
ELECTROMAG NET I C EFFECTS IN TWO —NUCLEON SYSTEMS

corrections to Q are of the order of 4 8Xg'/4z percent
of the experimental value, ' and for g'/4z. of the order
of 10, about 50 percent of the actual moment and of the
opposite sign. We may also note here that the cor-
rections coming from the reduction to Pauli functions
in AE&'& are much smaller than the eGect treated above.
We have

AEu~ge = gAg)t tj&++ (3S r )/++dr

= —-', eq) @„,*(3z' r')y„, .d—r
I

——,'eq (2M) ' P„., *p'(3s' —r')P„, dr. (37)

f' Compare the result of F. Villars, Phys. Rev. S6, 476 (1952)
that DQ= -3.7X10 "(g'/4'-) cm'. However, the two calculations
differ in several respects. First, Villars did not employ the two-
body equation. Second, he used the total interaction, rather than
the retarded part, to compute the recoil effects. This counts the
instantaneous contribution twice, since its effect is already taken
into account through use of bound-state wave functions. Third,
he employed different wave functions.

Any eGects from the second term on the right-hand
side of Kq. (37) are of the order of (p/2M)' of the
leading term, for p'/(2M)' represents less than the
average value of (n/c)' in the deuteron, since the r' in

Eq. (37) tends to weight the integral toward smaller p.
Thus, the second term has a ratio to the first of less
than 0.5 percent. The 6rst term is the usual non-
relativistic expression for the quadrupole moment; it
must now be increased to balance the negative sign of
the correction term, which implies a rise in the required
percentage of D state.

Although the large size of the correction obtained
may be due, in part, to the particular form of the re-
tarded interaction employed, the present considerations
indicate that, in a correct treatment of the deuteron

problem, the recoil. e8ects will contribute appreciably
to a calculation of the moments.

I wish to thank Professor J. Schwinger for suggesting
this topic and for many stimulating comments while

the work was in progress. I should also like to thank
Dr. A. Klein for several enlightening conversations.
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I

This paper develops the Geld theory of many mass equations
with special attention to spin -', and the operator (1) of the author' s
previous paper on the irreducible volume character of events.
The Geld is assumed to interact with the electromagnetic Geld
which is introduced in a gauge-invariant way. General expressions
for the charge-current four-vector and the symmetrical energy-
momentum tensor are derived and are shoCn to satisfy the appro-
priate conservation theorems. According to a theorem of Leichter,
the general solution is shown to be a superposition of nonorthog-
onal mass states which we designate as the root Gelds. Neverthe-
less, the physical quantities, such as the current four-vector, the
energy-momentum tensor, etc., are shown to decompose into a
s'um over those of individual mass states but with an alternation

of sign for consecutive roots. The Lagrangian takes the form of an
alternating sum over the individual free-Geld Lagrangians for the
mass states, plus the usual term +(1/c)j„A„ for the interaction
with the electromagnetic Geld. The matter Geld may be quantized

by treating the root fields as independent anticommuting fields.
The transformation to the interaction representation is obviously
unaltered and the charge and mass renormalization may be treated
following Schwinger. To the order of approximation in Schwinger

- II these renormalizations are not affected. It would seem that
these methods of quantization, together with the usual treatment
of the electromagnetic Geld, are at variance with the manifest
nonlocal nature of the theory for the irreducible volume character
of events.

INTRODUCTION

HE earliest multiple-mass equations arose in an
attempt to circumvent the divergence difhculties

in electromagnetic theory and consisted in introducing
besides the photon of zero rest mass one additional
nonvanishing rest mass. ' The first considerations of
equations of infinite order with a continuous or discrete
spectrum of masses were those of Blokhinzev, who de-
veloped the theory for scalar neutral fields with the

' F. Bopp, Ann. Physik 38, 345 (1940);42, 573 (1943);A. Lande
and L, H. Thomas, Phys. Rev. 60, 121,514 (1940);65, 175 (1944);
B.Podolsky et al. , Phys. Rev. 62, 68 (1942); 65, 228 (1944); Revs.
Modern Phys. 20, 40 (1948);A. Green, Phys. Rev. 72, 628 (1947);
D. Montgomery, Phys. Rev. 69, 117 (1947).

