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Addition of more than two vectors may be performed in steps. For instance, for a system of one nucleon and
two pions,

(1/2) &X (1)3X (1)4
——(1/2) &X {(2) 348r (1)348z(0) 34)

= {(5/2), 348r (3/2) &34] 8t{(3/2)'&348z (1/2)'&34] 8r (1/2) f34,

where for instance (3/2)»4 differs from (3/2)»4 by the fact that the isobaric spins of the two pions are parallel in

(3/2), but form a total pion isobaric spin 1 in (3/2)'.
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The result of the previous calculation on the scattering of mesons by a single nucleon has been extended
to the case of multiple scattering by nucleons in nuclear matter. Methods familiar in the dispersion theory
in physical optics are used, and the index of refraction of meson wave has been formally calculated. The
absorption and diffraction scattering cross sections are computed and relation with the results of the recent
experimental observation is discussed.

I. INTRODUCTION

~HE interactions of high-energy particles with
complex nuclei have been discussed theoretically

by several authors in the recent years. Fernbach,
Serber, and Taylor' considered nuclear matter as a
continuous optical medium characterized by an index
of refraction and an absorption coefficient with respect
to the incoming neutron waves. Recently a detailed
quantum-mechanical theory of the interaction of high-

energy ~ mesons with nuclear matter based on the
optical model has been given by Watson. ' He introduced
phenomenological interactions for the scattering and
absorption of m. mesons by individual nucleon into a
many-body Schrodinger equation and showed that the
solution of the equation has the structure of a multiply
scatter wave.

' Fernbach, Serber, and Taylor, Phys. Rev. 75, 1352 (1949).' K. M. Watson, Phys. Rev. 89, 575 (1953).

In this paper an attempt is made to discuss the
interaction of x mesons with complex nuclei in a manner
similar to that of Fernbach, Serber, and Taylor for
high-energy neutrons. While the index of refraction
there was obtained by simply ascribing a uniform
potential well for the nuclear matter, in our case we

pay a special attention on the calculation of the index
of refraction' by the methods familiar in physical
optics. We consider a nuclear matter of a large extent
and assume that the mesons with which we are con-
cerned are of su%ciently low energy that their wave-
lengths are large compared with the average inter-
nucleon distance.

For the scattering of a meson wave by the individual
nucleon we make use of the results of the previous paper
on the subject. 4 The fact that the nucleons within a

'See M. Lax, Revs. Modern Phys. 23, 287 (1951), for the
extensive literature on the subject.' W. W. Wada, Phys. Rev. SS, 1032 (1952).This will be referred
to as I. Also D. Feldman, Phys, Rev. SS, 890 (1952).
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nucleus are bound should not make the scattering
amplitude differ appreciably from that by a free
nucleon, since the energy of the incoming meson -is so
much larger than the binding energy. -

Under these circumstances it is a comparatively
simple matter to deduce a wave equation for the
multiply scattered meson field, from which one obtains
a complex propagation vector and a complex index of
refraction. In order to discuss the whole of the inter-
action of mesons with the nuclear matter, however,
one must add the true absorption coeKcient' to the
imaginary part of the index of refraction, since the
former is known to be the most important effect in the
attention of the meson beam.

where
q '(r)=div„(M r ' exp[ikrj),

M.=it(2+~) 'fV(k)(e„rp, +ear„, ), (3)

The parameter q is introduced at this point to express
the effect of binding of individual nucleon on the
scattering amplitude.

The incident field is expressed by (see I, Sec. III)

y.'(r) =XPi. exp[ik(ni r) —ia~tj+c.c.

Here x is the amplitude of the incident field and Pr
is the n component of the unit vector Pr in charge
space describing the charge state of the incident meson.
The vector field of the incident meson wave is obtained
by taking the gradient of p i(r). The amplitude of
the incoming vector 6eld is then given by

I' &'&=igknrEr (5)

Introducing Eq. (5) and o„and e„[eesI, Eq. (12)j
into (4), one obtains

M '= —j2f2it[V(k)]'oi '(1—R') '[6 b ro, ro, popiFpt'&'

+iR(oooo.p'rp, „rp, pFp"" rp, rp, pFp"'}-
+ a perp po p ao'F~ "+iR(a p o p'rp, rp pFp"'

—o-a ao'F t'&')]. (6)
~ Brueckner, Serber, and Watson, Phys. Rev. 84, 258 (1951}.

