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The Hartree approximation is used to investigate the effect of the crystal lattice on plasma oscillations
in metals. The plasma frequency is given by w?=4we2no(l/m.*), where the average is over filled electron
states. For free electrons this equation reduces to that given by Bohm and Gross: for insulators {1/7.*)=0

and there are no oscillations.

In metals with occupied d bands, such as Cu, Ni, and Ag, there is a strong coupling between the plasma
wave and the d electrons which gives rise to frequency broadening. This explains why the plasma lines ob-
served by Ruthemann and Lang are so much wider in these elements than in Be or Al. Further confirmation
of this mechanism could be obtained by repeating their experiments on the transition metals Sc—Ni.

I

HE subject of plasma oscillations in solids has
recently received considerable attention from
both the experimental and theoretical point of view.
Investigations by Ruthemann' and Lang? have demon-
strated the existence of such oscillations in several
elements and, in addition, have disclosed a number of
interesting features concerning them. Moreover, calcu-
lations by Pines and Bohm? have shown that the fre-
quencies and rates of energy loss observed by these
workers are in accord with those to be expected from
the theory of plasma oscillations. These calculations,
however, are based on a theory which takes no account
of couplings of the plasma to either the lattice or core
electrons and which cannot, therefore, be expected to
explain the marked differences in behavior between
various elements that were observed by Ruthemann and
Lang. The purpose of this paper is twofold: to point
out that the Hartree approximation® is a useful tool for
. investigating such couplings, and to apply it to study
their effect on experiments such as those of Ruthemann
and Lang. It should be emphasized that this work is
not a quantum theory of plasma oscillations since it
treats them throughout on a semiclassical basis similar
to that sometimes used in studying;the interaction of
radiation with matter.

I

As has been pointed out by Pines and Bohm, a
plasma oscillation is essentially a long-range ordering;
typical plasma behavior depending mainly upon the
individually weak, but cumulatively large, Coulomb
interactions of many particles at relatively large dis-
tances from one another. Furthermore, intimate col-
lisions between these particles do not contribute to the
organized nature of the motion (as they would, for
example, in a sound wave) but, on the contrary, tend to
disrupt it. Thus, except for these damping effects which,
in the case of metals, are pretty well suppressed by the
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operation of the exclusion principle, one would expect
an approximation which neglects interparticle corre-
lation, such as that of Hartree, to provide a good descrip-
tion of the plasma oscillations. To illustrate and test
this hypothesis let us at first consider briefly the problem
of oscillations in a gas of free electrons. The solutions of
this problem are well known from the work of Bohm
and Gross® and will provide a convenient check of the
Hartree approximation in this case. Then, having
established the validity of our method, we may gener-
alize the results obtained from this simple example to
take into account the effects of the metallic lattice.
Working in a moving coordinate system in which the
plasma wave is at rest, the Hartree equations are

Vi "y [2dy’
——V2%+e[2f‘¢ Ol ”‘U]qoi=Ei¢i- 1)
2

Here U is the potential of a uniform positive charge dis-
tribution which exactly cancels the average potential
due to electrons, and ¢; and E; are, respectively, the
wave function and energy of the sth electron. The differ-

ence,
Zfiso,(r)l L)l o @

[r—7'|

represents the potential caused by any fluctuation of
electron density—it is just the potential generated by
the plasma oscillation and will be denoted by V. If the
coordinates are chosen so that the plasma wave is
moving in the z direction, ¥ becomes a function of z
only and the equations separate. The solutions are

@;=exp[i(k"x+k,7y) JU ;(2), 3)

where U;(z) is a solution of the ordinary differential
equation
— (#/2m)d*U ;/ 9z*+-eV U ;= ;U ; 4)
and
— 12k, %/ 2m— Bk, 2/ 2m.