view of their possible application to mesons. ' He used
Bose quantization based on a set of operators which

decomposed the wave Geld irito free fields satisfying the
Schrodinger-Klein-Gordon equation for the individual
masses contained. in the mass spectrum of the operator.
Born next introduced fields involving exponential
operators Lexp(a+), where Cl=pquqsj in connection
with his method of mass quantization. ' The present
author, in connection with a theory of fundamental

length, seems to be the first to propose an in6nite-order

differential equation for the Dirac field. In this theory

s D. Blokhinzev, j'. Phys. (U.S.S.R.) 11,72 (1947).
~ M. Sprn, Rc:vs. Modern Phys. 21. 463 (1949)
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the infinite-order operator is not arbitrary but is
definitely determined as a Qnite displacement operator
associated with the introduction of a fundamental
length co, and in terms of the operator s (defined in
Sec. 1), it may be written

D()=L-».()+&~.()3/, (1)

where Ic=cok=Pe'/hc, P=1.6, and J't and Js are the
Bessel's functions of order one and two, respectively. '
Pais and Uhlenbeck made an extensive'investigation
into operators of the form f(CI) for neutral scalar
fields, where f(x) is in general an integral function of x.'
They used essentially the same quantization procedure
proposed by Blokhinzev. In one short section of their
paper they also applied the quantization method to a
multiple-mass free Dirac Geld and made a few cursory
remarks (without theoretical development) on the intro-
duction of the electromagnetic potentials. However, the
main conclusions which they state for the Dirac field in
the presence of the electromagnetic potentials seem to be
incorrect according to the results of Sec. 4 and Sec. 6
of the present paper. Finally, Heisenberg in a number
of papers' has investigated in a general way Lagrangians
with a mass spectrum and has suggested their con-
nection with the possible existence of a fundamental
length.

In this paper we present the theory of a spin--', fjeld P
in interaction with the electromagnetic field. The field

lt will obey the gauge-invariant equation of motion,

D(Z)P= 0, (2)

where D(s) is in general a real (for real argument)
integral transcendental function of s with real roots
(real mass spectrum). In particular, D(s) may be a
polynomial. The definitions of s and Z as operators are
given at the beginning of Sec. 1. We shall base the
quantum electromagnetics of this field on the methods
of Schwinger;7 consequently, we shall not carry along
any of the electromagnetic field formulas since they
will be the same as those of Schwinger. In order to
conserve space we shall not give the formulas in charge-
symmetric form, since these may be easily written down
following Schwinger. For the same reason we also confine
ourselves to the case where D has simple roots, but the
method is easily extended to repeated roots; this limi-

tation is not invoked until Sec. 4. Furthermore, if we
consider the y matrices to be those for other spins'

(0 and 1 especially), it will be seen that up to Sec. 6 the
formulas hold good. Our main concern is with our pro-
posed theory of fundamental length, and it is for this

4 B. T. Darling, Phys. Rev. 80, 460 (1950); B. T. Darling and
P. R. Zilsel, Phys. Rev. 91, 1252 (1953).

~ A. Pais and G. K. Uhlenbeck, Phys. Rev. 79, 145 (1950).' W. Heisenberg, Z. Naturforsch. 5, 251, 367, 373 (1950).
r J. Schwinger, Phys. Rev. 74, 1439 (1948); 75, 651 (1949); 76,

790 (1949).' R. J. Dnffin, Phys. Rev. 54, 1114 (1938); N. Kemmer, Proc.
Roy. Soc. (London) A173, 91 (1939);H. J.Bhabha, Revs. Modern
Phys. 21, 451 (1949);Harish-Chandra, Phys. Rev. 71, 793 (1947).

reason-that we are primarily concerned with spin -„as
we shall explain in a later paper.

Considered as a function of s, D may be written as
an everywhere convergent series:

D(s) =P„d„s",

or, according to a theorem of Weierstrass', as the con-
vergent infinite product

D'(o)
D(s) =D(0) exp —g (

1——
[ exp( —

I (4:)
D(0) n ( s) (s ~

We wish at this place to emphasize the importance, to
the development from Sec. 4 onward, of a theorem of
I.eichter (cf. Sec. 4) on the nature of the solutions for
operators of the form (4). We also note that these
sections contain a more general solution than the usual
one to the quantum mechanical superposition problem
posed by Lande' in his papers on his anti-Gibb's
paradox principle. Lande shows that this principle
necessitates a superposition principle (and hence quan-
tization) for the description of the physical states of a
system; however, although he suggests that a more
general solution may be of great importance, the only
solution available to him was a superposition of orthog-
onal states after the usual pattern in quantum theory.
Contrary to this usual pattern the mass states P„whose
superposition constitutes the complete solution )see
Kq. (25), Sec. 4$ are not orthogonal.

