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The Equations of Motion in Einstein's New Unified Field. Theory
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It is shown that the 6eld equations of Einstein's latest uni6ed 6eld theory do not lead to the Lorentz
equations of motion for charged particles in an electromagnetic 6eld, if these particles are considered to be
singularities of the 6eld. To a fourth-order approximation, the motion of such particles is not inQuenced by
the electromagnetic 6eld, no matter how much charge is placed on the particles.

INTRODUCTION METHOD

' 'T is well known that the field equations of general
~ ~ relativity (plus the Bianchi identities) lead to the
correct equations of motion for a particle, represented
as a point singularity. This point has been extensively
discussed in the literature. '—' The situation is different
in electromagnetism where additional hypotheses, such
as the stress-energy tensor, have to be introduced before
equations of motion can be obtained. ' Here we examine
the case of unified field theory, in which the use of the
stress-energy tensor is abandoned, to see if the correct
equations of motion for matter can be obtained. This
paper is concerned only with Einstein's latest unified
field theory. ' A remark of Infeld that one does not
obtain the Lorentz equations of motion for a particle
in an electromagnetic Geld in Einstein's previous
unified field theory is extended to apply in the latest
theory. One sti/1 obtains the correct equations for the
motion of an uncharged particle in a gravitational field.

We assume that particles are to be represented as
singularities in the appropriate fields. We ask if the
field equations place any restrictions on the motion of
singularities, intending thereby to obtain the Lorentz
equations of motion for the case of charged particles in
an electromagnetic field. Einstein maintains, however,
that one must represent matter by nonsingular solu-
tions of the Geld equations, and also that the funda-
mental nature of the Lorentz equations is open to
question. He believes that in a rigorous solution of the
field equations particles may interact with each other
in shch a way that the Lorentz equations will only
represent a statistical, averaged eGect. Since such solu-
tions have not yet been obtained, we cannot comment
on the possibility of obtaining equations of motion in
the nonsingular case.

The calculation is somewhat involved and will only
be sketched here. An adequate discussion of details can
be obtained from references 3 and 7. In particular, this
calculation follows that of reference 7.

The method rests on the solution of the field equa-
tions in a quasi-static approximation. This enables us
to distinguish, by means of a parameter X, quantities
involving time derivatives as of smaller size. The essen-
tial steps in the calculation are as follows:

(1) We determine the relation between the funda-
mental tensor g,I, and the affinity F';I, by an expansion
in powers of X. We are so far unable to determine this
relation exactly, as is possible in general relativity.

(2) We identify the gravitational and electromagnetic
fields by requiring that the field equations reduce to
those of general relativity, and to Maxwell's equations
in a suitable approximation.

(3) We calculate the field quantities in a quasi-static
approximation.

(4) We ask whether any terms are added to the
equations of motion of general relativity by the fact
that the fundamental tensor g;& is no longer symmetric.
The equations of motion turn out to be given by the
surface integral of certain quantities A;I, , Some elements
of these h. ;I, appear in general relativity, and these we
subtract out, since we are only interested in the addi-
tional terms. We then consider the surface integral of
the remaining A;A, to see whether they contribute to the
equations of motion.

One conclusion can be drawn very simply. If we
make the assumption, which will later be justified, that
the antisymmetric part of the fundamental tensor
represents the electromagnetic field, we see that the
correct equations of motion for charged matter in an
electromagnetic field cannot be the geodesic equations,
as is the case in general relativity. For the geodesics,
the lines of shortest distance are determined from*National Science Foundation Predoctoral Fellow.' Einstein, Infeld, and Hoffmann, Ann. Math. 39, 66 (1938).' A. Einstein and L. Infeld, Ann. Math. 41, 797 (1940).' A. Einstein and L. Infeld, Can. J. Math. l. 209 (1949).

4 L. Infeld and A. Schild, Revs. Modern Phys. 21, 408 (1949).
s L. Infeld and P. R. Wallace, Phys. Rev. 57, 797 (1940).
A. Einstein, The Meaning of Relativity (Princeton University

Press, Princeton, 1953), fourth edition, pp. 133-165.
r L. Infeld, Acta Phys. Polonica 10, 284 (1950).

A. Einstein, The &easing of Relativity (Princeton Universit
Press, Princeton, 1950), third edition, pp. 133-162.

A. Einstein (private communication).
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and any antisymmetric part of the g,I, will cancel in the
summation. Thus the geodesics are not afI'ected by the
electromagnetic field.
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We begin with the field equations. The fundamental
tensor g,v, has a symmetric part g,& and an antisym-

metric part g;&. Likewise the affinity F';I, can be decom-

posed into symmetric and antisymmetric parts F'@
and I';~,. the latter is a tensor. The tensor Eg, is defined

as in general relativity:

This quantity is a vector. Since the affinity is non-

symmetric, there are several possibilities for covariant
differentiation. For a covariant vector A, these can be
denoted as follows:

A, .l,
=—A;, l,

—A,F',J„
+

3;,I,
=—3;,l,

—A,F'I,;, ik

S
The quantities . are the well-known Christo6'el

symbols.
With these preliminaries, we can state the field

equations:

gi lk;l 0)+—
E;I,= 0,

F,=o,

&,k, l+&kl,„i+&l;,k =0.

