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A phenomenological formulation of the interaction of nuclear
systems with the transverse electromagnetic field is developed,
and expressions for the nuclear photoeffect matrix elements are
obtained. The development is based on the differential charge
conservation law and the hypothesis that the charge and current
density operators for a nuclear system can be expressed in terms
of nucleon variables only, even though virtual mesons may play
a role in the interaction of the system with the electromagnetic
field. The charge and current density operators are expressed as
the sum of one-particle, two-particle, etc. , terms in analogy with
the phenomenological treatment of potential interactions between
nucleons. The treatment is suKciently general to include velocity
dependence of interaction charges and currents, but is essentially

nonrelativistic. Methods of explicitly constructing the most
general forms of the charge and current density operators are
given, taking into account general invariance and symmetry
conditions to which they are subject. A new feature found in the
present treatment is the possible existence of interaction effects in
the charge density operator which imply that long-wavelength
electric dipole matrix elements can be affected by interactions
between nucleons (contrary to recent statements in the literature).
The effects of the principles- of charge symmetry and charge
independence on nuclear-electromagnetic interactions are dis-
cussed. The form in which the photoeffect matrix elements are
presented is such as to allow computation of all multipoles in an
already summed form.

INTRODUCTION

'HE problem of unraveling the structural and
dynamic properties of nuclear systems through

the study of their interaction with electromagnetic
radiation has proved to be more dificult and more
complicated than the corresponding problem in atomic
physics. The source of the dif6culties is twofold: Firstly,
since the electromagnetic interactions of nucleons are
inseparable from their mesoriic interactions, and since
we are not in possession of a satisfactory meson theory,
we do not know the precise form of the interaction of a
nuclear system with the electromagnetic field. Secondly,
we do not have very satisfactory models of nuclear
structure on which we can base quantitative calcula-
tions. In quantum mechanical terminology, we may
state these dif6culties as follows: Ke are hindered in

the calculation of radiative transition probabilities by
the lack of reasonably good wave functions to represent
the initial and 6nal states of the nuclear system and
also by a lack of knowledge of the proper interaction
Hamiltonian to be employed in calculating the matrix
elements for such transitions.

VVhile explicit calculations of the electromagnetic
effects of meson-nucleon interactions have been made
with some of the currently popular forms of meson
theory, . the results have not proved quantitatively
dependable. The reaction to this unsatisfactory situ-
ation has been a greater concentration on (1) analyzing
the available experimental data for such universal
features —selection rules, for example —which might be
expected to be present irrespective of the detailed form
ot the meson-nucleon interaction, and (2) developing
phenomenological formulations of the interaction of
nuclear systems and the electromagnetic field which
have sufficient breadth to include at least many of the

*This work has been supported by the U. S. Atomic Energy
Commission.

characteristic features arising from meson eGects. ' The
contents of this paper belongs to the second class of
these endeavors.

The philosophy behind this latter approach to the
problem may be formulated as follows. Let us assume
for the moment that we possessed a completely satis-
factory theory of the interaction of nucleons, mesons,
and the electromagnetic field, Within such a theory it
should be permissible to inquire as to the value of
certain transition probabilities relating to transitions in
which no real mesons are present in either the initial or
final state of the system. The transition, viewed from
the vantage point of quantum perturbation theory,
would involve transitions through intermediate states
in which virtual mesons are present. The final transition
probability will not have any direct reference to the
dynamical variables referring to these mesons and
should be speci6able in terms referring only to the
initial and final states of the nuclear system and the
electromagnetic field. One should then be able to
determine an equivalent interaction operator involving
only nucleonic and radiation-field dynamical variables
whose matrix elements for any such transition are the
same as those calculated with direct reference to the
mediation of the meson 6eld. Actually this procedure
can be formalized through the application of canonica1
transformations to the original Hamiltonian for the
system of nucleons, meson field, and electromagnetic
field, such that to any order in the meson field coupling
the intermediary role of the meson 6eM in a transition
of the type described is eliminated. The specific manner
in which this procedure may be executed is now well
known. '

Once the above possibility is admitted, one can

' R. G. . Sachs, Phys. Rev. 74, 433 (1948); R. K. Osborn and
L. L. Foldy, Phys. Rev. 79, 795 (1950); Blanchard, Avery, and
Sachs, Phys. Rev. 78, 292 (1950);J. H. D. Jensen and M. Goep-
pert-Mayer, Phys. Rev. 85, 1040 (1952).' See, for example, S. Borowitz and W. Kohn, Phys. Rev. 76,
18 (1949).
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approach the problem in another manner. From the
invariance and symmetry properties of the original
Hamiltonian one can infer the existence of associated
invariance and symmetry properties for the equivalent
Hamiltonian from which meson variables have been
eliminated. It is then possible to ask: within the bounds
prescribed by these invariance and symmetry proper-
ties, what is the most general form which the resultant
equivalent interaction between the nuclear system and
the electromagnetic field can take) It is to at least a
partial answer to this question that we here devote
ourselves. The reason for seeking only a partial rather
than a complete answer is easily evident to anyone who
approaches this problem. One encounters immediately
exceedingly difficult problems which have not yet per-
mitted a satisfactory resolution. To quote an example,
one should obtain a completely Lorentz-co variant
formulation of the equivalent Hamiltonian, yet, to our
knowledge, it has not yet been possible to construct a
completely Lorentz-invariant equation for the inter-
action of even two particles without introducing
explicitly an intermediary field through which the
interaction is propagated. Thus we have been forced to
bypass the requirements of relativity in our treatment
and hence to limit the applicability of the resultant
theory to such cases where the nucleons move with
nonrelativistic velocities.

