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4. Because of the complexity introduced by the
stripping process, it is not possible to establish the
existence of a term in cos? in any of the distributions.
In the ground-state neutron distribution, however, it is
necessary to assume either that the forward maximum
is a result of stripping or that a pronounced cos? de-
pendence is present; with the present data the least-
squares analysis favors the latter assumption (Table II).

5. In the neutron distributions, the relative contribu-
tion resulting from stripping seems to increase with in-
creasing E, (decreasing Q).

To discuss the compound-nucleus effects, we may
assume that B!! states are formed by incoming deuterons
with orbital angular momentum ;=0 or 1 (we expect
that higher values of /; are improbable by considerations
of penetrability). Possible B!! states are listed (spin
and parity) in Table III, along with values of orbital
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angular momentum [ for the outgoing particle corre-
sponding to various possible final states of B or Be!?
(listed by spin; parity assumed +). On the basis of
penetrability alone, one could account for a relatively
low yield to the states E,=1.74 Mev in B¥ and E,=0.0
Mev in Be! by assuming in agreement with others!
that these are both states of /=0 and that the B' states
involved are some combination of 5/2~, 3/2+, 5/2+, and
7/2+ or perhaps 3/2~ and 7/2*. Two B! states of
opposite parity are needed to account for the cosf terms
on the basis of compound nucleus formation. A model
which assumes only the B! states 5/2~ and 3/2* is in
agreement with these considerations. In addition, it
leads to similar angular distributions, with very little
cos®, for states in B! and Be! having spins 1 or 2
and to a more pronounced cos? term for states with
spin 3 (ground state of B').
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The effect of the quadrupole moment induced in the 1s shell on the nuclear quadrupole coupling ¢ in
the Li, molecule has been investigated for several wave functions. For the most accurate variational wave
function of James, the inclusion of the induced moment gives ¢/2e= —0.00106a572. This result, together with
the quadrupole coupling egQ= 4-0.060 Mc/sec for Li?, leads to a negative value of the quadrupole moment
Q(Li"). However the value of ¢ is so close to zero that the magnitude and even the sign of Q is uncertain. The
value of 1/¢ which determines Q is very sensitive to changes in the molecular wave function, and it is shown
that a small modification of the James wave function would lead to a negative Q(Li") which agrees in order
of magnitude with the prediction of the nuclear shell model. Calculations of ¢ were also carried out for the
Heitler-London and Coulson-Duncanson wave functions for the Li, molecule. )

I. INTRODUCTION

N a recent investigation of the quadrupole coupling
in the Li, molecule, Harris and Melkanoff' have
shown that the sign of the electric field gradient at the
Li nucleus is very sensitive to the detailed behavior of
the molecular wave function, since the gradient is the
difference between the nuclear and the electronic terms
which nearly cancel each other. These authors confirm
an earlier result of Foley? that the Bartlett-Furry wave
function for Li, gives a positive quadrupole coupling ¢
which would lead to a positive quadrupole moment Q,
in view of the experimental observation® that egQ is

* The part of the work carried out at Brookhaven National
Laboratory was done under the auspices of the U. S. Atomic
Energy Commission.
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positive (+0.060 Mc/sec). However, Harris and
Melkanoff! also carried out a calculation of ¢ with the
more accurate variational wave function obtained by
James.* The electronic term of ¢ as calculated with this
wave function is appreciably larger than for the
Bartlett-Furry function; the resultant ¢ is negative,
although small. This work does not enable one to draw
a definite conclusion about the sign of ¢, although it
shows that a negative sign of ¢ is not excluded. This
result is of interest since a positive Q (Li’) would be hard
to understand on the basis of any simple model of the
nucleus.5$