The equation

&*k—= (I"*k, l
—I' s.k&';&) —(I",s, l,

—I",sI" k),

and it can also be decomposed into symmetric and anti-
symmetric parts E@ and E.;~. The comma indicates

ordinary differentiation. One defines

where

H we put

gab, ; t —g),k, t gll|' g) l

it kP

gik = 'haik+ Iliks

and obtain

~'k, i+%i'+&i*; , ok,

where g;I, represent the Minkowski metric with sign-
nature + ———;we can assume that the h~k, g,k,

3f'g„and . are of the same order. Thus in the first
zk

approximation those terms on the right of (3) which

contain 3f'g, and . can be neglected. The 3f'g, as
zk

given by the first approximation can be substituted
back into (3), obtaining a second approximation, etc.

We can now discuss the identification of the sym-
metric and antisymmetric components of the funda-
mental tensor g,7,. Imagine a situation in which there
is only a gravitational field in otherwise empty space.
Then the gravitational field equations must apply, and
the simplest way we can reduce our Eqs. (1) is to
identify g;& with the g;I, of general relativity. Now
consider a weak electromagnetic field in otherwise free
space. In this situation, the field equations (1) must
reduce to Maxwell's equations.

In order to see how this occurs, we introduce the
lowest approximation of (3) into the definition of E,k,

and find that E,& has only one nonvanishing term,
F';~, t. Then we compute

gi k; l i)gik/i)& gskP il gisP lk
g—"(gik, l+ gk i.+g l i, k,), s S

= 0. (4)

M'g, =—F'7,—
ik

(M', k is a tensor), the quantities g—"defined by

glI g—'-=~I',

and the tenSOr I;I,l.

I kl= (g k, l+gkl, +gl;k)—
Then we can show that' that

relates the amenity and the metric. In general relativity,

the Fl;I, are replaced by the . , and the symmetry of
zk

the Christo8el symbols makes solution simple. Here
we have no such pleasant properties at our disposal,
and we have to solve for the affinity by successive
approximations. Following Infeld, we introduce the
quantities M';I, defined by

It is suggested that this be considered as the O'Alem-
bertian of one of the two Maxwell equations. The other
can be obtained since the equation

gis 0

holds in this approximation. This is true since if g~ is
the tensor density associated with g'~, the equation

A
i& 0

is rigorous. We want the one of Maxwell's equations
which is an identity in the fields to be true in general,
so we are led to identify the A-'~ with the dual of the
electromagnetic field tensor,

Aik ~i7clmP
lm)

where &'"3= —1, and P& is the ordinary electromag-
netic fieM tensor. In our approximation, this identifi-
cation gives

g 12 k@3) gled k+2) glp k+1)

~ik'= g"(g'k; i I;ki —g;,~'—ks g,—k~'s;), —(3) g23= kE1) g2P = —kII2) g3p
———kH3,
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where k is a constant depending on the system of
units.

The quasi-static approximation in powers of P is
introduced and discussed extensively in the literature
(see particularly reference 3). Through it we consider
a situation in which time derivatives are an order
smaller than space derivatives. The 6eld equations are
expanded as power series in X in the following way. %e
distinguish time components by the index 0.

goo I+~ 2goo+~ 4goo+ ' ' '&

go =&3 3go +&3 3go +

gon= X 3g0n+X kgon+ (9)

g = —~ +&'2g +&'4g +

gmn=~ 2gm +~ 4gmn+ ' ' '
~

The numerical subscript on the left indicates that this
quantity is the coefFicient of the particular power of );
for instance, 2g „multiplies X'. Reference to Eqs. (8)
will show that it is appropriate to apply (9) to a system
of slowly moving charged particles, where the prin-
cipal interaction is electrostatic. The quantities M g,
can be calculated using (8) and (9). We obtain

3M'oo =0, 2M'oo ——2M', o ——2M'o, ——0,

and from the equation I', =0,

div 2g;~= 2g;q, I =0,

dlv 3gor = 3goga=0.
(12)

Since our object is to determine the equation of
motion of particles, we look for solutions of (11) and
(12) which will reduce, at distances large com-
pared to the gravitational radius of the particle, yet
small compared to the wavelength of any radiation
being emitted, to the ordinary electric and magnetic
fields of slowly moving charges. Because the motion is
assumed to be slow, however, radiative sects are
assumed to be of higher order. It is true that in the
immediate neighborhood of these singularities, the
weak-field approximation employed above will not be
valid, and it will not be possible to separate the gravi-
tational and electromagnetic fields in such a simple
fashion. But our technique in finding the equations of
motion is, following Infeld, to surround each charge
by a large closed surface. The distance of the surface
from the particle is taken to lie within the above-men-
tioned limits, but is otherwise arbitrary.