However, beyond these difFiculties of a methodo-
logical character, there is an additional problem in
application of the theory arising from the tremendous
manifold of possibilities which arise in the investigation
of this problem. If a complete treatment of all these
possibilities were necessary to a satisfactory conclusion
of the problem we have set ourselves, one would soon
be forced to concede that there is no more virtue in a
phenomenological approach to this problem than in an
extensive program of meson theoretical calculations-

It is therefore obvious that one must employ dis-
cretion in selecting from this manifold of possibilities
those which might be expected to be of dominant
importance. Such selections based on conjecture could
easily turn out to be false, and in such a situation we
can only hope that empirical evidence will draw our
attention to their falsity at an early stage. As an
example of the application of such a selection principle,
we may refer to the analogous phenomenological theory
of the pofezzgial interactions between nucleons, where
one makes the simplifying assumption that velocity-
dependent and many-body potentials are of subordinate
importance to two-body, velocity-independent inter-
actions for nonrelativistic velocities of the nucleons
involved. In the same manner, while we shall attempt
to keep our phenomenological treatment of electro-
magnetic interactions of nucleons sufIiciently broad to
include the possibilities of velocity dependence and a
many-body character for these interactions, in prelimi-
nary applications of the formalism one might assume

that such complicating aspects of the problem are of
secondary importance.

The work which follows is very closely related to that
recently published by Sachs and Austern' and covers
much the same ground. The principal differences arise
in connection with the starting point. Sachs and Austern
begin basically with the condition of gauge invariance
for the Hamiltonian, while we prefer to begin with the
diGerential charge conservation law. 4 The latter ap-
proach has perhaps some advantage in the way of
physical perspicuity, but basically the formulations are
equivalent. The method of Sachs and Austern lends
itself readily to consideration of interactions of arbi-
trarily high order in the electromagnetic 6eld. Our
method can be extended to such cases but we restrict
our present considerations only to terms linear in the
electromagnetic field. We go somewhat further than
these authors in the direction of studying explicit forms
for the electromagnetic interaction. We may note also
that the treatment of Sachs and Austern employs a
restricted definition of gauge invariance which involves
the assumption that the charge density associated with
a nucleon is a point charge. By an appropriate general-
ization' of their definition, one can take account of the
real possibility that the charge distribution associated
with nucleons is spatially extended. However, as a
consequence of their restriction to this special case
they are led to the conclusion that the long-muvelemgth,

electric multipole matrix elements are unambigously
determined by gauge invariance alone and are un-
affected by the interactions between nucleons. ' Our
treatment recognizes the possibility of spa, tial extension
of the charge distributions associated with nucleons
from the start and shows thatizzteraction sects may acct
eadem the lozzg waeefezzgth, elec-tric di pote matrix elements. The
possible importance of this conclusion with respect to

3R. G. Sachs and N. Austern, Phys. Rev, 81, 705 {1951);
N. Austern and R. G. Sachs, Phys. Rev. 81, 710 (1951)'.

4 G. J. Kynch, Phys. Rev. 81, 1060 (1951).
5 The definition of gauge invariance usually quoted is that for

a particle carrying a point charge. However, it is quite inadequate
to describe the gauge invariance of theories describing particles
with which there is associated an extended charge distribution.
A more general definition than that employed by Sachs and
Austern in Eqs. (7) and (8) of their paper LPhys. Rev. 81, 705
(1951)g consists in replacing their expression g by

g= —Jp(x)G(x, t)dx,

where p(x) is the charge density operator for the system and may
involve other variables referring to the nucleons than their
position alone —their spins for example. It should be remembered
that gauge invariance of.a theory requires only that after a gauge
transformation on the electromagnetic potentials, there exist a
unitary transformation which restores the Hamiltonian to its
original form. No limitations need be imposed on the form of
the unitary transformation.

6 With respect to short-wavelength electric multipole matrix
elements, see, however, J. G. Brennan and R. G. Sachs, Phys.
Rev. 88, 824 (1952). It should be noted that A. J. F. Siegert in
an early consideration of this question /Phys. Rev. 82, 787
(1937)] was cognizant of the possibility of modifications of the
electric dipole matrix element at long wavelengths by interaction
effects and states carefully the conditions under which the so-
called "Siegert Theorem" would be expected to be valid.
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the breakdown of certain selection rules is pointed out
at an appropriate place.

We now turn from the question of the methodology
involved in solving the problem we have set forth
above to some practical considerations of its application.
It is well known that in many applications of the theory
of electromagnetic interactions, the practical solutions
of the problems involved is facilitated by an expansion
of the electromagnetic 6eld into multipoles. This is
particularly true when one is dealing with radiation
whose wavelength is long compared to the dimensions
of the radiating system, since in such cases the contri-
butions of higher multipoles to any radiative process
which occurs is much smaller than the contribution
arising from the lowest multipole order in which the
transition can occur. The latter is determined by the
angular momentum and parity changes of the material
system involved in the radiative transition, and it is
just this fact which makes spectroscopy a valuable
tool by which one can obtain information about the
states of a material system. Now, since the ratio of
system dimensions to photon wavelength is the param-
eter which measures both the relative importance of
higher multipole contributions as well as the importance
of retardation effects, 7 as long as one is in the long-
wavelength region it makes little difference whether one
employs a rigorous multipole expansion based on
irreducible representations of the rotation group or a
simple expansion in inverse powers of the wavelength
(or direct powers of the wave vector) whose terms are
related to reducible representations of the rotation
group. ' The error involved in terminating the latter
expansion at some term is always of the same order as
that arising in the termination of the multipole expan-
sion at the corresponding term. Either series becomes
less useful as one moves to shorter wavelengths where
either many multipoles or many terms in an expansion
in powers of the wave vector of the photon must be
retained.

Now if one is interested in formulating a radiation
theory which will be useful even when the wavelength
of the photon is shorter or of the order of the system
dimensions, it is useful to avoid formulating it explicitly
in terms of an expansion either in multipoles or powers
of the wave vector since such an expansion is then only
slowly convergent. We may offer as an advantage of
the formalism which we develop below the fact that it
is not based on such an expansion and therefore (if no
other limitations intervene) it can equally well be
applied to the interactions which involve short-wave-
length photons as long-wavelength photons. Wherever
one wishes to employ a multipole or wave vector
expansion one may do so by the appropriate expansion
of certain exponentials occurring in our formulation.
Our formulation still employs a pseudoseparation into

7 We use the term retardation here in a special sense to describe
all but the first nonvanishing term in an expansion of a given
msdtipole matrix element in powers of the wave vector.

electric and magnetic interactions exactly of the form
of Sachs and Austern' but each of these is given in a
summed form. The utility of this formulation will be
demonstrated in a paper on the photodisintegration of
the deuteron which will appear shortly.

r =x„—

as well as the momenta conjugate to these coordinates

P=Z- u-

representing the total momentum of the system, and

pp. = p„—P/A.

