWp —P g c&is&By], (3.5)

N N
Z (nj —i)' =Z2, Z n; =X

The difficulty here is that for E& 1, a good part of the
surface of the (N —1) dimensional sphere lies outside
the hyperhedron. However, integration becomes fea-
sible if the whole surface of the sphere is an allowed
region. We allow this extended region but introduce a
weighting factor to compensate for the additional
unwanted states. A factor is needed which is 1 for R& 1,
which is of order e ~ for E. E ', and which is negligible
with respect to e ~ for E E. It is therefore assumed
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that Let s be a complex variable and consider a function

Q
' der derv= ' dR exp — Ra

~o — 2N

N

F (s) =LimN ' P f(s+X;).
N—+~ j=l

(4 2)

(3 8) The subscript I denotes the number of spatial dimen-
sions of the physical system, and AI,—a» ——A. & defines XI,.

It is not dificult, although the analysis is lengthy, '
to show that

where n is a hnite constant.
(6) Since in both the gas and liquid regions we

can expect that o 1, the I'(n;+1) will mostly be of
order 1. We approximate the gamma function by
exp[am, (n;—1)j where we choose a=-.', ln2 to fit the
point m, =2.

(7) The final assumption is to set the Born-von
Karman periodic boundary conditions on the physical
space. A one-dimensional gas would be confined to a
ring, and a two-dimensional gas to the surface of a
torus. The mathematical analogy is extended to the
three-dimensional gas. The eGect of this assumption is
to cyclize the interaction matrix (a;&).

The partition function of our approximation to the
imperfect gas is

Ziv=Ao~ exp[-, NPWo] ' der dm~

1 r2
F„(s)= —

)t d'or . dho„f.(s+) (ao)), (4.3)

where
(r" ao)

X(~)=2 P a„cos
r 0silnj

and u, r are e-dimensional vectors having components
(ao.. . . ao„) and (x, y, s, . ), respectively. The sum
P, is over all the cell centers in the physical space
including cell 1; v'I" is the unit of length, e denoting
the specific volume; and the components of r are integral
multiples of v'~". The vector r has its origin at the
center of cell 1. The degeneracy of )%, (ao) is evidenced by
X(aoi ' ' ' ao )=X(2%—aoi ' ' ' 2% —QJ ).

Considering the case m=3, it is a convenience to
assume that

Z nj=X
j 1

Xexp — Q (e;—1)'
2E

ai, cosl
l

—,
,

I"
~

"dr'a;, cosl l, (4.4)

where the integral is over the volume of the cell with

a Q ~.(is. 1) P Q a.„ri.isa (3 9) center at r. Then,

The constants A and n will be fixed by comparison with
the ideal gas.

)~(ae)=, ~

~ dRa(R) cosl—
pJ E. v-:

(4.5)

4. LIMIT FUNCTIONS OF THE EIGENVALUES
OF THE MATRIX (a;,)

Before evaluating the partition function, it is con-
venient to have an understanding of the properties of
the eigenvalues of the interaction matrix (a,;).'

Since the matrix is cyclic, it is easy to show that the
eigenvalues are given by

-' (&+&) 2x'
Aa aii+2 Q ai„co——s —(k —1)(p—1),

v=2 Ã
k= 1, 2, i7. (4.1)

The subscript P refers to the cell number with respect
to cell 1. [(4.1) is exactly true for N odd. The extra
term for E even does not inQuence the analysis in any
significant way. $ With the exception of Ai, the eigen-
values are doubly degenerate because A& ——A»+2, k/ 1.

G. Kowaleski, Determiecetentheorie (Chelsea Publishing Com-
pany, New York, 1948), third edition, p. 105.

where the prime signifies that the integration is over
all space excluding a volume v centered at the origin.
Note, however, that the use of the integral has de-
stroyed the degeneracy of ) (ao). Consequently, the
degeneracy must be preserved by definition.

If we suppose that 2a(R) = U(R) is a function of R
only,

4ir
t

" sin(Roi/v~)
) (ai) =X(ao) =— U(R) R'dR, (4.6)

rt & R, (R&o/e*)

'V ~ 'V2. ) (ao)=0;

' T. H. Berlin and M. Kac, Phys. Rev. 86, 821 (1952).

where we take u=EO'.
Since the qualitative behavior of a gas should not

depend on the details of U(R), we shall represent
U(R) by the potential shown in Fig. 1.

The integration is readily performed and we find that
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using the representation

l%. ((o) = —4r U.{BL~j—(e2/e)FI((v2/v) 4j}; (4.7)

X(o))= ~;vi) v) 0:
where

H/q)= (q cosq —sinq)/q'= —(m/2) sq sJ;(q). (4.8)

5. EVALUATION OF THE PARTITION FUNCTION

N

si z—Pyg

~ss+s ~ — (
ds exp s( R' —g yJ2 i, (5.4)

and because R is positive, we may write

Let us erst transform from the variables {e;}to the
variables {y;}by a translation and rotation such that

o+s~s

4

271 Z go —z oo

ds exp(Ãs'/2n) dw
—Ns/a

Z(~;—1)'=2 y';

N

P a;k(e;—1)(ep—1)=+A;yP.

0 (R)&i

R,

3
Rl =Vl

-Ua

FIG. 1.A representation of U(R), the potential energy
of interaction between two particles.