We may now take a‘dvantage of the fact that V' (3) is in

5D. Bohm and E. P. Gross, Phys. Rev. 75, 1851 and 1864
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general a slowly varying function® and solve for U; by
the WKB method. The complete wave function is found
to be

ei=(1—eV/e)™t exp[i (kox+ kyy)]
Xexp[:{:if[Zm(e,-—eV):l%dz/hl. )

The final step in this example is to apply the self-
consistency condition, i.e., to require that the electron
density p and the potential V generated by it satisfy
Poisson’s equation

N
V2V =—4mp= _47"6[”0_2' oi|Z]. 6)

Substitution of Eq. (S) into this relation leads immedi-
ately to the nonlinear differential equation for V,

N 1
2 —dre Y | ——— | —dmene. 7
V=4 eiz==:1[(1—eV/5j)*] dmena @

(The term —4meno represents the smeared out positive
charge density which cancels the term independent of
V in the sum. This cancellation is necessary since V=0
must be a solution.) Equation (7) is identical with that
obtained by Bohm and Gross and, when linearized,
leads immediately to the dispersion relation,

wi=4mwe*no/m-+ 0%k, (8)

derived by them.

Thus we see that in the free-electron case the Hartree
approximation leads in a simple and direct way to the
fundamental equations of the plasma theory. We may
feel confident, therefore, in applying this method to
more complicated problems than that of a free-electron
gas. In particular, the work of the next section will
show that it makes possible a description of plasma
waves when the electrons are moving through a crystal
lattice.

et

To generalize the preceding results to the case of an
electron plasma moving in a lattice field we use a
method developed by Wannier,” and discussed in con-
siderable detail in a paper of Slater’s.® In the work of
these authors it is shown that wave functions of elec-
trons in a lattice which is perturbed by a slowly vary-
ing potential have the form

¢a=ZX[\I,j(Q)\)a(r_ Q)\)Ji (9)

where the a’s are the localized wave functions first
introduced by Wannier, and the sum is over all lattice

6 Throughout this work the assumption will be made that V is
slowly varying. If this is not true the wavelengths become com-
parable with the interparticle separation and the whole concept
of a plasma oscillation loses its validity.
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sites. Furthermore, Slater shows that the ¥; satisfy the
differential equation

[Eo(—ihv)+eV W =it;; (10)
Ey(—i%V) being the operator obtained by replacing
the momentum by —iAV in the energy-momentum
relation. In the case we are considering V is the plasma
potential which we now take to be harmonic, corre-
sponding to a linearized version of Eq. (7). The dif-
ferential equation for ¥ then reads

[Eo(—itw)+eVo cos{k(z—vat)} W=ihy. (11)

As before, V isa slowly varying function of its argument
and this suggests a solution of the form

¥ =expli(partpyy)/ 1]

Xexp[iS(z—v.t) ] exp[—iEt/B], (12)
with a subsequent expansion of .S into a power series
in %,

S=(So/B)+S1+---. 13)
This procedure leads to equations for S, Si, etc., com-
pletely analogous to those obtained in the more usual
version of the WKB approximation. However, the cal-
culation is somewhat lengthy and we defer it to the
appendix, giving here only the differential equations
which determine Sy and Si;

Eo(ps, Py, So')+eVo cos{k(z—v,t)} =v,50+E,
OE/0p.(ps, py, So)ASY
1 0%E,

g h
+— (p:% P:ln SOl>—_SON= h‘l)msll- (15)
29p2 i

(14)

[Notice that p, and p, only enter these equations para-
metrically. For brevity, therefore, we will suppress the
dependence of the energy and its derivatives on them
and in the future write Eo(p.$,S") merely as Eo(So),
etc.] To solve for .Sy, we find the root of the equation

EO(P)“%P=E: (16)

as a function of the energy E. In terms of this root,
which we denote by p(E), the solution of Eq. (14) is

So=fr—% pLE—eV, cos(kg)1dg. %))

The second equation integrates immediately, just as in
the conventional WKB method, and we find

0E,
S1=—3% ln[———(So’)—v,,,]. (18)
9P,
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The wave functions are, therefore

.,p].:exp[:l:(l/h)fx—wp[Ej—eVo cos(kq)]dql/

OE, #
[—(So’)—-v‘,,] . (19)
. apz

To complete the calculation we apply the consistency
condition in the form

VEV=4me[3;|¢;]2—1].