The Hamiltonian for the system may then be written
in the form

where
H„= Tp+H,

Tp P'/2AM——

is the kinetic energy associated with the motion of the
center of mass and B is the internal energy of the
nuclear system. The latter is a function of the ~„,r„,e„,
and z„and may be written in the form

with
H=T+V,

T=+„7r„'/2&V.

We now turn our attention to the operators p(x) for
the electric charge density of the system and J(x) for
the current density. These will be required to satisfy
the differential conservation law for charge, which in
our case will take the form

divJ(x)+~[H„, p(x) $/Ac= 0.

The fundamental premise on which the following
development is based is the assumption that these
operators can be represented completely in terms of
variables describing the nucleons. Since some of the
charges and currents in the nucleus are associated with
the exchange of charged virtual particles (mesons)
between nucleons, it is by no means obvious that one
can eliminate the variables relating to these particles
from the expression for the charge and current density.
However, on the basis of the discussion in the intro-

PRELIMINARY CONSIDERATIONS

We consider the emission or absorption of a photon
by a nuclear system consisting of Z protons and (A —Z)
neutrons. The nucleons will be treated nonrelativisti-
cally and each nucleon will be characterized by a
position vector x„, a momentum p„, a spin vector e„,
and an isotopic spin vector ~„. Since the treatment is
nonrelativistic, we may introduce the center-of-mass
coordinate R,

R=g„x„/A,

and relative coordinates r„



MATRIX ELEMENTS FOR THE NUCLEAR PHOTOEFFECT

duction one might expect that such a representation
should be possible at least to the same degree to which
one can phenomenologically represent the potential
interaction between nucleons in terms of the variables
describing the nucleons alone; this is exactly what one
attempts to do in constructing a phenomenological
theory of exchange and interaction currents in nuclei,
and we shall proceed on the assumption that such a
representation is possible.

It is quite clear that p(x) and J(x) will depend only
on the relative separation of the point x from the
positions of the nucleons. Hence in this case one may
define what might be called the external convection
current density of the nuclear system as

it takes the form

H, =-,' QLAg, .Ag, ,*+Ay, ,*Ay, .jhkc,
k, e

where Ak, and Ak, ,* are the usual destruction and
creation operators, respectively, for a photon of mo-
mentum k and unit (electric) polarization vector e.
The transversality condition is e k=0.

The term II; represents the interaction of the nuclear
system with the transverse electromagnetic field. In
order to describe the absorption or emission of one
photon by the nuclear system, it is sufFicient to consider
only terms linear in the vector potential of the trans-
verse field; the interaction can then be written as

Jc(x)= fPp(x)+p(x)Pj/2AM

and it will have the property that

(2)
H;= — J(x) A(x)dx.

divJ (x)+i[TO, p(x) j/he=0. (3)

X=H„+H„+H,. (6)

We have already discussed the form of II . B„repre-
sents the Hamiltonian of the free radiation field,

Hence, if we divide the total current density into the
external convection current density and the internal
current density j(x),

J(x)=Jc(x)+j(x).

Then combining Eqs. (3) and (1) we obtain a differential
conservation law involving only internal coordinates of
the nuclear system,

divj(x)+iLH, p(x))/he=0

While we do not know the exact forms for either
p(x) or J(x) in view of the participation of charge-
exchange eRects, we will later eRect a further decompo-
sition of both operators into a part about whose form
we are quite certain, and a remainder, about whose
form we do not have much information. We now pass
to the problem of the interaction of the nuclear system
with the radiation Geld.

In the presence of interaction of the nuclear system
with the transverse electromagnetic field, the Hamil-
tonian for the combined system will have the form

On introducing the expansion of A in plane waves
this becomes

(27rhc) *

H Q~ '( (A Q, +A —Q, *) J (x) ee'" *dx. (9)
~, EAV)

MATRIX ELEMENTS FOR EMISSION AND
ABSORPTION OF A PHOTON

We shall construct the matrix element for the absorp-
tion of a photon of momentum hk while the nuclear
system makes a transition from an internal state
represented by the wave function P, to a final internal
state represented by the wave function P&. The matrix
element will be computed in the reference frame in
which the total momentum is zero. The matrix element
for the emission of a photon of momentum hk while
the nuclear system makes a transition from the state b

to the state a will be given by the complex conjugate
of the absorption matrix element.

In the center-of-mass system, the initial and final
wave functions of the nuclear system, in the case of
photon absorption, will be given by

C,=V &e '" Q, (r„),'C|,——V 'fq(r„)

On inserting Jc(x)+j(x) for J(x) in (9) and evaluating
the matrix element, one finds that because of the trans-
versality condition k e=0, the external convection-
current density makes no contribution and the required
matrix element is given by

where
8(x) = BA(x)/cBt, —

(2mhci & ( j(r)'e" dr o ~, (10)Ehv&(~ )
K(x) = curlA(x), t divA(x) =0j. where we have introduced the variable r=x —R.

With the transverse Geld expanded in plane wav Ke shall now seParate this matrh element into two
parts which we shall refer to as the electric matrix

2 hc) & element and the magnetic matrix element though these

A(x) —g~ ~ (A„+A „*jee'~ x p) do not correspond precisely to the usual division into
~, (hV) electric and magnetic multipoles. The separation is
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where
~ba ~be + +ha

(2irkcq ' (
~ j(r)

&kV) &

(12)

(2irkc )
(~ j(r)Ekvi ( J, J

Here s' represents the unit magnetic polarization vector
[k&& ej/k.