(5 1)
XexpL —(n/2Ã)w'j g 7r'(s+a+PA;) '*. (5.5)

j=2

Let

N

g(s+a+Ph. ;)—:=exp ——P in(s+u+PA;) .
2
—2 22

This result is obtained by multiplying the integrand of
(5.3) by (5.4) and allowing —~ (y;(~ all j; inter-
changing the s and {y,} integrations by choosing so

real, positive, and large enough to make so+a+PA;) 0
for all j; and finally interchanging the s and 8 inte-
grations, which is permissible for all s. It is to be
understood that the normalization constant A in 8 is
to be determined at our convenience.

We are interested in the limit E—+~, and the
limiting form of the integrand in (5.5) is required.
The product may be written

The transformation matrix t can be taken as

ttJI, =X s cos —(j—1)(k—1)

G„(s)=LimcV ' Q ln(s+a+Pks).

From (4.3) we have

(5.6)

2%
+sin —(j—1) (k—1), (5.2)

Ã

where the characteristic vectors are normalized to
unity and the A& are given by (4.1).The hyperplane is
described by y&

——0.
The partition function (3.9) may now be written as

CX

Z~=B
~

dE exp — R' ir

~
dy2 dy~

~0 2Ã
N
Z yz2 =R2

N

Xexp —P(~+PA~)y ', (5.3)

B=Av~ exp[cVP (-,'Wo —A g) i.

Xln(s+a+Ph. (s))), (5.7)

where A(~) = an+lj. (~). However, some care is now
necessary.

Let S denote the algebraically smallest value of
a+PA(~). If the s plane is cut from s= —m to s= —g
along the real axis, then the integrand in (5.7) is
analytic in the cut plane. The behavior of the integral
in the neighborhood of s= —S is characterized by the
density of eigenvalues A(u) in the neighborhood of the
algebraically smallest eigenvalue. This behavior incom-
pletely describes the behavior of (5.6) in the neighbor-
hood of s= —S because the singular nature of the
integral in (5.7) has in general nothing to do with the
singular nature of a single term in the sum in (5.6).
Consequently, we more accurately write,

Relaxing the restriction on the region of integration
of the variables {y;}by means of the delta function,

2
G„(s)=—ln(s+ 8)+f„(s).

E
(5.8)
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The 2 arises because the algebraically smallest eigen-
value is doubly degenerate.

In the integral over w in (5.5), the important values
of z are of order E:. For finite s, the lower limit of
integration is of order LV. In this situation the integral
over w may be replaced by (2vX/n)l if s is positive.
Therefore we must evaluate

8 (2vEi '*

Z~=
2~i & n )

so+i ~ dS
X "plug. ()], (5.9)

(s+5)

point equation is

1
t

t' t' ZGl ylA02/Gg3

n (2v-)'~ ~ " s,+a+pA(~)

2SB
I(—s„v). (5.15)

A Repulsive Potential

It is easy to see that if a solution s, exists, then s,
is real. It follows that L8'g3/Bs']8, )0. We also recall
that A(~) is double degenerate, that is A(~q, co2, ~3)
=A(2v. —co~, 2v.—&o2, 2v —~~), the point (v., v., v.) being
a center of symmetry. The integral representation of
X(~) destroys this symmetry and, therefore, the sym-
metry is maintained by definition.

2 —-'~ s %e represent a repulsive potential by Fig. 1 except
Applying the method of steepest descent to the that U

integral, we find that

Bv«" '& exp[Kg„(s,)]
(s.+S)L~(~'g-/»') "]' (5.10)

X(a))=0;
v~)v)0: X(~)= ~. (5.16)

if a saddle point s, can be found such that s, is real,
positive, to the right of the singularities of the integrand,
and with

[Bg„/Bs5s, 0; ——[8'g„/»']8,)0 (5.11)

s' 1 (Bg) s, 1
g„(s)=——In(s+a);

i i
=— =0;

20! 2 (»)., n 2(s,+a)

(8'g„q 1 1
I

=-+
E» ) s, (x 2(sg+a)

The constant 2 shall be determined by normalizing
to the ideal gas, for which Z~= V~/cV! For the ideal
gas a;I,=O for all j, k, so that A;=0 for all j.Then

Recall that A. (co)=an+A(s&), where 2am= WO is an
average energy of interaction among particles within a
cell. u~~ is independent of co and for a repulsive potential
monotonically increases to ~ as v decreases to v&/8.

In the range ~)v &~v&, (5.15) becomes 2s,/n
= (s,+a+pa&~) '. Therefore as v decreases to v~, s,
monotonically decreases from s;& to 0. Hence, the gas
does not exhibit any transition and the limiting value
of the free energy per particle is given by (5.14) for
all v, P.

An Attractive Potential

The attractive potential is represented by Fig.
except that 8~=0. Then for

v& v2. X(&u) =0
The solution of the saddle point equation that meets &v)0, $( ) 4 U' If) ] Q[( /)f ] (517)the requirements is

s,= s,g =+-', (a'+—2n) ~ ,'a——
It is found that, for E~~,

(5.12)

—1nA = ln(e/v-&) —g„(s;g).
g

(5.13)

This yields for the limiting free energy per particle,

Pf„= ln(2v m/Ph—')+ln(—ev)+P(—',W0—A~)
2

+g„(s,) g„(s,~). (5.14)—
e now investigate the existence of a saddle point,

and we shall get to a real gas by considering first a repul-
sive potential only, second an attractive potential only,
and finally the usual molecular potential.