The source of this divergence from the usual theory
may be attributed: on the one hand, to the fact that
mass, like energy but unlike momentum, angular
momentum, etc., cannot be determined by an instan-
taneous observation (Sec. 5); on the other hand, to the
fact that the mass, which is conjugate to proper time,
unlike the energy, which is conjugate to time, does not
enter the theory as an eigenvalue problem, but rather
enters with a fixe'd spectrum. This property of pos-
sessing a universal spectrum is one that mass shares
with such other basic observables as momentum, angular
momentum, etc.

We believe that the relationships mentioned in the
preceding paragraph for theories based on operators
of the type, of Eq. (4) are in essential agreement with
the nature of mass, that they imply the existence of a
universal proper-time interval, and hence that the
basis (see Darling and Zilsel)4 of the special form of the
operator (1) is essentially correct.

1. HAMILTON'S INTEGRAL AND THE
CHARGE-CURRENT FOUR-VECTOR

We introduce the following notation: xi(X=1 ~ ~ 4),
x4 ict, Ni=cl/el~, A——q the electromagnetic potentials,
ai,=ieAi/hc, U), =sei —ag, Ug*=gi+ai, s= 2eoy"Ni, , —

s E. T. Whittaker and G. N. Watson, Modern Anaiysr's (Mac-
millan Company, ¹wYork, 1927), fourth edition, p. 136.

'OA. Landb, Phys. Rev. 87, 267 (1952); Am. J. Phys. 20, 353
(1952); Philosophy of Science 20, 101 (1953).
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z= —z, a= 2M'"d, i, Z= —2oiy" U'), =s+a, Z= 2(oy" V),*
=z+a; the summation convention on repeated index
is understood throughout, ar is a constant with the
dimensions of a length, and the y~ are the Dirac
matrices. "

The equation of motion (2) of the field It in interaction
with the electromagnetic field may be obtained from
the variation of q in the Hamiltonian integral:

and summing over r we have j),= ecs)„where

oo r—1

s„—Q d Q Zi,'.~iZt 1 kP——
1'=I k=0

We shall make frequent use of expressions of the
type occurring in sq, so it would be valuable to introduce
a special notation for them. " If X is any operator we
define pD(Z. XZ)$ by

I=
) p D(Z)fdx.

&8

eo 7 I
qrD(Z. XZ)P=P d„P q Z~ XZ" ' ~f

r=j I =O
(10)

The integral is extended throughout the region of the
four-dimensional space x(x&„X=1, . . .4) interior to
the closed hyper-surface S, and dx is the four-dimen-

sional volume element. The dot will be used throughout
this paper and. is such that the operators to its right
act to the right while those to its left act to the left.
By varying P we obtain the adjoint equation:

9D(Z) =0, (6)

which is equivalent to the Hermitian adjoint of (2) if
we set p=r'P*y4, where P is the Hermitian conjugate
of P.

We shall have much use for the following transference
formula for the operator Z, namely,

q D(z)gdx= qrD(Z y"Z)II dx"'

~s

+ t qD(Z) ltdx. (11)

In virtue of (2) and (6) and the arbitrariness of 5, we
see that s~ satisfies the conservation theorem

Thus we may write:

s),= qpD(Z y"Z)f.

Through repeated application of (7) we can prove
that

+Zm. Znfdx 2& —+Zm. ~iZn Ifdxx-
&S ~s

r}sg/c}xi=0. (12)

&S

If we replace II by g in (11) and choose g so that the

Z y d
. surface integral vanishes, we establish the adjoint

equation (6).

4.
~&8

r—i
y Z"Pdx= P p Z"o~zz" i "Pdx, ——

k=o

and by repeated application of (7) we can transfer Z"

from operating to the right, so that

r—1

9 Zydx= +P I'
&Z'S ZZ" ' "Pdx. (8)

~ &s 8 ~o &s

The surface integral may be taken zero by proper
choice of bA on S. The current j& is the coefficient of

i2oAA&/kc' —in e&I; hence by multiplying (8) by d„

"W. Pauli, Handbsfch der I'hysik (Julius Springer, Berlin, 1933),
Vol. 24, p. 220.