The expression for the electric matrix element may
be simplified by an integration by parts and the use of
the differential charge conservation law (5),

(2wkc) '* (
b j' i~ divj(r)e re"b'drds a

I

i (2~key '*(
b II, i e rp(r)e""'drds a

i

kc& kV) (
i (2mkc) '

6b 6g
kc 0 kV)

X~ b i~ i' e rp(r)e""'drds a ~) (15)

where e, and eb represent the internal energies of the
nuclear system in the initial and final states (II/, = e f„
IIfb= ebfb) We may n.ote that conservation of energy
for the transition requires

kkc= (eb e)+ k—2'k2/AM. (16)

The last term is generally negligible for photons of
energy less than 100 Mev. To keep in mind this. diGer-
ence, however, we shall write Ak'c= eb —e, . Then

(2irkc) t'

—
I (bl'Vl ), (»)

&kV )
(2irkc) '*

) (b~
'.St(a), (1g)

Ekv)
where

rp (r)e""'drds, (19)

gg= rxj(r)e""'drsds. (20)

based on the identity
1

ee'~'= t (grad(e re"~') —isr)& [Q)&eje"''"'}ds. (11)
0

Introducing this into Eq. (10), we have

It will be noted that for k=0, 'Q is just the electric
dipole moment of the nuclear system while K is just
the magnetic dipole moment of the nuclear system.

CHARGE AND CURRENT DENSITY. OPERATORS—
GENERAL CONSIDERATIONS

To apply the results obtained in the last section one
must have further information concerning the specific
forms of the charge and current density operators for
the nuclear system. The succeeding three sections are
devoted to the question of constructing the most general
nonrelativistic forms for these operators on the basis of
the assumptions outlined earlier. In the present section
we will discuss brieRy certain general properties of
these operators.

Certain generally accepted invariance conditions
restrict the form which the charge and current density
operators must possess. Actually we have already made
use of some of these in our previous development but
it is now necessary to consider them in more detail.

(1) Ineariance with respect to translations. The firs—t
invariance principle which we shall apply requires that, if
the nuclear system is subject to a certain spatial trans-
lation, the charge and current density distributions shall
undergo the same translation. Since these quantities
are functions of x and of the spatial coordinates of the
nucleons x„, the satisfaction of this invariance condition
requires that they be a function of these variables only
through the combinations x—x„.

(2) Ineariance with respect to rotations. Similarly —we
require that if the nuclear system undergoes a rigid
rotation, then the charge and current distributions
associated with the system shall undergo the same
rotation. This requires that the charge density be a
scalar function of the vectors x—x„and cr„, while the
current density operator shall be a vector function
formed from these same vectors.

(3) Ineariance with respect to spaceinversion. Invari-—
ance of the equations for the nuclear system on passing
from a right-handed to a left-handed coordinate system
(implying conservation of parity) requires that under
the transformation x„—&x„, x~—x the charge density
operator remain invariant while the current density
operator reverse sign. This means that the charge
density operator must be a true scalar (as opposed to
a pseudoscalar) function while the current density
operator must be a true (polar) vector function (as
opposed to a pseudovector or axial vector function).

(4) Inwariance with respect to time reversal The in-.—
variance of the nuclear system with respect to time
reversal requires that under the transformation p„—+p„,
0„—+—e„, v &—&—7 „&, the charge density operator
remain invariant while the current density operator
reverses sign. 4

(5) Symmetry with respect to alt nucleons. —Since all
nucleons are treated as indistinguishable particles it is
necessary that the charge and current density operators
be invariant under the permutation of dynamical
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variables referring to any pair of nucleons, or in other
words, that these operators be completely symmetric
functions of all the nucleon variables.

(6) "Superselectior( Prir(ciple" for electric charge. It-
is rather strange that while our whole treatment of
electromagnetic interactions of nuclei is based on differ-
ential conservation law for electric charge, this is still
not sufhcient to guarantee that the total charge of a
nuclear system remains constant. The reason for this is
that the current density operator is so unrestricted as
to include possibly terms corresponding to a removal of
the electric charge from a proton, say, to infinity. To
overcome this difhculty it is necessary to postulate a
"superselection" principle' for electric charge, by re-
quiring that all observables (in the usual sense of Dirac)
commute with the operator for the total charge of the
nuclear system. In particular, then, the charge and
current density operators as well as the Hamiltonian for
the system will be required to commute with the total
charge operator for the nuclear system, -', ep„(1+7„*).
While it may appear that this is an arbitrary assumption
to make, and that it would be better to impose the
restriction that the integral of the normal component
of the current density over a suKciently large closed
surface enclosing the nuclear system shall vanish, the
latter alternative has some undesirable features. To
illustrate, suppose that the part of the current density
operator which is independent (that is, of zeroth order)
of the electromagnetic potentials contains a term which
does not commute with the total charge operator. This
would manifest itself in our treatment only when we
came to study differential charge conservation of the
parts of the charge and current density operator which
are of f(rst order in the electromagnetic potentials, and
it would be only after studying these that we would
hand that it would be necessary to delete this term from
the zeroth-order part of the current density operator as
a consequence of our alternative condition. It is more
convenient to simply impose the above superselection
principle.

p( )=p(&)( )+p(&)(x)+p(3)(x)+
J(x)= J())(x)+J(2) (x)+J&3) (x)+ . . (21)

Here po)(x) and J()) (x) are assumed to consist them-
selves of a symmetric sum over all nucleons of terms

' Wick, Wightman, and Wigner, Phys. Rev. 88, 202 (2952).

CHARGE AND CURRENT DENSITY OPERATORS-
ONE-PARTICLE TERMS

We now give consideration to the explicit forms of
the charge and current density operators for the nuclear
system. It is convenient here to proceed in analogy
with the phenomenological treatment of internucleonic
potential interactions and consider the charge and
current density operators to be expressed as the sum of
one-particle, two-particle, etc. , terms,

etc. It will be convenient to refer to all terms other than
the one-particle terms as interaction terms. In the
present section we limit our considerations to the one-
particle terms only.