II. OPTICAL MODEL AND THE AVERAGE
POLARIZATION MOMENT

According to I, Eq. (13), the field of the scattered
meson by a free nucleon may be written as follows:

y '(r)=i(2/x) 'fV(k)k{(e„n,)ro,

+ (0'p 11 )T, )r ' exp[ikr$+c. c. (1)

Here eo and e„are the undisturbed and the gyrating
(with frequency &v) components of the spin vector of
the nucleon, respectively. ~0 and ~„are the corre-
sponding components of the isotopic spin vector. n runs
from 1 to 3 corresponding to the three charge states of
the meson. n, is a unit vector in the coordinate space in
the direction of the scattered field. k= (aP—p')&. For
quantities f, V(k), ~, and p, see I, Sec. II.

Working with complex functions, Eq. (1) may be
written

For the de6nition of E, see I, Sec. III. Roman letters
refer to the components in the coordinate space and
Greek letters to those in the charge space, respectively.

= 1, 6y32= 6 = —1, etc. One may call M the
"polarization moment" of the nucleon, because it is
proportional to the vector field.

Assuming that nucleons are uniformly distributed
throughout the nuclear matter, we may now go from
the discrete nucleon distribution to that of continuum
by introducing the notion of "average polarization
moment" defined in the vicinity of a coordinate point
r as follows:

(M. )(r) = P M. '(r)/1Vdv(r).
dv(r)

(7)

Here do(r) designates a "physically small volume" in
the vicinity of r and E the density of nucleons in the
nuclear matter. By the "physically small volume" one
implies a volume element smaller than the wavelength
but large enough to contain in it some number of
scattering centers.

Since eo and ~0 are classical vectors in our theory,
we may assume that they are oriented completely at
random throughout the nuclear matter. Then, under
the assumption of uniform distribution of nucleons the
volume average implied in (7) may be taken as the
average over all directions of eo and zo in coordinate
and charge space. Then we obtain

where
(~- )()=vF-"'(),

y= —(8/9) f'q[V(k))'oi —'(1—R') 'R. (9)

F.(r) = n(r, r')M. (r'),

where Q(r, r') is the following linear operator:

0 (r, r') = (V div) „W(r, r'),

W(r, r')=p 'exp[ikp), p= ~r—r'~.

Note that
(A„+k')W(r, r') =0.

(10)

(12)

When a meson wave goes through the nuclear matter,
the 6eld at a nucleon q Inay be regarded as the sum of
the external field and the field scattered'by all other
nucleons q',

This type of equation constitutes the basis for multiple
scattering theory. ' ' In our case of continuum approach
we generalize this equation by replacing g, .' by a
volume integration which extends over the entire

III.DERIVATIVE OF THE COHERENT WAVE EQUATION

From Eq. (2) the field vector for the scattered wave
at point r arising from a nucleon at r' may be written
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nuclear matter but excludes a small volume in the
vicinity of the nucleon at r. Then, we obtain

p (r) =F (')(r)+E t dr'D, (r, r')(M' )(r'). (13)
s(r)

Here, the lower limit S(r) designates a small sphere
whose center is located at r. The upper limit V desig-
nates the entire nuclear volume. The radius of the
sphere s(r) will later be reduced to zero in the limit.
The so-called self-consistent field method' implies that
we replace F (')~(r) in Eq. (8) by F (r) given by
Eq. (13),

(iV. ) (r)

=y F (') (r)+1K t dr'Q(r, r')(M ')(r') . (14)
s (r)

This is an integral equation for (M ~)(r). For the
purpose of obtaining a wave equation for (3E )(r),
we m, ake use of the following equations:

polarization moment:

1- (47r/3)iVy-
6,+ k2 (M.)(r) =0.

1+(8~/3)1' (18)

IV. COMPLEX PROPAGATION VECTOR

This is a modified Gordon-Klein equation with index of
refraction e given by

1—(4~/3)Xy .
e'= (19)

1+(Ss./3) Xy

This equation may be called the analog of the Lorentz-
Lorenz relation in the electromagnetic case. It can be
shown easily that the total scalar field inside the nuclear
matter constructed in analogy to Eq. (13),

(r) = y (') (r)+1lt" t dr' div„W(p)(M )(r'),
~ s(r)

also satisfies the wave equation similar to (18), namely

(6„+e'k')(p (r) =0. (20)

~&s~ s(r)
drW(p)(M. ) (r')

V

dr' W (p)(cV )(r'), (15)
~ s(r) s&i i (1+P+f')

Writing y=y, +iy2, where y) and y, are both real,
and introducing R )+=it Lsee I, Eq. (12) and (14)]
into y~ and y2, one obtains

S(1-~ -t')

BX;851~s(r)

O'W (p) 4m.