For a three-dimensional system, m=3, the saddle

a» monotonically decreases to —~U as v decreases to
v2/8 and for v(v2/8, an is constant at this value.

In the range v)v2, 2s./n= (s,+a+Pa») '; and as v

decreases, s, increases.
In the range e(e2, something new occurs. The

algebraically smallest value of X(co) occurs for &v=0,
y(0) = —(4v/3) U, (v2/v& —1), and S=a+P(an+A(0)).

The qualitative behavior of X(u) is shown in Fig. 2.
It is easily shown that I(—S, v) is finite, and. the

qualitative behavior of I(s, v) is shown in Fig. 3.
The saddle point is the point of intersection of the

straight line (2/n) s with the curve I(s, v) for given v.
From Fig. 3, we see that for fixed P, a ve will exist such
that for e &vp a saddle point will not exist. Consequently,
there exists a transition point for which the tempera-
ture and volume are related by

—(2/u)S= I(—S, v).
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V2 ~ V 1 V DECREASING

FIG. 2. P (ar) for v(v2.

g3(s) =g3(—5)+y(s+S)
+(1/48) (mbl) (s+S)l+O[(s+S)'],

(5.19)
1 (cB,((o) )
2 & a~' ).=0

5 1(Bf3)
cK 2E Bs)

On setting s+S= e, it is plain that the integrand of
(5.9) falls oG rapidly from its value at e=0 for «al
part of e negative if r)0. From Fig. 3, it is easy to
see that p is &0 for e pee. Finally a path, qualitatively

Z (S,Y)

0 PO 11

(V'V~) ( VcV~)

FIG. 3. The qualitative behavior of J(s, v) as a function of s and v.

The variation of the transition temperature with volume
is sketched in Fig. 4. There is no critical temperature
above which a transition fails to take place.

Xo transition exists for the one and two-dimensional
gases because then the integral I( S, v) diver—ges. The
divergence is easy to see because the "volume" element
goes to zero as cv" 'd~ where n is the dimensionality,
whereas the denominator goes to zero as co' when s= —5.

For a given temperature there is the transition
volume vp &e2. We must now find ZN for v (vp since the
partition function must exist.

The integrand in (5.9) has a pole at s= —S. To
determine if a path of steepest descent exists in the
neighborhood of the pole, which is also a branch point
of g3(s), the behavior of gs(s) near the pole is required.
After some analysis we find that

shown in Fig. 5, does exist for which the imaginary
part of g3(s) =0, and which does not cross the branch
cut. Therefore, we note that the contributions to the
integral from the partial paths on opposite sides of the
cut cancel in the limit E~~ and that it is only the
residue at the pole that contributes to the integral.
Hence

(2m.IVI ~

Z~ B~'*&"="~
~ expI:sVg3( —5)], v &np. (5.20)E~)

This provides

—pp3 ——2 ln(2n. m/ph')+ln(ev)+ p(-', Wo —Ai)

+g (—S)—g (s, ), v&v . (5.21)

We will forego a discussion of the nature of the
transition until the normal molecular potential is
considered.

It would be expected that a gas with purely attractive
molecular forces would collapse to a point. In the
model, however, a restriction has been placed on the
fluctuations in n;, the number of particles in a cell, and
as a consequence this limitation to finite fluctuations
plays the role of a repulsive force.

FIG, 4. The qualitative rela-
tion between the tran sition
temperature and specifIc vol-
ume for an attractive potential.

V2

The Normal Molecular Potential

The normal potential energy of interaction between
a pair of particles is represented by Fig. 1. With this
interaction, a» behaves qualitatively on e in the way
shown in Fig. 6. It is important that aii~+" as
n +vi/8 T—he sign. ificant feature of the behavior of aii
is that —5 first increases as v decreases from large
values, then reaches a maximum value, and finally
decreases without limit as v—+vi/8.

In the range ~ &v&v2 a normal saddle point exists.
The possibility for a transition only develops when
neighboring cells get into the range of the attractive
forces.

As v decreases from v2, I( 5, v) becomes fi—nite.
Figure 3 illustrates this behavior. Now I(—S, v) is
proportional to temperature. We can then see the
possibility that if T is large enough (P small enough),
the minimum value of I ( 5, v) as a function of v —is
above the line (2/n)s when the maximum value of —5
is reached. Consequently, a normal saddle point exists
for all v under the circumstance that T is large enough,
and this means that no transition occurs. We are thus
able to define a critical temperature T„P„and volume
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e, by means of the equations

—2S,/n= I(—S„v.);
—S, as a function of e is maximum at e,

for p=p, .
(5.22) Fto. 6. Qualitative

dependence of a11 on
speci6c volume.