Consider a single nucleon at rest (y„=0) character-
ized by the dynamical variables x„, e„, ~„.The charge
density at the point x associated with this nucleon can
be written as a function of x and the above variables.
Translational invariance requires that it be a function
of x only in the combination x—x„, while rotational
invariance and invariance under space inversion re-
quires that it be a scalar function of x—x and e„.One
easily finds that the only such functions are spherically
symmetric functions of the separation x—x„. If one
further assumes the "superselection rule" for electric
charge, then the most general form for the charge
density operator must be

p„(x)=e[7 +U ([x—x~[)+7„+U ()x—x„[)], (24)

where U~ and U~ are arbitrary functions of their
argument and normalized by the conditions

U~(x)dx=1,
f

U~(x)dx=O, (25)

to ensure that the total charge on a proton is e and the
total charge on a neutron is zero.

By the application of similar arguments to the current
density operator (including now the condition that the
current density change sign under time reflection), one
concludes that the most general form of the current
density operator corresponding to a nucleon at rest is

ek
J„(X)=- Curl(t( 7 (r„S (~X—X„~)

23Ec
+t("7 ~(r S~(~X—X„~)), (26)

where S~ and S~ are again arbitrary functions of their
argument but normalized to

) S~(x)dx= I S~(x)dx=1 (27)

to ensure that the magnetic moment of a proton is p, ~

nuclear magnetons, and the magnetic moment of a
neutron is p~ nuclear magnetons.

To determine the corresponding operators for a
nucleon in motion with a momentum p„, we perform a

each involving variables referring to only one nucleon,

p(» (x) =Q„p„(x)~ J(,) (x) =Q„J„(x) (22)

p(»(x) and J(2)(x) are assumed to consist of a sym-
metric sum over all nucleons of terms each involving
variables referring to two nucleons only,

p&2)(x)= P p„„(x), J&2)(x)= g J„„(x), (23)
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Lorentz transformation (and after discarding relativ-
istic terms, that is, terms quadratic in the momentum)
obtain the same form (24) for the charge density
operator and

J„(x)= curl{ti r o„S (tx—x„~)2'

the diGerential conservation law,

divJ'(x)+i{ [To+T, p'(x) )
+[V, pi))(x)+p'(x))}/bc=0. (31)

If we write the interaction energy between nucleons as
the sum of two-, three-, particle terms,

+y)rr„~e„Sn'( I x—x„))} with
V= V&»+ V(»+ '

Vi2)= g V~n'» V(3)= V „.-, (33)
+ [p.p-(x)+p-(x)p. l (2g)

23fc

J~i)a(x) =e[Ppii) (x)+p&i) (x)P)/2AMc,

j&»'(x) =P e[n„p„(x)+p„(x)e„(x)j/2Mc, (29)

ek
j i '(x)=g curl{ted r a S (~x—x„~)" 2Mc

+p~r ~a S~((x—x„()},

where we have separated the one-particle current
density into its external convection current (Ja), its
internal convection current (j'), and spin current (j')
parts. One easily verifies that

divJii)c(x)+i[To, pi))(x) 1/Ac=0,

dhv~&i)'(x)+l[T, p&»(x)7/bc=0,

dlvj
& i) (x)=0.

(3o)

The functions U~ and U~ obviously describe the
spatial distribution of the charge density associ.ated
with isolated protons and neutrons, respectively, while

the functions S~ and S~ describe the spatial distribution
of the spin current densities associated with isolated
protons and neutrons, respectively. To the best of our
present knowledge all of these functions rapidly ap-
proach zero when their arguments exceed values of the
order of a meson Compton wavelength. Beyond this
we have little knowledge concerning their functional
form; any specihc meson theory, however, uniquely
prescribes their form.

CHARGE AND CURRENT DENSITY OPERATORS—
INTERACTION TERMS

We now turn our attention to the examination of the
interaction terms p'(x) and J'(x) in the charge and
current density operators and to the methods of con-
structing them in their most general form. Ke may
note first that in view of (30) and (1) they will satisfy

for the current density operator. The complete one-

particle charge and current density operators for the
whole nuclear system is then obtained by substituting
in (22)

pi)) (x) =Q e[r„"V~()x xf)+r—„"U~([x—x„f)j»
'n

J&»(x) = Ji» (x)+j(»'(x)+j(»'(x)»

J„„(x)=grady „(x)+curlm„„.(x).

Substituting into Eq. (41) we obtain

(35)

~' -()=—{L( -—-)'/4K -( )3
+[V...p.(.)+..()+p.;()3}/~ =0(), (36)

with the solution (which vanishes at infinity)

1» Q(x')
x„„(x)=— dx'. (37)

~ The methods employed for constructing general functions of
the required form are exemplified in E. P. Wigner, Phys. Rev. Sl,
106 (1937);L. Eisenbud and E. P. Wigner, Proc. Nat. Acad. Sci.
27, 281 (1941); R. K. Osborn and I.. L. Foldy, Phys. Rev. 79,
795 (1950).

n&n, &n"

etc. , then Eq. (31) can be split up into separate equa-
tions for the two-, three-, particle parts of the
current density operator.

We shall consider in some detail only the two-particle
terms in the charge and current density operators;
construction of higher terms proceeds in close analogy.
Ke begin by considering a system of two nucleons
whose total momentum vanishes (p +p„=0). The
operator for the charge density associated with this
system will be a scalar function formed from the
quantities x—x„, x—x, p„—p„, e„, e„, ~, ~„.The
problem of constructing the most general form possible
is straightforward but lengthy' and not worth our
present consideration. Let us assume that this most
general function has been determined and is designated
by p „(x).The two-particle term in the current density
operator, in contradistinction to the one-particle case,
must now satisfy the two particle part of Eq. (31),
which in our present case may be written as

divJ„~ (x)+i{[(p„—p„.)2/4M, p„„.(x)j
+[V- .()+..(.)+. ()»/~ =0. (34)

The general solution of this equation will consist of
any special solution plus the curl of an arbitrary
function of x, with the limitation, of course, that the
whole solution be a two-particle function and satisfy
the required symmetry and invariance properties.