Notice that here, instead of the charge density, we use
its average over a lattice cell. This approximation,
without which the equations become exceedingly com-
plicated, will be made throughout the rest of this work.
Its validity is difficult to estimate, but this type of
approach is the usual one and has been used with
success on a number of problems (see Slater’s paper®
for references).

After linearizing Eq. (20), a straightforward algebraic
manipulation (see Appendix) such as that performed
by Bohm and Gross leads to the dispersion relation

1 (aE/aPz)z\ K
2
mz*>+< mz* /(1/m2*>: ( 1)

(20)

w?= 47re2no<

where 1/m.;*=98?E/9p.% and the indicated averages are
taken over filled electron states. The form of this equa-
tion is hardly a surprise (especially the appearance of
m.;* in the first term on the right-hand side) since the
most natural generalization of Eq. (8) would be toreplace
m by the effective mass. However, it is worth noting
that, besides giving the correct answer for free elec-
trons, Eq. (21) also gives a reasonable result in a
radically different limit, namely, when all occupied
bands are completely full and the substance under con-
sideration is an insulator. In this case the average,
(1/m.*), is taken over full bands only and, since E, is a
periodic function, this quantity is then zero. Thus, we
conclude that plasma oscillations do not exist in insu-
lators and, further, that in conductors the electrons in
filled bands do not contribute to the oscillations. Physi-
cally this is only what one would expect since it is hard
to conceive of a charge density fluctuation within a full
band.

As far as experimental verification of Eq. (21) is
concerned, the best metal with which to work is prob-
ably Li, since for this element there is a good theory
which predicts an m* value differing appreciably from
unity. The calculations of Silverman and XKohn®
indicate that 1/m.* is about 0.73 for Li, which means
that the value of w observed in an experiment should
differ from that calculated with Eq. (8) by about 15
percent.

9R. A. Silverman and W. Kohn, Phys. Rev. 80, 912 (1950).

v

Before going on with the discussion of the effect of
interband transitions on the plasma oscillations, it is
well to clear up one possible objection to the work of
the previous section. This objection concerns the use
of the Hartree equations with their neglect of electron
exchange. Intuitively one might suspect that ex-
change, at least in the long-wavelength limit, would
have a negligible effect since its contribution to the
plasma energy will be proportional to the square of the
electron density fluctuation (8p)?, while the Coulomb
energy is

1 op(r)op(r)
=

drdr’, (22)
[r—r'|

and to keep this expression finite for small £ we must
choose 6p~% which means that in the limit 2—0 the
exchange energy goes to zero compared to the Coulomb
energy.

That this argument is correct for a free-electron gas,
can be shown explicitly by use of the Fock equations.
The details of this work will be left to the appendix
since they are rather lengthy, and here we will be
content to quote the result that exchange affects only
the term proportional to %2 in Eq. (8). Thus, for almost
all cases of interest, the Hartree equations are adequate
for description of plasma oscillations.

v

One of the most interesting features of the work of
Ruthemann and Lang is the fact that in certain metals
(Al, Be) they observed sharp resonances in the curves
of intensity versus energy loss whereas in others (Cu,
Ag, Ni) the peaks are very broad, their width being
comparable to the energy of the plasma quanta ab-
sorbed. Herring! has suggested that this broadening is

-due to strong coupling between electrons in overlapping

s and d bands which makes possible a rapid transfer of
energy from a plasma oscillation in the s band to a
single d electron, thus leading to a short life and large
energy width for the oscillations. In this section we will
compute, in so far as possible, the energy broadening of
plasma oscillations due to this interaction. The section
will also contain a short discussion of the shift in plasma
frequency due to s-d coupling.