This critical, behavior is described in Fig. 7.
Now for P&P, (T&T,), a volume v' exists for which

2S'/—n= I( S', v—'); v, &v'&v„. P&P, (.5.23)

t
40

t

I

I

I

I

Vl /8

n—PP„=—1n(2vrnz/Ph')+in(ev)
2

+p(2~a ~t)+g (~ ) g (~ '&) (5 25)

S-PLANE

CUT

so

Furthermore, as e decreases still further, the repulsion
pulls I to the left as shown in Fig. 7, and a volume e"
exists for-which

2S"/n—=I( S",v"—); vt&v" &v'&v, ; P&P,. (5.24)

%e will show below that e' and v" correspond to the
onset and completion of a condensation phenomenon.
This phenomenon does not occur in either one or two
dimensions because I( s, v) diver—ges. It is, therefore,
concluded that

6. ISOTHERMS, FLUCTUATIONS) AND
CORREI ATIORS

The equation of state can now be obtained from
Eqs. (5.25) and (5.26) by the relation p= —(Bf/Bv)z
For a three-dimensional gas this gives in the normal
region

1 1 85'0 BA.g
p= —+-

Pv 2 Bv Bv

1 1 t.
f t d~ BA(u)

(6 1)
2 (2v)"~ & & s,+a+PA(~) Bv

0

where s is determined by the saddle point equation
(5.15). In the transition region the pressure is given by

1 8$"0 BAg=—+-
Pv 2 Bv Bv

BA i 5 1 1 p p p dw

Bv n 2 (2v.)'" & " L
—5+a+PA(~)]

where

for
2s,/n =I(s„v),

n=j. 2 7

n —3.

0&p& ~, vt&v& co,

P &P.,
~

P&p.)

vt&v&~, ~ ~ &v&v'; v"&v&».

Fio. 5. Path of steepest descent for v &vp.

21r

1 1
I

t- i- d~BA(~)/Bv
(6.2)

2 (2')'~ ~ ~ L
—s+a+PA(aa)]

0

$t the transition points v' and v"; s= —S, and the term
in the brackets of (6.2) vanishes as can be seen from
Eq. (5.15) by a differentiation. Consequently the
pressure is continuous at the transitions. The erst
derivative of the pressure with respect to volume is

I(-s,v)

The normal region is defined by the above conditions.
For volumes v such that e'& v& v", the normal saddle

point does not exist. However, the path of steepest
descent described by Fig. 5 exists, the saddle point
sticking at the pole. Then

Pfs a ln(2v m/Ph—')+ln——(ev)+P(~ Wo —At)

+g~(—S)—g3(~') (5 26) sll s I
C

-s

for P&P„v'&v&v". This region we call the transition
region.

This completes the evaluation of the partition func-
tion for all v, P for the normal molecular potential.

Fic. '7. Qualitative behavior of I(—5, v) as a function of P, v,

and —5. Arrows on the curves show direction as v decreases.
These curves are the locus of end points of curves which could be
drawn to correspond to curves in Fig. 3 where I(s, v) is shown as
a function of s.



BERLIN, V&ITTEN, AND GERSCH

Ãjnp

(( '))'(( "))'
(6,3)

The average value of a function F is dined, after
transformation to the variable s and after using (5.9)
for the partition function, to be

Sp+f ce

(F)=
~

ds(s+S) 'I'(s)—
exp)1Vg„(s)]

$0 —1 ()o

p$0+1 OO

ds(s+S) ' expL1Vg„(s)]. (6.4)
$0 —I ()o

Expressed in terms of the variables x,=n;—1, the
correlation is

FIG. 8. Qualitative features of the equation of state.
C'~= (1+(*»))/(1+(*')) (6 5)

also continuous at the transition points; however, there
is a discontinuity of the second derivative. These
statements are proved in the appendix.

Qualitative investigation and numerical estimates
using typical Lenard-Jones potential energy curves to
deduce the behavior of Wo and X(cu) give results for the
equation of state summarized in Fig. 8. These estimates
give critical temperatures and volumes which are of the
same order of magnitude as experimental results for the
potentials considered. Below the critical temperature
T„ the isotherms consist of three analytically diferent
pieces while above T. the isotherms are everywhere
analytic. The discontinuities are located and described
by the analysis without further thermodynamic con-
siderations.

It is immediately obvious that the isotherms are not
Bat in the transition region. For all temperatures above
T„and for temperatures immediately below T„Bp/Bv
is everywhere negative; this means that for these
temperatures the states described by the theory are all
stable. For lower temperatures Bp/Bv becomes positive
for a part of the range of the isotherms and the theory
has admitted unstable states. At these temperatures
there is no obvious relation between the location of the
transition points and the position of the loop in an
isotherm. It can easily be shown that for very low
temperatures the maximum in the isotherm occurs at
larger volumes than the transition volume v' adjacent
to the gaseous phase. Similarly, the states in the liquid
phase are everywhere stable, Bp/Bv(0, for all temper-
atures. At low temperatures also, the pressures are
allowed by the theory to become negative. The edifying
features of the equation of state are thus the existence
of a critical temperature with the accompanying ana-
lyticity for higher but not lower temperatures and the
stability of all states for temperatures immediately
below the critical.