Harris and Melkanoff! did not take into account the
effect of the quadrupole moment induced” in the 1s
shell by the nuclear Q. The induced moment around the
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The latter paper will be referred to as I.
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nucleus (4), whose quadrupole coupling is considered,
has two effects: (1) it shields the other nucleus (B) and
the density connected with the 1s shell surrounding it
by the amount v, where v, is the ratio of the total
induced moment to Q; (2) it shields the valence electron
density by an amount less than v, which depends on
the extent of the penetration of the valence electrons
inside the 1s shell. The purpose of this paper is to
include the effect of the induced moment as calculated
from the James and Heitler-London wave functions. For
the more accurate James wave function, the inclusion
of the induced moment gives ¢/2e= —0.00106az~2. The
value obtained for the Heitler-London function is
q/2¢=0.00266ax~* as compared to 0.00390a¢x2 obtained
by Harris and Melkanoff.! ¢ is smaller by a factor of
order 1—7v,=0.76 than without shielding. However,
not much weight can be given to the positive sign of ¢
as obtained with the Heitler-London function, since this
function is presumably much less accurate than that
of James. The difference between the Heitler-London
and James results arises from the fact that the James
electron distribution is concentrated more heavily for
small angles 64 with the internuclear axis at the expense
of the large values of 64. As a result the value of
{(3 cos®1—1)/2r4%) is greater, increasing the electronic
term. If in the actual wave function the electrons are on
the average closer to the nucleus than for the James
function, ((3 cos?§4—1)/274*) will be further increased
and ¢ is definitely negative.

Besides the determination of ¢ for Lis, a further aim
of this paper is to show how the induced moment cor-
rection is calculated for the case of molecules, previous
calculations” having been restricted to the case of free
atoms. It is found that the correction to ¢ can be
obtained by simply calculating the interaction of the
induced moment with the asymmetric (valence) part
of the electronic density in the molecule, in the same
way as for atoms.

II. CALCULATION OF THE INDUCED MOMENT

In order to obtain the correction to ¢ for any of the
wave functions considered, it is necessary to obtain the
moment induced in the 1s shell. A complete proof that
the correction for ¢ due to the polarizability of the 1s
shell is accurately given by the induced moment, will
be presented in Sec. II1.

The induced moment was calculated using . the
method described in I. For the unperturbed 1s function,
we took the same function as was used by James:*

o= (8.82/32)r exp(—2.697), 1)

where 7 is the distance from the nucleus and %, is 7
times the 1s function normalized according to

f f u?dr X sinfdf=1,
o Yo

where 6 is the angle subtended by the radius vector and
the axis of the quadrupole moment. The equation to
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be solved is

(H()”‘E())M1= —~H1uo, (2)

where Ho and H; are the unperturbed and the perturbed
part of the Hamiltonian, respectively; #, is » times the
d wave perturbation. We have

hZ

Hy=——V*4-V,, 3)
2m

Hy=—¢Q(3 cos®—1)/4r3, 4

where V), is the spherical potential. ¥y was taken as
(—5.38/r) Rydbergs in order to be consistent with the
wave function, Eq. (1). Similarly the energy |E,| is
taken as (2.69)=7.24 ry. Upon defining the radial
functions #," and #," as in I,

uo=2"4uy (7), ©)
n=Qur' (r) (3 cost—1)/242, ©
one obtains
# 6 538 o
(___}_——-————]—7.24)%1':“‘-._ (M
a7 r

Equation (7) can be solved exactly because of the
special form of the unperturbed function #," which can
belwritten kr exp(—Zor), "with k=8.82, Z,=2.69. The
solution of

& 6 27 ‘
(~——+—-——+Zo2)u1'=x exp(—Zor)/r* (8)

arr 7

can be shown by substitution to be
K
w'=(Z) vzt @il O

As shown in I, the induced moment due to both 1s
electrons, Q;(r)dr between r and r+dr is given by
Qudr=(8/5)Quy'u,'r’dr. (10)

Figure 1 shows #," together with Q,. The total induced
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moment

Q= f "0 ()

can be obtained by integration using Egs. (5), (9), and

(10): -
Qir=0Qx*/ (6Z4").

The value of « is determined by the requirement

(11a)

0

f u0’2d7=:c2f r2exp(—2Zg)dr=1, (12)
0

0

whence k=2Z,%. Upon inserting this value in (11a) one

finds
QiT= 2Q/ (320)- (13)

For the present case, with Z,=2.69, Q,r=0.248Q. It
may be noted that the present values of Q; are quite
close to those obtained previously in I (see Table I)
using as the unperturbed #, the 1s function obtained
by Fock and Petrashen.® The corresponding value of
| Exg/Eq| for the atomic 2p state (0.166) is somewhat
smaller than Q,7/Q because of the penetration of the
2p function into the 1s shell.