Specifically, we consider the particles to be electric
charges with a 1/r' singularity in the electromagnetic
6eld. The nature of the gravitational singularity is
immaterial. For generality we consider e particles, and
to the order of approximation in question we introduce
the electric potential of these e particles:

3M Ok 3gok, l+ 3l okly

2M ik 2gik, l+2~ikl&l. —

3M lk =+Og lk, 0 3I lko)

200 Q 202(2) ~

4M'0, = 4MO, O= 4M'00= 0,

4M ik 4M ki 2gis( 2gkl, s+21kls)

2gsk( 2gli, s+ 21lis) y

(10)
Vfe have, according to electrostatics,

202(k)=e( k) /r( k),

where r(k) is the distance (a magnitude, not a vector)
from the charge to the field point, and e is a constant
proportional to the charge. Thus, in accord with (8),

4Ml'k= —4M'k'= 4g,k, i+41'kl+—2g "'(2g'k, '2~ k —)—
2gmn —&mns 2P, sp (13)

+ 2gte +2gsk
2 lk

This analysis determines the M';I, up to fourth order.
In the above, summations run from i to 3 only, time
being distinguished by the index 0. This convention
prevails through the remainder of the paper.

We employ (9) and (10) to calculate R;k. Through
the second and third order, which is all we need here,
the Geld equations split into equations of the gravita-
tional and the electromagnetic field separately )as in
(4)$. The following field equations are then obtained
to second and third order:

(2gik. l+ 2gkl, i+ 2g~li k) = 0&

+ (3gok, l+ 3gk l, 0+ 3g l0, k)

where c „, is a completely antisymmetric three-dimen-
sional Cartesian tensor. This choice satisles the field
equations to the second order,

To satisfy the 6eld equations in the third order, we
let the motion of the kth singularity be given by three
functions of time $"(k, t), velocities of order X, gm(k, t)
and accelerations of order X2, (82/4It2) $(k, t).

Then we set

gok
———Ook;, (p 202(l) &, (l, t)),,

)=2

where eo&,, are the components of a completely anti-
symmetric Cartesian tensor in four dimensions. Equa-
tion (14) satisfies the field equations in the third order.

As stated previously, we wish to compare the equa-
tions of motion obtained in unified field theory with
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those from general relativity. In general relativity, the solutions of the field equations as given by (13) and
equations of motion are determined from (14). The result of this computation isr

E.;I,=0,

where E;I, is a symmetric tensor. In unified 6eld theory,
we must consider the two equations

4Amn (sgms 2gn~, s+fipm 2'P, rn 2P, r

20, ,m sqr},, , (17)

The quantity inside the braces is antisymmetric in n
and p. Thus,

4A „,„=0.
The second of these equations states that 8;~ can be gee are now required to form the surface integrals' '
written as the curl of a vector: there exists a vector 8;
such that

E ls Bls B A„srsids=4C (k), (19)

If we form a surface integral containing (linear com-
binations of) R;2, this integral can be transformed by
Stokes' theorem into the line integral of the vector B;
around a closed path bounding the surface. But for a
closed surface, this path is of zero length, and the
integral must vanish, Thus the quantities 8;& can play
no role in determining the equations of motion. The
equations of motion must be obtained from the equation

8;I,=0.

4C„(k)=0. (20)

We can write 4A „=F—„~,„, where F „~= F~„—
and Ii „„~„=0.Thus we have to evaluate

~F
g, 24sds=0.my (21)

in which nl, is the normal vector to the surface surround-
ing the kth singularity. The additional equation of
motion is then

It is shown in reference 3 that the equations of motion
are to be found from the surface integral of certain
quantities A;I, simply related to the tensor E@. The
determination of A;& will be discussed subsequently. If

~.I, I = d&v~'A:= 0,

then a two-dimensional surface integral over a closed
surface will not depend on the shape of the surface. If
we choose surfaces enclosing individual singularities at
the proper distances so that (13) and (14) are good
approximations, the surface integral will be inde-
pendent of the surface. But then it can be a function
only of the coordinates of the singularities and their
time derivatives, thus giving a contribution to the
equations of motion.

It can be shown' " that in order to obtain additional
terms in the fourth-order equations of motion, we must
evaluate the surface integral of the following:

This expression is essentially the surface integral of a
curl (reference 3, p. 213) and therefore vanishes. Thus
we do not obtain contributions from the electromag-
netic field to the equations of motion in the fourth order.
%e know from general relativity' that terms in this
order should contain products of charges like e(1)e(2)
so that the proper equations of motion cannot be
obtained.

CONCLUSIONS

Although we can make the equations of Einstein's
new unified 6eld theory reduce to something like
Maxwell's equations in a suN. ciently low approxima-
tion, we cannot obtain the Lorentz equation of motion,
if we represent particles with charge as singularities in
the 6eld. This result is the same as that obtained by
Infeld7 for Einstein's previous unified field theory.
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in which I' „ is the Ricci tensor of general relativity
(8 „formed using the Christoffel symbols). In order to
evaluate these quantities to the fourth order, it turns
nut that one needs only the second- and third-order

Note added sss proof. Pr. Kursunoglu LProc—.Phys. Soc. {London)
65A, 81 (1952)] has explained the failure to obtain the correct
equations of motion for a charged particle in an electromagnetic
field in Einstein's 1950 theory (see reference 8) as due to the
vanishing of the stress-energy tensor.