The correlation between numbers of molecules n;, nI,
situated in the jth and kth cells, respectively, is defj.ned

(x;x(„-)= P t;„t),„(y '). (6.7)

It is clear from (5.3) and (5.5) that we can express
6' ') as

so that

1 1

2(s+s+PA )
1 & t;tI,

(x;xp) =-
2 —s+s+psc )

(6.8)

(6 9)

Using (5.2) for the components of the characteristic
vectors,

1 k(&+&) cosL(2n./N) (k—j) (m 1)]-
S 'SI[, (6.10)g m=2 s+a+pA

The term with m= 1 does not appear in the sum due
to the restriction P~ q n, =&V Because thi.s term is
omitted, we have for all j,

g (x;x),)=0. (6.11)

Write (6.10) in the form

cos[(2s/3T) (k —j)])(x;x(,)=
x(s+5)

1;(&+&)cosL(2~/N') (k —j) (m —1)]+ (6.12)
m=3 s+a+pA„

The correlation function, (x;xq), expressed in terms of
the variables {y,) is

(*;»)=Z Z & )4-(y)r-). (6.6)
l=2 m=2

However, (y)y„)=0 unless 1=m because the integrand
in Eq. (5.3) is an even function of yE and y and the
limits of integration are symmetric. Thus,
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Consider the second term. Since all the singularities of
the sum are to the left of —S, the presence of this sum
will not inhuence the existence or position of the saddle
point, so that

1:|N+ & cos[(2+/A)(k —)')(m —1)))
g m=3 s+a+pA

FIG. 9. The quali-
tative dependence of
o =s,/a ou volume
and temperature.

V

T(Tc

Vl

1 k()v+i) cosL(2x/1V) (k—j) (rN —1)]
(6.13)

s,+a+pA„

will no longer satisfy the condition

N

P (x;xi)=0.
Define H(r;)„s) by

H(r, )„.s)
According to (6.20), the H(r;i', s,) are Fourier coeffi-

cients for i~La+pe(o))+s, ] ', and from (4.3) the Uir
are Fourier coeKcients of X((o). If one represents
—,'La+pA(o))+s, ] ' by its Fourier series, and then
expresses A((d) =a»+X(o)) in terms of the Uir, one can
get, after some manipulation, the following integral
equation for B(r;&, s,):

1:(&+&)cos/{2w/A) (k —j) (m 1)—]=Lim— (6.14)
~~m g m=3 s+a+pA

When a normal saddle point exists, the correlation
function in the limit E—+~ is

8(r;iel)
(6 15) B(r,)„s,) =

2 (a+Paii+s, )
Lim(x;x)) =H(r;i, s,).
$7~oo

In the transition region, s,= —S, and p
t t~ {"

U(r).)H(r; i, s,)dr), (6.21)
(+p +.)I.im(x;x)) =y Lim cos(2m. /1V) (Is j)+H (rs7„——S), (6.16)

()(r;),/v&) =
0 otherwise.(6.17)O'= Xg = Sg cx.

N
where the prime signiies that the integration is over

where p is defined in (5.19). If we put j=));, we then all space excluding the volume i) of a cell centered at r&,

have the fluctuations in the number of particles in a
cell, 0. In the normal region, 1 if ry), /e&&1,

In the transition region

1 (Bfs)
~=(xmas) =y+-i i

= —S/n.
2 & as),=-,

(6.18)

The asymptotic behavior of H(r;i, s,) is considered in
Appendix II.

In the transition region the correlation function is

Lim(x, xs)=y Lim f cosr (2sr/Ã) (k—j)])

n+a=-', . (6.19)

Since a= ~ ln2, n is positive.
The qualitative dependence of r on volume and

temperature is obtained from Fig. 7 which shows how
the saddle point s, depends on these variables. In
Fig. 9 we show the general features of 0.

The function B(r;i, s,) defined in (6.14) can be
shown' to be

1 1
I

[
t
cos[o). (r;—r),)/v&]

H(r;)„s,)=- d(o. (6.20)
2 (2s)'~ ~ ~ s,+a+pA(o))

This is true in the limit as X~~, for fixed r, I,. Because
of this restriction the (x;x~) obtained using H(rs7„s,)

For the ideal gas, it follows directly from Eq. (2.3) for
the coniguration sum that 0= i. This 6xes the saddle
point for the ideal gas; s;q ——n. From (5.12) it follows
that

+H(r;)„s,). (6.22)

For any two cells for which r;),/s)& is not of order E,
the erst term equals p and is independent of r;I,. Thus
the correlation function between two cells does not
approach zero for large separation distances, but
approaches the value —S/n —I(—S, i))/2. In Fig. 7,
y is one-half the vertical distance between I( S,i))—
and the line —2S/n As the voluine . is decreased through
the transition region along an isotherm, y goes from
zero at the beginning of the transition region to a
maximum value and back to zero as we come to the
end of the transition.

The existence of this constant correlation is to be
expected for the condensation process. To interpretate
the signi6cance of the constant correlation we investi-
gate a more detailed distribution function, namely, the
average number of particles in the 0th cell for a fixed
number of particles in the jth cell. The correlation
function (x;x),) is related to this quantity, which we
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denote by (n&)n;=n,

1+(x;xp)=(n;nr) = P n(ng); (6.23)

Inspection of (6.24) reveals the following facts. If
there is one particle in the jth cell, then the average
number in all other cells is independent of their location.
If the correlation function (x;xA) were zero then this
would also be true for every value of e. The eGect of
positive (x;xq) is to increase (nq)„ if n)1, and to
decrease (nq) „if n & 1. The important difference between
the behavior of (n~) „in the normal and in the transition
regions is due to the existence of the constant term y
for (x;x~) in the transition region. For the same n and k,
(nq)„ in the transition region is everywhere larger than
(nk)„ in the normal region, if n) 1. If n&1, then (n~)„
in the transition region is everywhere less than (nz)„
in the normal region, for the same m and k. For very
large distances in the normal region, (nq)„~(2~o.) &

)&exp[—(n —1) /2oj, while in the transition region

(nq)„+(27ro)-'* exp[ (n —1—)'/2a][1+ (n 1)y/o j. —

Thus the presence of the term in the transition region
shows that a deviation from the average number of
particles in a cell induces deviations of the same sign
even in cells which are very distant.