To calculate the width of a plasma oscillation due to
interband transitions, we first determine the rate at
which plasma oscillations excite electrons and then use
the uncertainty principle to obtain the energy broaden-
ing. For this purpose we must extend Eq. (10) to include
terms that cause these transitions. Such an extension
has recently been carried out in detail by Adams,?
and to find the potential causing interband transitions
we need only Eq. (49b) of his paper. Using this for-

0V, Fock, Z. Physik 61, 126 (1930).
1t C. Herring (private communication).
2 E. N. Adams, II, Phys. Rev. 85, 41 (1952).
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mula, it is readily seen that the matrix element for
excitation of an electron by a plasma oscillation is
identical with that for absorption of a photon of the
same energy. Furthermore, this is also the matrix
element of the plasma potential V between the two
states in different bands. This is as one might expect
since, as we mentioned earlier, Eq. (10) only includes
intraband effects and takes no account of the operation
of the potential in causing transitions between them.

Taking advantage of the fact that these matrix ele-
ments are the same we may express the energy width
in terms of the parameter nk for optical absorption
which has been measured by Minor®® and Meier* for Cu
and Ag. After normalizing Vq so that the plasma energy,

(23)

is that of one plasma quantum, we find the following
exceedingly simple relation connecting the energy
width AE and nk:

AE/hw,=nk. (24)

If experimental values of nk existed in the proper
frequency range, Eq. (24) would give immediately the
desired width. Unfortunately, the work of Minor and
Meier only extends down to wavelengths of about
2000A (~5 ev) which is rather far from the 20 ev at
which we wish to evaluate nk. However, the values
they quote for 2000A lie between one and two and this
indicates that, barring an exceedingly rapid change of
nk with frequency, the values of AE/%w, will be close
to those observed by Ruthemann and Lang. For the
alkali metals, on the other hand, the observed nk values
are generally smaller by about a factor of 10, and this
tends to confirm Herring’s surmise. In this picture,
energy broadening is caused by excitation of both s and
d electrons but since the latter are both more numerous
and more tighly bound, they will be excited most often
and contribute the major portion of the frequency
width whenever their excitation is energetically possible.
These conclusions are in complete agreement with the
results of Ruthemann and Lang.

An attempt to compute the value of the matrix ele-
ment for excitation by numerical integration using
plane waves for the excited electron and a Hartree!®
function of the Cu* ion for the electron in the 3d band
was rather unsuccessful. For 5-ev quanta it gave values
smaller by more than factor of three than those obtained
from Eq. (24); hence the result calculated for 20-volt
quanta (AE/hw,~1/80) can hardly be considered
reliable. The discrepancy probably has its origin in the
fact that the wave functions of a 3d electron in Cu*
and in the metal are quite different in the region far

18 R. S. Minor, Ann. Physik 10, 581 (1903).
4 W. Meier, Ann. Physik 31, 101 (1910).
15 D. R. Hartree, Proc. Roy. Soc. (London) 157, 490 (1936).

from the nucleus where a large part of the contribution
to the matrix element arises.

In conclusion, therefore, it is reasonable, that s-d
coupling in metals such as Cu, Ni, and Ag is responsible
for the large widths of the plasma energies observed by
Ruthemann and Lang. This tentative conclusion could
be checked by repeating their experiments on the
transition elements, Sc through Ni. If our interpretation
is correct, the widths of the absorption peaks should be
observed to increase from element to element as the 3d
shell is filled.

In addition to inducing interband transitions, the
terms neglected in Eq. (10) will also cause a shift in
frequency of the plasma oscillation. This effect is very
marked in Cu, Ni, and Ag where the frequencies ob-
tained from Eq. (21) (choosing m*=m) are roughly
half of those observed experimentally. A very crude
estimate, using second-order perturbation theory and
the optical absorption data to give the magnitude of
the matrix elements, indicates that the energy shift is
of the order 10 ev for these elements. Of course, since
the shift is so large, perturbation theory can; at best,
give a semiquantitative result but it is encouraging
that the order of magnitude and direction of the effect
are in agreement with experiment.

VI

In the preceding sections the Hartree approximation
has been used to describe the behavior of plasma oscil-
lations in metals. The results, in general, are in accord
with observation but it is abundantly clear that more
experiments are needed to test the somewhat tentative
conclusions set forth here as well as to provide a spring-
board for further theoretical work in this field.

In conclusion, the author would like to express his
thanks to Conyers Herring, Gregory Wannier, and P.
W. Anderson with whom he has had a number of
interesting conversations on the topics discussed here.