One method of obtaining a formal solution to Eq. (34)
is to split J„„(x)into long~tldAzal (irrotational) and
transverse (solenoidal) parts,
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The function m„„(x) is an arbitrary function, which
because of the symmetry and invariance conditions to
be imposed on it must be an axial vector function of
pn —pn, x—

xnan x xn'y Dnq pn'p cn~ 4'n~) which CIianges

sign under time reflection and commutes with the total
charge operator r„~jr„~.Again the construction of
the most general form of m „satisfying these conditions
is a straightforward but lengthy procedure which we
shall omit.

To obtain the corresponding forms for the charge and
current density operators when the two nucleons have
a total momentum p„+p„, we again make a Lorentz
transformation and, after dropping relativistic terms,
we find that the charge density operator is still given
by the same expression for p„„(x) while the current
density operator is given by

J- (x) =et (p-+1-)p- (x)+p- (x) (p-+1-)]/4~e
+grady„„(x)+curlm„„. (x). (38)

The two-particle parts of the charge and current density
operators for the entire nuclear system are then ob-
tained by substitution in (23) with the results,

p(2)(x)= 2 p. (x)
n&n'

J(&) (x) J(2) (x)+j(&)(x)

J(2)c(x)= cr Pp(2) (x)+p(g) (x)P]/23 Mc,

j (2) (x) =grady (2) (x)+curlm(2) (x)

+e Q L(~„+m„.)p„„(x)
n&n' (39)

+p..(x) (~„+~.)]/4Mc,

y(2)(x)= Z y. (x)
n&n'

m (,) (x) = Q m„„.(x),
n&n~

where again a separation of the external convection
current density J(&)c(x) has been made. The general-
ization of this procedure to three-, four-, particle
terms is obvious.

Before proceeding, it is necessary to express a warning
relative to our method of solution of Eq. (34). While
simple and correct, it is nevertheless deceptive in one
aspect. We have intimated that the function m„„,
apart from the necessary symmetry and invariance
conditions which it must satisfy, is completely arbi-
trary. This is mathematically correct but physically
unrealistic. We are quite certain that the charge and
current distributions associated with nucleons are
closely localized in the regions where the nucleons are
themselves situated and vanish rapidly (probably at
least exponentially) as one moves away from these
regions. Now the longitudinal part of the two-particle
current density operator that we have found falls off
relatively slowly with distance from the nucleons, in

fact, only as the inverse cube of the distance at large
distances. Hence, if the total two-particle current
density is to fall off exponentially, it is necessary the
m„„satisfy an asymptotic condition such that the
solenoidal current density cancels the longitudinal
current density to terms of exponential order at large
distances. This means that m„„ is not as arbitrary as
indicated but, to yield a physically reasonable current
distribution, must have an appropriate asymptotic
form. Unfortunately, there does not appear to be any
simple alternative treatment of Eq. (34) which yields
an explicit solution and yet avoids this difhculty. Hence
we must content ourselves with the treatment we have
given and keep in mind this condition which m„„must
satisfy, or else forsake an explicit representation of the
two-particle current density operator.

An important conclusion which we may draw from
the considerations in this section is immediately
apparent on examining Eq. (34) or Eq. (37). We note
that even if there exists no two-particle contribution to
the charge density operator, whenever the one-particle
charge density operator fails to commute with the
interaction energy operator for the nucleons, one wiB
have two-particle terms in the current density operator.
A specific case of the latter situation arises whenever
charge-exchange forces operate between nucleons, since
in this case the one-particle charge density operator
will fail to commute with the interaction energy oper-
ator. Since charge exchange forces correspond to the
transfer of charge from one nucleon to another, differ-
ential charge conservation requires that currents Qow
in the intervening region between the two nucleons,
and the two-partic1. e contributions to the current
density operator are the mathematical manifestation
of the necessity for such currents.

SPECIFIC FORMULAS FOR PHOTOEFFECT
MATRIX ELEMENTS

Having now obtained more specific formulas for the
charge and current density operators of the nuclear
system, these may be substituted in Eqs. (19) and (20)
to obtain more specific formulas for the photoeffect
matrix elements. In particular we may write for the
one-particle contributions,

V(»=eZ ' r{r "U (lr
n

+r„~U~(~r—r ~))e"r"'drds, (40)

e ~1
~(»' ———P ~ {r)(m Er U (Ir—r„l)

2Mc &0 ~

+r NUN(~r r ~)])e( )rrr
+e(s)r[r PUrP ( i

r r
i )

+r."U"(~r—r. ~)]r X ~„drsds, (41)
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eh
o S~(~r—r„~)

2Mc ~ ~()j

+p~r „~o„S~(
~
r —r„())e""'drsds

ek
t o„(p r„ S (~r—r„~)

2Mc ~"
+p~r ~S~(~r—r„~))e'"'dr. (42)

1

eg I r„r ~e""'-ds
n

(43)

If, further, the linear dimensions of the regions over
which the functions U, U, S, and S are appreciable
are small compared to the wavelength of the photon
involved in the transition, one can carry out approxi-
mately the integrations over r and obtain the simpler
formulas,

with m(r) an arbitrary vector function. We may now note that
the longitudinal part of j(r) when substituted in (10) gives a
vanishing contribution,

e gradx(r)e'" 'dr= f—x(r) div(ee'" 'jdr=0&

while the transverse part simply gives us a term of the form (46).
The deception involved in this treatment again arises, as in our
earlier treatment, through the fact that for differential charge
conservation alone to be satisfied it is possible for m(r) to be
completely arbitrary except for certain symmetry and invariance
conditions; but, in order that the complete current density
operator have a physically reasonable form, it is necessary that
m(r) actually satisfy some special asymptotic conditions. Again
this is a consequence of the fact that the irrotational part of the
current density operator as given by (48) falls oQ only slowly
with distance from the nuclear system, while the total current
density should fall oG rapidly; hence m(x} must have an appro-
priate asymptotic form for this to be the case. The di%culty is
more serious here in that even the ordinary one-particle part of
the convection current density has been split up into irrotational
and solenoidal parts.