7. DISCUSSION

%e shall attempt to analyze, at least briefiy, each of
the approximations made in $ec. 3.

(1) It is assumed that the total potential energy is the
sum of pair interactions and that the potential energy
of interaction between a pair of particles depends only
on the distance between the pair. Although it is obvious
that this assumption is not generally true, it is very
nearly true for the noble gases. The status of the
condensation problem being what it is, it is unnecessary
to introduce any further complication of the force law.

(2) It is assumed that U(r;;)= U(RA, ) when two
particles i and j are in cells k and m and E& is the
distance between cell centers. This assumption becomes
poor when Rz is in a range where U(Rz ) is a rapidly
varying function of E~ . We believe, nevertheless, that
the particles will feel an average potential which will
have the same qualitative behavior as the molecular
potential. In other words, it is a mistake to pick the
value of U(Rz ) from the molecular potential if quanti-
tative agreement is desired, but quantitative agreement
might be possible by reasonable adjustment of the

In this work, the occupation numbers (n;} are treated
as continuous, and allowed to become negative, so that
(n;nt)= J' "n(ng);= dn.

After a straightforward calculation, using the tech-
nique described in Sec. 5, we obtain,

(ng);= = (2n-o)
—l exp[—(n —1)'/2o j

X[1+( —1)(;*)/ ]. (6.24)

molecular potential. Such adjustment would be de-
pendent on cell size. We do not believe that this
adjustment would qualitatively damage the conclusions
of our approximation.

The choice of the specific volume as the cell size was
made to eBect a compromise between this approxi-
mation (2) and approximation (4). Approximation (2) is
favored by r((v and approximation (4) is favored by
r)&V.

The choice of the cell size may play a really important
role. For example, the van der WaaIs' loop is in part
due to choosing v as the cell size. It is necessary to
develop a more accurate description of a rapidly varying
U(R) in order to lessen, and perhaps remove, the
instability in our approximate partition function.
Furthermore, this choice of v may also have destroyed
the liquid-solid transition. The consequences of an
arbitrary cell size are being closely studied.

(3) It is assumed that if W~, the average interaction
energy for e& particles in a cell of volume equal to the
specific volume is represented as Wq= ,'n~(n-q 1)W—O,

then 8'0 is independent of n&. The definition of 5 q

(3.3), shows that this is qualitatively possible for
specific volumes suSciently small so that the potential
energy between two particles in the cell is always
positive. For large speci6c volumes, the cell diameter
is equal to, or larger than, the range of the forces. Then
this relation still holds for small e~, when 5"~ is negative.
However, 8"~ must become positive for large g~, and
therefore 8'0 is not qualitatively independent of z&. To
assign to 8'0 the value obtained for small ey does not
properly account for the repulsion due to close packing.
However, it can be demonstrated that for these large
volumes, 8'~ can be more closely represented with a
slightly diGerent quadratic dependence on the e&, but
with no significant changes in the behavior of the gas.
Since 8"0 becomes important for small volumes when
our approximation is a good one, this assumption is
not considered as affecting the general results obtained.

(4) This assumption replaces the sum over lattice
points by a continuous integral. This is a serious
approximation in that this can change the nature of the
transition. As evidence for this statement, we can point
to the relation between the Ising model and spherical
model of a ferromagnet. ' This means that the entropy

. may play a singular role that is not present in our
model. A further consequence of this assumption may
be the nonappearance in the model of the liquid-solid
transition.

(5) The replacement of the hyper-hedron by the
hyper-sphere as a region of integration is again a serious
assumption. The advantage of this assumption is that
it enables us to evaluate the multidimensional integraI.
The reasonableness of the assumption is based on the
view that a very large number of important occupa-
tional configurations are included. The significant defect
in the assumption is that many configurations having
negative occupation numbers are also included. The
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obvious effect is that the sign of the interaction energy
is reversed for two diBerent cells having occupation
numbers of opposite sign. This aspect may not be too
damaging, for it gives rise to a repulsion when particles
are in attractive range and so it is not likely that this
assumption is responsible for the instability of the van
der Waals' loop obtained at suKciently low tempera-
tures when the particles are essentially attractive. In
fact, a purely repulsive potential does not lead to any
instability, which we would expect if negative occupa-
tion numbers played a spectacular part. The damaging
aspect is that it spoils the configurational entropy. This
is seen by the fact that use of the hyper-sphere requires
the introduction of a weighting factor. We believe that
any simple-minded use of a weighting factor will not
change the qualitative nature of our results. We also
believe, however, that the exact problem implies a
complicated, probably singular, configurational entropy
which could easily modify the mathematically delicate
transition mechanism.