APPENDIX A

The principal problem in deriving Egs. (14) and (15)
of the text is to find the effect of operating on ¢ =e?
with E,(Px, Py, —i%d/9z). For this purpose we expand
E, into a power series

22 () 3]

and consider separately the effect of each term on .
Our problem, therefore, is reduced to the evaluation of
9" (e*)/dz". Furthermore, because we plan later to keep
only terms up to the first power in 7%, we drop all
derivatives of S of higher order than the second since,
to this approximation, they do not contribute. With
these restrictions it is readily verified (by induction,

(1a)
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for example) that

o n(n—1)
:9——(6"5) = [ (28") 41 57 (4S”) "‘2]eis, (2a)
z"
whence
ha AN
o(02)-2l-() oo
102 n 7
-1
+4 e )S"(iS')"“Z] ‘eis
1 9%E, h\?
=E(AS") )(—_) (@8"). (3a)
209p2 1
Expanding .S into a power series in 7,
8= (So/m)+Sit- -, (4a)

and collecting terms of zero and first degree in % in
Eq. (11), we arrive immediately at the differential
equations for Sy and S; given in the text.

To derive the dispersion relation from Eq. (20) con-

sider
0E,
[¥] =1/[g;(501)—vw].

Treating the plasma potential as small, we. write
Soj=p;+86S0;. 6S¢; is proportional to V, (to first order)
and is obtained by expanding Eq. (16) into powers of
the plasma potential and equating coefficients of the
linear terms in V. The result is

(5a)

85y, = —eVo cos[ k(z—v,t)] / [ - va (6a)

Substituting this back into the expression for [ 2
and again keeping only linear terms in Vo, we arrive at
the dispersion law

[Zy { g(%) [Z—Z(ﬁ;’) - vw]z ] +k2] cosk(z—vat) =0.
(7a)

This expression may now be expanded, making use of
the fact that for long waves v,>9E/dp,, in the same
way as was done by Bohm and Gross to give the dis-
persion law, Eq. (21). -

APPENDIX B

To solve the Fock equations in the presence of a
plasma oscillation, we make use of the fact that for free
electrons plane waves are an exact solution. Working
from these as a base, we treat the effects of the plasma
potential as a small perturbation and thus are able to
make the differential equations linear. More explicitly,

the Hartree-Fock equations are

n ¥i()|?
—vyere ¥ [ WL v
|r—r']|
(" Wi(r)
> f W =B, (1)
to which we attempt a solution of the form
= e Tak)e® g4 (k)e ], (2b)

knowing that for a=8=0 we have an exact solution.
Substituting these tentative wave functions into (1b)
and keeping only linear terms in & and 3, we find that
they do, indeed, satisfy the equations provided the
coefficients obey the following set of linear, homo-
geneous, algebraic equations:

(7*/2m)a(k,) (ki+k)* e 3 ; a(k;)Cx

+é 3 a(k)Cr—e? 32, B(k;)Crti;—k;
—& 2 a(k)Crti;—k—e* 35 a (k) Cri—k;

=FEa(ky), (3b)
and
(72/2m)B (k;) (ki—k)*+¢* 35 a(k;)Ci
+¢2 3 B(k)Ce—e? 205 a(k;)C —k+k;—k,
—e2 3, B(k)C ~x+k;—kj—e* 3_; B(k;)Cr;—k;
=EB(k;). (4b)

Here Cy= [(exp(tk-0/0))do, and use has been made
of the fact that this integral is real in taking the complex
conjugate of the second equation.