This formula can be established by a simple integration
by parts: p and P can be any functions, and dx"= dx/dx&,

is a component of the element of area- of the hyper-
surface S.

It is well known that the charge-current four-vector

may be obtained by varying the potentials in the in-

tegral I. If 8&Z= r'e&"5A&(e—=2roe/kc), then it is easy
to establish that

2. COMPLETE VARIATION OF HAMILTO¹S INTEGRAL
AND THE ENERGY-MOMENTUM TENSOR, FOR

THE FREE FIELD

We shall make use of the method of complete varia-
tion of Hamilton's integral where we also vary the
bounding surface S in order to obtain the stress-energy
tensor. This method was first applied by Weiss" to the
case of 6elds, but it is a generalization of a method in

particle dynamics. '4 The method of Weiss has also been
applied. to higher order equations by de Wet."

However, since the method. does not seem to be
generally known or used, and since we depart slightly
from Weiss, we shall make a brief sketch of it. Let I.
be the Lagrangian of a system of particles with gener-
alized coordinates q (we omit subscripts and summation
over them since this will be understood by the reader),
and let both the final time and final position as well

"We wish to note that these expressions could just as well be
written in the product form according to Eq., (4) instead of the
series form according to Eq. (3) as is done here.

"P.Weiss, Proc. Roy. Soc. (London) lo56, 192 (1936); A169,
102 (1938).

~4 E. T. Whittaker, Analytical Dynamics (The Macmillan
Company, New York, 1937), fourth edition, p. 246.
"J.S. de Wet, Proc. Cambridge Phil. Soc. 44, 546 (1948).



B. T. OAR,"LI NG

as the path be varied in Hamilton's integral. Then

~t ~t
Ldt= L(t)ht+ 8Ldt

~0 ~a

BI. "
I
'BI. d BI.= L(t)Dt+ bq + — 6qdt,

Bg t ~o Bg df Bg.

Thus in the total variation of I the coefficient of At is
minus the energy, and the coeKcient of Aq is the
momentum.

Next consider a field iP (which may be a multi-
component field such as the Dirac or Maxwell fields)
possessing a quadratic Lagrangian density L(iP, iPi),
where fi=ui, iP.i6 We consider the complete variation of
I= fLdx in which both g and the boundary is varied.
Let S be a closed hyper-surface in the four-dimensional
space-time continuum and let Axi (x,) be an infinitesimal
displacement of this surface such that each point x~ on
the surface is displaced to a point x&,+Axi. Then the
complete variation hf at the boundary is the sum of g
and Axqkq evaluated at the boundary. For the complete
variation of I we have

Ldh+ ~ 8LdxJ„
r

DI=, (L+8L)dx Ldx=—
~ &S+hS ~&S

p
BL

Lhx,dx'+ g dx'
~s ~s&P.

after the usual integration by parts. The last term
vanishes on account of Lagrange's equations. Examina-
tion of a graph q vs t will show that the variation d, q
of the final position is composed of the sum of 8q(t) and

q (t)d,t. Hence, replacing 6q by its equal Aq —qDt, we have

BL l ~L
I.— q ID'+ Dq= —IIdt+pDq.

aq J aq

as the canonical momentum, and

as the canonical energy-momentum tensor. "
One easily deduces the conservation theorem

BT.i//Bx, =0 (14)

from (13); for if the whole space is given a constant
displacement hxi„ then BI=0 and 2,/=0; hence

Since Ax& is arbitrary, one sees that the surface integral
must vanish. Converting the surface integral to an
integral throughout the volume enclosed by S, one
obtains (14) since the surface S is arbitrary.

Now putting the potentials equal to zero in (5), we
have for the complete variation of I:

"S
q D(z)iPhx. dx'+ q D(z)gdx.

&s

After an integration by parts this becomes

Again, replacing 8iP by hf —hx&Pz and taking account
of (6) and the fact that u&, commutes with z, the last
result may be written

AI= ~ D( ' )hiPd '
~S

fAI= ~
q D(z)ghx, dx'+ pD(z p z)5iPdh

~s &s

+ qD(z) 8gdx.