(6) The approximation I'(0+1)~exp/ari(N —1)] is
not qualitatively significant. If we choose a=0 we

uniformly weight all configurations and if we choose
a= 2' ln2 to fit n= 2 in addition to m=0 and 1, then we

reduce the weight of configuration involving large e.
The latter choice of a is equivalent to a weak repulsive
force and cannot qualitatively influence the conden-
sation phenomena.

(7) The assumption of periodic boundary conditions
eliminates the possibility of discussing surface behavior.
Since we expect the condensation phenomena to be a
volume phenomenon, this assumption does not intro-
duce a qualitatively significant influence.

The main idea of this work was to show that a not
entirely unreasonable approximation to the exact par-
tition function of an imperfect gas can be made which
exhibits some of the very general aspects of conden-
sation. An important point of the approximation was
to preserve, at least in part, the cooperative nature of
the phenomenon.

We are of the opinion that it will be diflicult, in our
approach, to improve assumptions (4) and (5), and
this greatly handicaps further progress along the lines
set down here. We think that some progress can be
made by refining the cell size. This will give a better
estimate of the interaction energy and it is possible
that stability will be achieved. It is also possible that
the solid may appear. We think that the lack of a
mechanism yielding a constant pressure during conden-
sation is a serious defect of our approach, and one
which we are presently unable to illuminate.

Since the approximation yields a partition function
for the liquid which is stable and otherwise qualitatively
proper, it is our view that useful applications to the
liquid state are not improbable.

APPENDIX I: ANALYTIC BEHAVIOR AT
TRANSITION POINTS

This appendix shows that B'p/ Bv' is discontinuous at
the transition points. Complete mathematical rigor is
lacking but can obviously be supplied where needed.
Define Ap(vi, vo) =——p(vi)+p(vo), where vi, vo are vol-
umes close to a transition point, v; vi is in the transition
region, eo is outside. We are interested in Ap(e', v')

which is the limiting behavior of d,P as vi, v&
—+v from

their respective sides of v'. From (6.1) and (6.2),

AP(vi, v,)

1 1 ) 1

t
doo BA. (4o)

l 2 (2rr)'» ~ s,+a+PA(4o) Be

1 (1 1 & 1 (BWo Blf ol (BA1

P ~el vor 2 ~ Be1 Bvo ~ ~ Bel Bvo ~

BA (4o)1 1 f f t' do)

2 (2')'" ~ " —S+a+PA(4o) Bv
0

BA1 S 1 1
t

r
t

doo

+
Be . n 2 (2rr)'" ~ " —S+a+PA(4o)

0 (I.1)

Let A—=Ai+F(w, v). For small w, F(w, v) = f(v)w'
+O(w'), which defines f. Let Q be a value of w for
which the term O(w')« f(v)w'. At eo, the saddle point
is s„. as v2—+v', s,—+—5. Regard v2 suKciently close to
v' so that we can express s,= —5+e(v) with o(v)
&(Pf(v)Q'. Considering the first bracket in (I.1)

2'
1 1

p
r r doo BA(o1)

2 (2rr)'J «s,+a+pA(4o) Bv

2g
1 1 1 t t

doo (BA1 BFy
+

2 (2rr)'& ~ 0 o+PF 0 Be Bv f

BA1 s, 1 1 r t
t

der BF

Bv n 2 (2rr)'~ " ~ o+PF Bv
0

BA1(—S+o) 1 1

Be E n J 2 (2rr)'

Bf r" w4dw
4x-

Be" o o+Pfwo

2m

pdu BF

J PF

In the above we have split the integration J'J' Jo'~doo

into two regions, 4n.Jpw'dw+ ffJ11 doo. In the first
region the integrand was spherically symmetric and we
neglected a term in the denominator 0 (w'). In the second
region we neglect e in the denominator since o&(pfQ'.
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(BA1 1 1 Bf Q )
Ap(v', v')=Lim

~

+-
( Bv 2 (2v)' Bv Pf')

~i 1 Bf J q
(I.2)

(2 (2or)' Bv Pfo)
h

B'o ( f )'tr
t

I.
I

dpi Bp 2p Bjii)'
=2l —

I I +—
I (I g).~oavo (Jj (J J J F' Bv n Bv)

The vanishing of ~ assures the continuity of the pressure
at the transition points; the vanishing of Bo/Bv as o~0
assures the continuity of Bp/Bv by (I.3); the non-

vanishing of B'o/Bv' shows that B'p/Bv' is discontinuous
(I.4).

~
0/&e

J=,
+Pfq'

Calling the two parentheses A, 8, respectively,

B ( Bo 3 Bo)—~p(v', ")=Lcm~ W—-ao&—(,
av

' "' I av 2 av)

APPENDIX II: CORRELATION FUNCTION

(I.3) In this appendix, some special features of the function
H(r;&, s,) defined by Eq. (6.14) are considered. This
function satis6es an integral equation which can be
obtained in the following way, Introduce

B' ( Boo 3 1 (Bo)'
ap(v', v') =Limj g +-a

o ( Bv' 4 o& Eav)

Treating the second bracket in (I.1) in a similar way This vanishes as o~0. A second differentiation will

gives yield the following term, which will not vanish as &~0:

3 Boo)—-so&
~, (I.4)

2 av')
'

1 (~+ii/& cos[(2v /1V) (k —j) (m —1)j
h, a=—— (II.1)

m=3 s,+a+pA

H(r;i„s,) =Limh, i..
N-woo

Multiply both sides of (II.1) by cos[(2v./A") (k —j)
X (m' —1)j and sum over k from 1 to X. One gets

2'
=2 P h o cos —(k —j) (m' —1) . (II.2)

s,+a+ph. ~

where A, h and their two first volume derivatives have Then
been assumed finite.