THE LONG-WAVELENGTH APPROXIMATION

e ~l
r ~{r X~ e""'"

n

In many practical problems involving the photo-
eGect, conditions are such that one may make a further
approximation to the photoeRect matrix elements in
which higher multipoles than the electric dipole and
magnetic dipole together with retardation e8ects may
be neglected. This will be the case when the wavelength
of the photon involved in the transition is sufFiciently
long that e'"' does not vary appreciably over the
region in which the charge and current density matrix
elements are appreciable. In such cases we may replace
the exponentials e'~' and e"~' occurring in the matrix
elements by unity. The one-particle contributions to
the matrix elements then simply become

+e""'"r„Xee„)sds, (44)

eks~ Q (r ppp+r )v~N)o e~k rn.
2Mc

g()) ——e P„r„rat

St())' (e/M——c)P„r„~fr„X~„], (49)

R )' ——(e)')/2Mc)P o (r p +r„"p").
Not only does this approximation simplify the treat-

ment of the one-particle parts of the matrix elements,
but it considerably reduces the arbitrariness in the
interaction or many-particle parts. To illustrate this
point let us consider the two-particle contributions to
the electric (dipole) matrix element. If we envisage
that p(r)(r) is substituted for p(r) in Eq. (19), the
exponential replaced by unity, and the integration
over s performed, then what is required are matrix
elements of the integral

rXcurl m(r) e""'drsds = m (r) e'" 'dr (46).j

From the gamma-ray energies in which we are particu-
larly interested (0—100 Mev) these latter formulas
should represent quite good approximations. They
would be exact, of course, if the charge density and
spin-current density distributions associated with the
individual nucleons extend only over infinitesimal
regions.

Without making explicit assumptions about the
interaction parts of the charge density and current
density, we can do little more than indicate their
contributions to the matrix elements by substituting
p'(r) and j'(r) in (19) and (20), respectively. However,
we may note that since the general solution of Eq. (31)
for J'(r) will contain a term of the form curlm(r), at
least the contribution of this term to the matrix
element can be somewhat simplified,

Before leaving this section we should mention an alternative
and exceedingly simple method of dealing with the matrix element
(10) but again a method which is deceptive in that it tends to
conceal rather than reveal the difhculties with the interaction
current density. This treatment is based directly on Eq. (5)
without making any attempt to split j(r) into one-particle and
interaction parts. We note that an explicit solution for j(r) can
be obtained in the form,

j(r) =gradx(r)+curlm(r), (47)

(,)
'

L&, P( ')3d, , (48)
4vkc ~r —r'(

j rp(s)(r)«

Now by the application of invariance and symmetry
arguments, one can make some definite assertions about
the form which the result of this integral must take.
First it will be the sum of terms each a function of
dynamical variables referring to two and only two
nucleons. For simplicity we shall consider only velocity-
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independent terms, so that each term then is a function
only of the variables r„,r„,c„,o„,~„,z„.Furthermore,
translational invariance requires that it be a function
of r„and rn only through the relative separation
r„„=r„—r„.Rotational invariance requires that each
term transform as a vector, and invariance with respect
to space inversions requires that this vector be a polar
vector. Invariance with respect to time reversal requires
that this vector be invariant under the operation of

, time reversal. The superselection rule for charge re-
quires that it commute with the total charge operator
eg»„~ Fur.thermore, it must be symmetric under
exchange of the particle coordinates. By established
methods' one then Ands that the most general (velocity-
independent) form that this integral can have will be a
linear combination of the linearly independent terms
listed below:

Pr=e P Gr(»„„)(r„* »')r„„—,
-n&n'

Prr=e P Grr(»„„)(r„*—»„")(e„o„)r„„,
n&n'

PIII e p GIII(»..) (».' —» )
n&n'

X[(e„r„„)e„.+ (e„'r„„)a„],
Prv=e g Giv(»„„)(»„7.„")—

n&n'

X[3(e„r„„)(e„'r„„)/»„,„" (e„e„—.) Jr„„,
(p)

Pv = e P Gv (»,„„)(»„*»„' »„"r„*)[o„+a„—]Xr„„,
n&n'

Pvq ——e P Gvr(»„„)(»„'+»„')[a„Xa„]Xr,„„,
n&n'

PvII ~ g GvII(» ') (1+»»»")[o Xo ]Xr

PvIII & Z GvIII(» ') (1» *»»*)[o.Xo ]r
n&n'

Prx=e g Gsx(»„„)(»„"»„*+»„"»„")[e„Xa„]Xr„„.
n&n'

The functions G~ are arbitrary functions of the indi-
cated separation distance of the two nucleons involved.
One would expect that these functions rapidly approach
zero as the separation distance between the nucleons
increases much beyond the observed range of nuclear
forces.

The fact that such interaction contributions to the
electric dipole moment operator for a nuclear system
can be constructed phenomenologically suggests that
such terms may very well arise from a more detailed
meson-theoretical study of this problem. It is likely
that these terms are very much smaller than the one-
particle terms and their presence would consequently
be dificult to detect experimentally in most ordinary
transitions. However, the selection rules for these

interaction terms differ from those of the one-particle
terms in some circumstances and this may lead to a
possibility for their experimental detection. Thus,
consider a nuclear model for a self-conjugate nucleus in
which the total orbital angular momentum I., the total
spin angular momentum S, and the charge parity are
constants of the motion. Then the usual selection rules
for a long-wavelength electric dipole transition in such
a nucleus (based on the one-particle terms in the
electric dipole moment operator) are: (1) AJ=O, +1
(0~0 forbidden) where J is the total angular momen-
tum, (2) space parity change: yes, (3) DL=O, &1
(~0 forbidden), (4) M=O, and (5) charge parity
change: yes. On the other hand, the interaction terms
in the electric dipole moment operator, while preserving,
of course, the first two selection rules, can relax the
remaining rules to (3') AL=O, +1, &2, &3, (0-+0
forbidden), (4') AS=0, &1, &2, and (5') charge parity
change: yes or no. Of course, in practical cases I, S,
and the charge parity operator are not exact, and per-
haps not even approximate, constants of the motion
so that these selection rules lose some of their value.