(BL 8 BL 'l
+

I

— Igdx,
"&s EBip Bx 8$ ) On remembering that P satisfies (2), and on taking

Axq constant, we have for the canonical stress tensor:

T.),= (hc/i) pD(z. y ugz)g, (15)
where the integral throughout the volume between the
two surfaces has been replaced by the equivalent surface

~ integral, the first term of the last form for AI. On re-
placing 8iP by AiP —Axis and remembering that the last
integral vanishes on account of Lagrangian equations,
the preceding expression may be written

just as in the preceding case. One may show by direct
calculation that the conservation theorem (14) for T,i,
is a consequence of the equations of motion, but we
shall not do so at this point since we shall obtain later
a more general result with the potentials included. The
tensor (15) is not real and may be replaced by the real
tensor

IBL l( BL
gI = gydh

~ IP&, 'B„L
I
hx&dx . (13)—

Js ~f. "s E ap. i
From these two terms we identify

7I 4= BL/Bi/4

'6 G. Wentzel, Quantum Theory of Fields (Interscience Pub-
lishers, Inc. , New York, 1949), erst Eriglish translation, p. 1.

T,i,= (Ac/2i)fpD(z y'ui, z)iP yD(zui, y z)P$. (—16)

This last'form may be obtained from the complete
variation of f/' D(z)f+ pD(z) iP/dx. It also satisfies

"Reference 16, p. 9.
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the conservation theorem in virtue of the equations of
motion.

3. INTRODUCTION OF THE ELECTROMAGNETIC
POTENTIALS AND THE SYMMETRICAL

ENERGY-MOMENTUM TENSOR

A gauge-invariant stress-energy tensor may be ob-
tained by introducing the electromagnetic potentials
in the usual way. Thus we replace (16) by

T.),'= (Ac/2i)[qD(Z p UkZ)P+ q D(ZUk y Z)$], (17)

where Uz stands for —Uz*. For the symmetrical tensor
we take

(18)

I

But the quantity in brackets vanishes on account of the
equations of motion. Similar operations may be per-
formed on the second term in the bracket. of (17); con-
sequently T,z-' satisfies Eq. (19).

Next we show that T,q' —T~„' has vanishing di-
vergence. Now

(2i/kc) (T.k' —Tk.') = pD[Z (p Uk y'U—.)Z]P
—vD[g (y'U~* y" U—.*) Z]P.

But the right side is equal to

8
v»[g (v"v"v'+v'V'V")Z34

2 Bxp

and we shall verify that

8T,&,/Bx. = —(hc/i) s.F.k = —es.f,k,

To prove this, one first proves by integration by parts

(19) that

where s, is the charge-current four-vector (9) and
F.k= N.uk usa—. F.&, .= (ie/hc) f,k, where f.k are the
electromagnetic field strengths. The conservation
theorem (19) is the result that is to be expected. "

In order to demonstrate (19), first recall that

(20)

q y"y'D(Z)gdx

+4a)
J q D[Z (y'Uk y"U,)Z—]/de

&S
With this, one shows that

ZUk= VIZ+2(oy F.k. (21)
in virtue of the relation

+ qD(Z) y'y'Pdx
~&s

One may put asterisks on the left side of (20) and
change the sign of the right side and obtain a true
relation. Also a bar may be put above the Z and an
asterisk on the U in (21) to obtain another valid rela-
tion. Now perform I, on the 6rst term of the bracket
in the expression (17) for T,&,

' to get

and
"r"y Z=Zy"y +4a)(y Uk —y"U,);

[~gkg ~r. U Zr 1 kg+ ~gk. ~r~——U Zr 1 kP]——
r Ec~

The quantity inside this bracket may be written

= 2&v yD(Z y"y'y"Z)gdx"
"s

+4k' q D[Z(y'U„* y" U.*) Z]gdx-
~&s

[~gk+1. U' Zr 1 kP ~gk. Z U —Zr—1 kP]——

2' in virtue of the relation

+ py"y'D(Z)/de,
~&s

on addition of (a/2')ygk Ukg" ' kf to the first term
and the subtraction of the same from the second term.
The Z and the U may be commuted in the second term
by use of (21), so that we have