To get an expression for e and its derivatives,
consider the saddle point equation,

21f
do)

2s,/n=
(2v)'~ & " S,+a+PA(oi)

0

This can be rewritten by the approximations used
above

w O'N
I p pO~

2 (—5+o)/n=
(2or)' &o «+Pfw' " & " Pp

o'J r' w dw
2(—5+o)/n= +47r „I

(2or)'l Pf Jo Pfw'

+ . (I.5)
J g pp

J is defined in (I.2); the upper limit of integration
becomes ininite as e—&0. Disregarding terms of order
greater than o&, we can write (I.5) as

2x

+ (. (I.6)
f ( t t Idoo2PS

J(J J J F n)
DiRerentiating,

, Ia (f) (
I 1

t.doo 2pSq
+

Bv Lav&J) &J J J P n j

f Ir t p pdoo BF 2p BA1)

J & " " " F' av n av )

Substitute for A ~ its de6nition,

(N+1)/2 2'
A„.—=a„+ P U,„cos —(p —1) (m' —1) .

E
Then (II.2) becomes, choosing j= 1 for simplicity,

2'
—,'= (s,+a+Pa„) Q hio cos —(k—1) (m 1)—

k=1

(N+1)/2 N 2'
+P P Ui„g hio cos —(k—1) (m —1)

@=2 k 1 g

2Ã
X.cos —(p —1) (es—1) . (II.3)

X

Multiply both sides of (II.3) by cos[(2v./X)(q —1)
X (et 1)$ and su—m over m from 3 to E 1. For q/1, —
there results

1+2 cos[(2or/1V) (q—1)]
hpq

&(s +a+p.a11)

hiiUi„(II.4)
sg+a+ pall t =1, l go
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while for q=1,

X—3 P Njp
hgg=— Q h»U(p .(II.S)

2 &(s.+a+Pa») (s.+a+Pa») '='

In the limit E~~, replacing the sums with an integral,

For large p;p, we expect H(p, p) to depend. on distance
only, so that if we put f(p) =pH(p, p), then

dpny(p .„)~.H(p &)
=-

p d 2n

H(r;p, s,)=

where

8(r p/v&)

2(s,+a+Pa») (s,+a+Pa»)

1 r

U( )H(;; .)d ' (II6)

1 if r;g, &e&
b(r; p/v&) =

0 otherwise,

If further we assume f(p) = e &, then (II.9) becomes

( 1)n (dpny(~) )
(s.+a+Pa») =

=o (2N)! ( AP" ) p

(11.10)

Replacing in by Z, we have for the form of the function
H(r, p,

. s,) at large distances

H(r, p, s,)=
8(r;p/vl)

2(s,+a+Pari) (s,+a+Pa»)v

[6"H(r;p) j
XP, rpp'"U(r&p )dr&, (II.7)

n=o (2n)!(2n+1) &

where 6 is the Laplacian operator. All the integrals
can be expressed in terms of derivatives of X(co) at
(v=0 by

(d'9. ((o) )
( d~" )„=,

= (—1)"
(2m+ 1)v'""

i
r '"U(r .)drp. . (11.8)

vd&~

Introducing this in (11.7) and putting p;p=r;p/v&,

b(p;.)
H(p, p, s,) =

2(s*+a+Pa») (s*+a+Pa»)

(—1)"pd'9, ( ) q

~
~-H(p, , ; s,). (II.9)

=o (20)! 4 daP" ) p

and the prime on the integral signifies that the inte-
gration is over all space excluding a volume v centered
at rp. Consider the case when U(r)=0 for r)Rp. The
asymptotic value for H(r; p, s,) can be obtained in the
following way. If H(r;p, s,) in the integrand of (II.6)
is expanded in a Taylor series about r;& and integrated
term by term,

exp( pZr, p/—v &)

H(r;p, s,) =A
'V'

(II.11)
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where Z is determined from s,+a+pa»+pg(Z)=0.
In the gas region Eq. (II.10) has two equal and opposite
roots, with Z imaginary, Z= &iy. We then have for
large r;p/v&,

exp( —yr;p/v&)
H(r;p, s,) =A

r;p/v&

where A is a positive constant which can in principle
be determined from Eq. (II.1).As the transition region
is approached, these two roots approach the origin. In
the transition region, Z= 0, and H(r; p, s,) =A (r;p/v&) '.
In the liquid region close to the transition region we
have again Z= &iy, so that H(r;&, s,) has the same
asymptotic form as in the gas region. We believe that
the correlation function has oscillatory behavior at
small distances and that it in general has the required
characteristics.

The correlation function may be evaluated exactly
in a one-dimensional system with nearest neighbor
interaction only. The characteristic behavior to be
expected of the one-dimensional system is found.