These are very complicated equations but in the
absence of the exchange terms they simplify enormously
and are readily soluble, leading to the formula given in
Sec. II. Therefore, we adopt a perturbation theory
approach, solving first without the exchange terms and
then using these solutions to obtain a first-order cor-
rection due to exchange. If we set X ;a(k;)=4 and
> ;B(k;)= B, the simplified equations have solutions

k)= eCr(A+B)

T LB = (2/2m) (k)T .
2Cx (4

B(ki)= € k( +B)

[E:~ (/2m) (k,—K)*]

Neglecting exchange completely the consistency con-
ditions,

A ¢Cx(A+B)
A T T ey Gt
(6b)
eCx(4+B)
> (k)=B-1

[E:— (h/2m) (k—k)*T

would lead directly to the formulas of Sec. IT which
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were derived from the Hartree equations. Since, however, we are interested in including exchange to first order,

we substitute (5b) into (3b) and find the solutions

a(ks) =e2l (A—{—B)Ck(l

n? 2(k-kj)

2me? [ Cr+k;—kj—Ck; —k{
H

k

ki=2A+BC{1+
Bk)=(4+B)C =

In obtaining these formulas we have dropped exchange
corrections to E in (Sb) when substituting these into
(3b). Also, we have neglected k* compared to k-k; in
several places.

To complete the calculation we apply the consistency
conditions,

Zi a(k,)=A and Z;ﬁ(k,)=B,

and proceed exactly as we did with Egs. (6b). After
doing a certain amount of algebra, we arrive at the dis-
persion relation,

2me? [C—k+k,—-k,--—Ck,-—
7

]) } / {(72/2m) (k+k)*— Ei—& T Cx+ii-k3},  (7h)
j] } /{(h2/2m) (ki—k)’—Ei—¢ 3 C—k+k;—k;}.  (8b)
. 4aretng ‘ 4d7retm?
T m A
o [k . (9b)
m«[ (k-k)*(k-k,) (k,-—kjy] J R

In this expression, the k;, k; in the sum are wave num-
bers in the coordinate system in which the plasma wave
is at rest. Transforming to the laboratory system
(ki— (kw/k?) (m/h)+2;), we immediately verify that
the exchange correction in (9b) is proportional to #2
which confirms the statement in Sec. IV,
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The fundamental optical absorption edge and the temperature dependence of electrical conductivity of
synthetic single crystals of hexagonal zinc sulfide have been measured, as well as the photoconductivity near
the absorption edge. The fundamental absorption coefficient is 1 mm™ at a photon energy of (3.584-0.02)
ev and increases exponentially by a factor of ten every 0.07 ev up to 103 mm™, The logarithm of the electric
resistivity varies linearly as a function of the inverse absolute temperature with a slope of (3.7740.1)
ev/2k. A peak in the spectral variation of photoconductivity has been observed at the optical absorption

edge.

I INTRODUCTION

NFORMATION pertinent to the energy gap be-
tween the valence band and the conduction band
of an insulator or a semiconductor can be deduced from
experimental data by two general techniques. First,
the energy gap can be calculated from the temperature
variation of intrinsic conductivity (or conduction elec-
tron density). Alternatively, one can study the long-
wavelength edge of the fundamental optical absorption
band by making measurements of the spectral variation
of the absorption coefficient or the photoconductivity.
Gudden and Pohl!? report a sharp rise of photo-
conductivity at approximately 3350A in natural
crystals of zinc blende and in zinc sulfide phosphors.
Gisolf® reports the ultraviolet limit of transmission
1B. Gudden and R. Pohl, Z. Physik. 5, 176 (1921).

2 B. Gudden and R. Pohl, Physik Z. 23, 417 (1922).
3 J. H. Gisolf, Physica 6, 84 (1939).

of powdered samples of pure zinc sulfide (wurtzite)
to be 3350A. This measurement was confirmed by
Reynolds and Czyzak? on single crystals of synthetic
wurtzite.

It is the purpose of this paper to report experiments
relating to the band gap of the hexagonal form (wurt-
zite) of zinc sulfide. Measurements of photoconduc-
tivity and optical absorption have been made more
exactly than in previously published work. In addition,
temperature dependence of electrical conductivity has
been measured. -

This work was done with synthetic single crystals of
zinc sulfide. These crystals were grown in an evacuated
quartz container as described by the author elsewhere®
and in a long quartz tube in an atmosphere of hydrogen
by a technique similar to that reported by Reynolds

4D. C. Reynolds and S. J. Czyzak, Phys. Rev. 79, 543 (1950).
5 W. W. Piper, J. Chem. Phys. 20, 1343 (1952).