(~..)(")—(~. )(.)s,,
~ s(r) ~~jl3+j 3

(1 (2 i.2)2+4' 2 (1 g2 i-2)2+4' 2

where &= (8/9) (fp)'))LV(k)]'p '(p(0 '). Note that () has
the dimension of a volume.

Decomposing the modif)ed propagation vector k'

into real and imaginary parts,

By means of Eq. (16), Eq. (14) now becomes k'= rsk= k(S)+iS2), (21)
4~

~

1-—ill& ~(M.)(r))
=yF (o)(r)+1'(p' div)„~I dr'

W( )p( M)(r') (17).
s(~ )

Since curl, F("(r)=0, we obtain curl„(M )(r) =0 from
Eq. (17). Applying operator (6+k') on Eq. (17) the
first term on the right-hand side drops out. Using
Eq. (16) and the vanishing curl condition, one then
obtains the following wave equation for the average

TABLE I. Wavelength, index of refraction,
and propagation vectors.

COP

Xp
l
.m
SI
S2

1.4
6.4

1.28 1.45
0 052
1 13 1 22
0 021

1.6 1.8
5.0 4.2
1.30 0.67
1.12 1.12
1.23 0.99
0.45 0.56

2.0 2.2 2.4
3.7 3.2 2.9
0.26 0.47 0.48
1.08 0.84 0.69
0.83 0.85 1.03
0.66 0.49 0.42

6 H. Hock, doctoral dissertation, University of Leiden (1939};
L. Rosenfeld, Theory of Jilectroes (Interscience Publishers, Inc. ,
New York, 1951}.

one obtains

S)——(P+m') & cos(-,' tan '(m/l)),

S2——(l'+m') l sin(-,'tan '(m/l)),

where l and m are real and imaginary parts of rP. In
Table I we have computed X (de Broglie wavelength),
l, yg, S& and S2 at various energies of the incoming x
mesons. In computing these numbers we used (f)(()'
=0.32, $V(k) 7'= 1.6 (see I, Sec. V), y= 0.71X10"cm '

and the density of nucleons S=0.87)&i0" cm '. Al-

though the value of the parameter )) (Sec. II) which
designates the inhuence of binding of each nucleon in
the nuclear matter on the scattering amplitude is not
well known, ~ it may be considered to be of the order
of unity since the binding energy per nucleon is very
much smaller than the energy of the mesons involved.
Tentatively we took p=1 for our calculation. If one
takes p, '=1.45&10 " cm as the average internucleon
separation, the number of nucleons per cube of the
wavelength turns out to be about 125 at 85-Mev
kinetic energy of x mesons. This number goes down to
about 30 in the vicinity of 200 Mev. We are under the

7 N. C. Francis and K. M. Watson, Phys. Rev. 89, 328 (1953}.
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assumption that these numbers are suKciently large to
justify our continuous medium approach to the multiple
scattering problem. It may be worth noting that the
imaginary part of the propagation vector goes through
a single maximum in the vicinity of the resonance
maximum in the scattering cross section of mesons by
a free nucleon (see I, Sec. V). The real part, on the
other hand, goes through a maximum and a minimum
in the same vicinity, as is expected.

q ~1 (k& = —0.011 X10» cm
A =64

«/~R~ 0,968
re/mR2 0.797

0,5 (ki =0.035 &(10» cm-t,
A =64

ea/mR& 0,912
ed/~R~ 0,590

k2 =0.595 X10» cm 1, a =0.250 )(10» cm-1)
A =208
0.973
0.820

k 2 =0.308 )(10» cm 1, a =0.250 &(10» cm ')
A =208
0.926
0.622

TAsLE II. Absorption and diGraction cross sections.