Zp"y =y"p'Z+4~(y U&,
* yU, *). —

The surface integrals may be transformed by the
divergence theorem to integrals throughout the volume.
After using (2) and (6) and on subtracting the latter
result from the former and remembering that the surface
S is arbitrary, we obtain the above-stated expression for
the difference of the tensors. We are interested in the
nondiagonal terms OWE, in which case y"y~y'+y"y'y"
vanishes if IJ, = cr or X, and is 2y~y y& if p, /0. , y/X; these
may be shown from the commutation properties of the
y matrices. Finally,

On summing over k, the first two terms telescope and
we have, after multiplying by d„and summing over r,

1
[q D(Z) Ugk qU—kD(Z)P] s,F,—k. —

2co

8 Reference 16, p. 189.

2$8
Ac Bx,

(T. ' —T .') =g pD(Zy'y'y Z)4
I'+~~ 8/~8/~

[~gk+1. U Zr 1 Q~gk. —U—Zr kg—
2M

2~(+gk. +rZr 1 kg)F ]——
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vanishes because of the anticommutativity of y and
p&."This completes the demonstration of (19).

4. ROOT FIELDS AND THE DECOMPOSITION OF THE
PRECEDING PHYSICAL QUANTITIES

Let s„be a root of the equation

(22)

For the sake of simplicity in the formulas we assume
that all of these roots are simple. This is true for the
infinite-order operator (1) of the theory of fundamental
length which holds our primary interest. The case in
which the roots are not simple may be treated by a
direct extension of the inethod. Let tt „and p„=if„*p4
be the root petds defined through 'the equations of
motion

where the prime denotes the derivative of D(s) with
respect to s. The D'(s„) are nonvanishing real numbers
(in virtue of the reality of the roots) and we choose
our b„so that b„=D'(s„).Then,

(2g)

where P„=sign of b„.
The Lagrangian density decomposes into a sum over

those for the root 6elds

q D(Z)P=Q„P„q „(Z-s„)lb„;
for the left side may be written

(Z—s„)P„=0,

y. (Z—s )=0.
(23)

(24)

p„D(Z)P=Q io. (Z—s„)D.(Z)P

Then these root fields are also solutions of (2) and (6)
in virtue of (22).

We now make use of a general theorem due to
Leichter. "For the special case in which D(Z), whether
of 6nite or of in6nite order, has no exponential factors
and has simple roots, his theorem states that the
general solution of (2) is a superposition of the root
fields. We write the solution in the form

=Q„P„io„(Z—s„g„
by use of (28).

The current s~ and the stress tensor T,~ also decom-
pose, namely

SX Q~ P~S~;X) T~X=+n PnTr;eX
where

sn;), = p~y f~
and

(25)

where b„are constants to be chosen at our convenience
later. Furthermore, the solution has the same form
when exponential factors of the type in (4) are present,
provided the equation

(26)

has only the solution iP= 0; A is a con—stant. He also
proves that f=0 is the only —solution of (26), provided
the Az and f satisfy certain conditions of analyticity.
Thus, for the operator (1) of the theory of fundamental
length, the assumption that the Aq and f are analytic
except for isolated singularities in a strip obtained by
surrounding each point of the space-time continuum
by a region of radius 2M in the complex space allows
one to conclude that the exponential operators have
no nonvanishing solutions and that the general solution
is of the form (25).

Assuming then that ib has the form (25) we may
obtain the individual P„. Let us define the operator
D (Z) by

qD(Z XZ)P

d.

rd„s„" '
v- &0+ Z

fb.f, ~. lb.b„fl s„-s„

1 D(s.) D(s)—
~

f

b„b„[-'* Sn Sm

are just the usual expressions for the current a,nd stress
tensor for the field tp„."

To prove these results, consider

D„(Z)=D(Z)/(Z —s„). (27)

Then, if s /s„, we have

D„(s )=0,
'9 Reference IT, p. 235.

M. Leichter, doctoral thesis, Ohio State University, 1952
(unpublishedl. This work will be submitted for publication in the
near future.