Of more practical significance than interaction terms
in the electric dipole moment operator are the inter-
action terms in the magnetic dipole moment operator,
particularly since the very existence of exchange forces
between nucleons necessitates the existence of such
terms. In fact the subject of exchange and interaction
magnetic moments of nuclei is of such importance that
we have relegated its discussion to a separate paper.

CHARGE SYMMETRY AND CHARGE INDEPENDENCE

The results obtained in the preceding section con-
cerning the phenomenological form of the electric dipole
moment operator for a nuclear systexn is illustrative of
the difhculties, mentioned in the introduction, con-
cerning the manifold of possible interactions arising in
a phenomenological treatment. Already nine linearly
independent forms were obtained for this operator, even
with the restriction to velocity-independent terms.
Including velocity-dependent terms would greatly in-
crease the number of possibilities, and even a casual
examination of the problem of determining the general
form for the two-body charge density operator would
indicate that the number of linearly independent terms
in this operator wouM be tremendous. It is hence
imperative for the practical utility of these results to
recognize any further symmetry principles or invariance
properties which the charge and current density oper-
ators might possess in order to reduce the manifold of
possibilities.

While we know of no further rigorous invariance
properties which these operators possess, there seem to
exist some approximate invariance principles which can
play a useful role in identifying which terms in a
phenomenological expression for the charge and current
density operators may have dominant magnitude and
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which a subordinate magnitude. These principles appear
to have their origin in certain symmetry properties of
the coupling of mesons to nucleons.

The first of these, for which there is a considerable
amount of experimental support, is the charge symmetry
principle. ' lt may most simply be stated in the form
that meson theories (neglecting electromagnetic inter-
actions) are invariant under the simultaneous replace-
ment of protons by neutrons, neutrons by protons,
positive mesons by negative mesons, and negative
mesons by positive mesons. In more precise terms, it
states that the meson-nucleon Hamiltonian (again
neglecting electromagnetic interactions) commutes with
the charge-parity operator" (that is, the operator corre-
sponding to a 180' rotation about an. axis in the x-y
plane in charge or isotopic spin space). The application
of this result to electromagnetic interactions arises from
the fact that in these theories, the charge and current
density operators are each composed of a contribution
from the nucleons plus a contribution from the mesons,
and the latter contribution anticommutes with the
charge parity operator. Since this last property is
preserved under the canonical transformations which
eliminate the virtual mesonic interactions to any order,
it is to be expected that the contribution to the charge
and current density operators arising from virtual mesons
will anticommute with the charge parity operator. The
nucleonic contribution has no correspondingly simple
properties. As a consequence, these facts, in themselves,
do not give any specific limitations on the form of our
phenomenological charge and current density operators.

However, there is some scanty experimental evidence
to indicate that nucleonic terms in the charge and
current density operators are relatively smal1. in states
of the system in which virtual mesons are present.
These experimental indications are the approximate
equality in magnitude (but oppositeness in sign) of the
anomalous magnetic moments of the neutron and proton
and the exchange moment contribution to the magnetic
moments of H' and He', the smallness of any exchange
moment contributions to the magnetic moments of H'
and I.i', and certain systematics in the deviations of the
magnetic moments of odd-even nuclei from the Schmidt
values. " If we accept this evidence we may draw the
following conclusions: (1) That part of the interaction
charge and current density operators which commutes
with the charge parity operator is about an order of
magnitude smaller than the part which anticommutes
with the charge parity operator. (2) The same state-
ment holds for the one particle contribut-ions to the

' K. M. %atson, Phys. Rev. SS, 852 (1952)."N. M. Kroll and L. L. Foldy, Phys. Rev. 88, 1177 (1952).
'2 J. M. Berger and L. L. Foldy, Technical Report No. 18 of

the Nuclear Physics Laboratory, Case Institute of Technology.
The content of this report will be published shortly in modi6ed
form.

charge and current density operators, once one has
subtracted the normal contributions to these operators
from free nucleons. This statement implies that the
following two relations hold to an approximation of the
order of 10 percent:

V~(x—x,) =8(x—x~) —Un(x —x~),

5~ (x—xy) = 5 (x—xy) —5~ (x—xy).

The application of the first conclusion to the two-,
particle velocity-independent contributions to the elec-
tric dipole moment operator derived in the preceding
section would allow us to conclude that the terms
VI—IX are an order of magnitude smaller than the
terms I—V.

The second invariance principle, the so-called charge
independence principle, includes charge symmetry as a
special case, but provides that the meson theory (again
apart from electromagnetic interactions) is invariant
under all rotations in charge or isotopic spin space. In
this case the conclusion one can draw is that the nucle-
onic contributions to the charge and current density
operators transform as the sum of an invariant and the
s component of a vector under rotations in charge space,
while the meson contributions transform as the s
component of a vector under such rotations. This fact
alone places no restrictions on the one-particle terms in
our phenomenological formulation, though it does
impose restrictions on the interaction parts. In partic-
ular, for our general two-particle velocity-independent
contributions to the electric dipole moment operator,
it requires the relation

%x(&~n )=Gvrr (&n~ )—Gvriz(r~~ )

However, again, if one assumes that the nucleonic
contributions to the charge and current density oper-
ators in states in which virtual mesons are present play
a subordinate role, one is led again to the relations
discussed under the charge symmetry principle.

It is to be hoped that the accumulation of further
experimental evidence may soon allow us to evaluate
the exact degree of validity of the charge symmetry
and charge independence principles and the exact
magnitude of nucleon recoil terms.
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