V. DISCUSSION

From Eq. (21) it is clear that while the coherent
waves constitute the forward beam of the mesons
traveling through the nuclear matter with effective
index of refraction S1, it is continuously being atten-
uated by the imaginary part of the index of refraction
S2. The power attenuation coefficient is 2k2=2kS2. A
physical interpretation of the energy dissipation implied
by this attenuation eBect may be given in the following
way. Classically speaking, as the field strikes at the
individual nucleon, the spin and the isotopic spin of
the nucleon absorb the energy from the incident
radiation and go into gyrational motions. It is possible
then to consider that the energy thus absorbed by the
nucleon is not given back to the radiation Geld, but
rather passed on to the nuclear matter due to collision
and binding of the nucleons. In this manner one may
regard the imaginary part of the index of refraction as
the cause for the inelastic scattering of mesons by the
nuclear matter. This is to be distinguished from the
true absorption of mesons by two or more nucleons, '
which is known to be the real cause for the removal of
mesons from the beam. The absorption of. mesons will
in general excite the nuclear systems (formation of
stars, etc.), which effect may be regarded as a further
attenuation of the forward coherent wave.

Writing k'=k+k" [see Eq. (21)], the change in
the propagation vector inside a nucleus becomes
k"=k(sq —1)+iks2 ——k~+ik2 If one .designates the true
absorption coeKcient by o, then k"=k&+i(k2+a/2)
=k,+iK, where 2K= 2k2+u is the total power atten-
uation coeKcient. Then, according to Fernbach, Serber,
and Taylor, ' the angular distribution of the wave
scattered by a sphere endowed with material constants
E and k1 is given by

8
f(8) = k)' [1—e& +""»')Jo(kp sin8) pdp,

where 2s is the distance through the sphere that the
portion of the wave at a distance p from a line through
the center of the sphere traverses. Hence, S'=R' —p'.
R is the radius of the sphere (=1.37X10 "XA'* cm).
We disregard here also the surface refraction effect,
since it is of the order kP(kR) '.

At 100 Mev, 0=1.25@, which gives M=1.22&A&.
Thus, at this energy for comparatively heavy nuclei it
may be a reasonable approximation to suppose that

kR))1, then the above formula becomes

f(8) = -'k g (2t+1) (1—e&-x+"'»")P~(cos8), (22)

where S~= [k'R' —(l+~~)')&/k.
The total absorption and diffraction scattering cross

sections, o, and oq, that arise from Eq. (22) are given
in Eqs. (5) and (6) of the paper of Fernbach et al.'
a involves not only the true absorption but also the
inelastic scattering discussed before. We have calculated
o, and oe for two nuclei (A=64 and 208). The value
for the true absorption coeKcient a is not very well

known, but we take a plausible value 0.25)(10" cm ',
corresponding to the mean free path of 4&10 " cm.
0- and 0-~ are calculated for two different values of q

[see Eq. (13)]at 100-Mev kinetic energy for mesons.
The absorption cross section is smaller than the

geometrical area, as is expected. The diffraction cross
section may be either larger or smaller depending on
the amount of phase shift involved in traversing the
nucleus. Both 0. and a~ increase with larger nuclear
size, These numbers should of course be taken with
reservation because of the general nature of our classical
approach to the problem.

The recent experimental observations' on the total
absorption and inelastic scattering cross section (o.,) of
x mesons in the vicinity of 100-Mev kinetic energy by
various elements show that the absorption plus inelastic
cross section is closely equal to the geometrical area of
the nucleus. If one takes the true absorption coeKcient
alone for K, then for a=0.250X10"cm ' o /xR' turns
out to be 0.80 and 0.82 for the two nuclei. If one doubles
the value, i.e., a=0.50)&10" cm ', then the true ab-
sorption alone gives 0.90 and 0.92 for o,/~R'. However,
the mean free path becomes rather short (2X10 "cm).
Thus, it appears that both absorption and inelastic
coeKcients are equal to or somewhat larger than these
numbers given in Table II. In the experiments men-
tioned the diffraction scattering is concentrated at such
small angles with the beam that its contribution to the
attenuation is considered very small.

The author wishes to thank Dr. M. M. Shapiro of
the Laboratory for discussing with him the papers on
the experimental observations.

8 Chedester, Isaacs, Sachs, and Steinberger, Phys. Rev. 82,
958 (1951); G. Bernardini and F. Levy, Phys. Rev. 84, 610
(1951);Martin, Anderson, and Yodh, Phys. Rev. 85, 486 (1952).