5. THE INITIAL VALUE PROBLEM

If the order p of (2) is finite, then at the time lo one
may take the kth derivatives with respect to x4, f"(ts),
(4=0, p —1) to be given functions of x, and then by

"Reference I6, p. T89.
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use of Taylor's expansion and the differential equation
obtain the solution for all time. But, alternatively, we
may specify the initial values of the root fields f (tp)
(m=1, p), and these will determine the solution

P f„(we drop the factors b„ for convenience) for all
later time, since the root fieMs satisfy first-order equa-
tions. Inasmuch as Q„P(tp) may be expressed. in terms
of It' (tp) through Eqs. (23), the two modes of setting
the initial conditions are equivalent, since we may
solve the set of p equations:

k=1, .p —1, for the functions P (tp)(e=1, p).
The situation is different if the order is infinite. If

we give It~(tp) (k=1, ~), then Taylor's theorem
determines P(t) without any use of the differential
equation. If It (t) is to be a solution of the equation, then
the quantities fp(tp) cannot be arbitrary but must
satisfy a complicated condition determined by the
infinite-order differential equation, a condition involving
not simply the time to but essentially all times in view
of the unspecified dependence of the electromagnetic
potentials on the time. This procedure is both imprac-
tical and unphysical. The physical requirements neces-
sitate knowing what masses are initially present and
their initial states; consequently, the appropriate pro-
cedure in the infinite-order case is to specify initially
the root Iieids P„(tp) (m=1, ~). It is doubtful even
in the finite case whether any physical meaning could
be given to the procedure of specifying the P"(tp).

Apparently the correct way to specify the initial data
is to specify the individual root fields. But here we
have a contradiction between the mathematical speci-
fication of initial values at a time to and the physical
facts. For unlike other quantum observables, such as
the momentum, etc. , the mass (like energy) is con-
jugate to a time, the proper time. Consequently, the
determination of mass requires observing the system
over a certain period of time. To clarify the situation,
suppose we know It(x, tp)=f(x) at the time fp Lfor
example f(x) might be an eigenstate of angular mo-
mentum prepared by an observation of the angular
momentum], then one might pick any value of e and
set f„(tp)=f(x), or one might break f(x) up in quite
arbitrary ways and take the parts for the f„(tp) How.
are we to determine which of the various possibilities
is the correct one in a given situation? In order to answer
this question, we do not have to catalog all the pos-
sible ways in which we might know the mass, such as
by deQections in weak static electric and magnetic
fields or by the spectral or chemical data that one uses
to select, say, hydrogen gas when one wants to produce
a proton beam, etc. ; for these methods all seem to be
equivalent from the individual particle aspect of the
theory to the minimum requirement of making the
particle interact with an electromagnetic field of some
kind for a sufFicient time for us to be able to classify

the associated field with respect to the individual root-
field equation (23) it obeys. Once the determination of
the masses has been made, it will remain unchanged
for all time so long as interaction takes place only
through the agency of the electromagnetic field intro-
duced with the gauge-invariant substitution s—+Z. This
stability of the mass is a consequence of the decom-
position demonstrated in the preceding section.

6. QUANTIZATION: CHARGE AND MASS
RENORMALIZATION

The decomposition of the Lagrangian derived in Sec.
4 shows that the quantization scheme for the free
fields,

with all other anticommutators vanishing, is consistent
with the equations of motion. The appearance of the
factors P is necessary not only because they appear
in the Lagrangian but also in order that the energy-
momentum four-vector represent a displacement op-
erator and in order that the interaction representation
with H= —(1/c) j„(x)A„(x) reduce the equations of
motion of p" to free-field equations. If It has its usual
significance, where

we see that y =iP f andhence that Iipnsotsi mlpiy
Indeed,

so that in terms of the f" and f" the factors p„drop
out entirely from all expressions. It is therefore clear
that to the order of approximation in Schwinger II the
charge and mass renormalization will not be affected,
and that the vacuum is defined by

y~(+)@ —0 It,~(+)@ =0.

i.e., the positive frequency states are empty and the
negative frequency states are full throughout.

From what has been said, it would seem that the
quantization used by Pais and Uhlenbeck is incon-
sistent with their Lagrangian as well as the interaction
representation, and that there is no interchange of the
roles of particle and antiparticle for negative p„.

Finally we wish to remark that the preceding results,
based on the usual methods of quantization and con-
ventional electromagnetics in which the P„drop out of
the theory and in which the charge and mass renor-
malization are unaffected (to the 6rst order), seem to
be at variance with the manifest nonlocal nature of the
theory for the irreducible volume character .of events.
We intend to consider these questions later from a quite
diferent approach.