Equation (13) shows that the contribution to the
induced moment from the 1s shell decreases as Z—! with
increasing atomic number Z. However, the number of
shells increases with Z; this effect compensates the
decrease for any one shell as given by Eq. (13). This
result is consistent with the behavior of the Fermi-
Thomas model according to which the total induced
moment for the entire atom is independent of Z.

Equation (7) assumes that the perturbing potential
is that of the unshielded nuclear moment Q. However,
as pointed out in I, the total perturbation includes a
contribution from the induced moment. In the present
case each 1s electron experiences the perturbation due to
the moment induced in the other 1s state, which
amounts to Q;/2. In order to include this effect, one
defines

v(r)E(l/Q)[ f oy / ) Qir""’dr’]; (14)

v is 0 at =0 and (Q;r/Q) for large 7.

The equation satisfied by the perturbation upon
inclusion of the shielding, is obtained from Eq. (7) by
replacing #o'/7* by (1—v/2)uy’ /7. The resulting equa-
tion was solved numerically for the perturbation, say
4, using the procedure described in I [Eqs. (1)-(12)].
The effect of the —+y/2 term was found to be very
small. The new induced moment Q,r calculated with
@y’ is 0.240Q, only 3 percent lower than the initial value.
The function v as obtained with the induced moment
Q.= (8/5)Quy't,’r* will be used in the calculation of the
quadrupole coupling.

( 8\;.) Fock and M. Petrashen, Physik. Z. Sowjetunion 8, 555
1935).
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III. THE QUADRUPOLE COUPLING FOR THE
JAMES VARIATIONAL FUNCTION

The variational wave function for the Li, ground
state obtained by James? is

\I’J= (1/NJ%) Zk Cmnjk (’#mnjk'{_lpnmkf)’

mnj

(15)

where the Co.j, are constant coefficients, Vs is a nor-
malization constant and Yma.p is the following deter-
minant :

Ymnie= | W1:0) (1) 18) (2) (fmier) (3)
X (f218) (4) (rs'e) (5) W'B) (6) |, (16)

Jmi= exp(—=2MN"u?; (17

A and u are elliptic coordinates; A= (r4+75)/R,
u=(ra—78)/R, where 74 and 73 are the distances from
nucleus 4 and B, respectively, R is the internuclear
distance; ¢1, and ¥1,” are 1s wave functions centered on
nucleus 4 and B, respectively, whose normalization is
J¥12dV=1 (dV=volume element). « and 8 are the
eigenfunctions for spin up and down, respectively. The
notation (¥1,0)(1) means that the coordinates of ¥y,a
are those of electron 1. In Eq. (16), Ymns is a determin-
ant whose terms include all permutations of electrons
1-6. '

Instead of the original wave function obtained by
James* which has 18 terms, Harris and Melkanoff! used
a function composed of 12 terms. It was shown by
Melkanoff! that the difference in the values of ¢ ob-
tained with the two wave functions is small. Thus, it
would not affect the present considerations of the effect
of shielding on ¢g. We have used the same function as
was used by Harris and Melkanoff, so that the sum in
Eq. (15) has 12 terms.

We must first calculate the total electron density ps
for the James function. ps is given by

p1=6ffl‘I/JIZd01d7'2'_s,

where d7,_¢ indicates the space and spin coordinates of
electrons 2-6 and ¢, is the spin of 1. From (16) and (18)
one finds for the density p;; of the valence electrons,

prr=1/ND)YX ¥ ConiiCorwine

mnik m’n’j’k’

X[fmjfm’j’llnk, n’k’+fnkfn’k’llmj, m’j’

with

(18)

+fnkfm’j’I,mj, n’k’+fm]'fn’k’-[,nk, m'j’j: (19)
where
I’m;', nkEIm+n, J+ET 2]mjjnk, (20)
Lo, j= f e M\idV, (20a)
I mi= f Y16 PNidV . (20b)
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N ; is obtained by integrating |¥ |2 over all coordinates
(d71—6). One finds

7 7
NJ= Z Z Cmnjkcm’n’j’k’[I mj,m’j'I 2k, n'k’
mnjk m’n’j'k’
’ 7
+I nk, m'i’I mj.n’k’]-

Since ¥15 and f,.,; are not orthogonal, there are terms
in ps of the form ¥y, fm;. These terms contribute to the
electric field gradient at nucleus A. If p,; denotes the
part of p; which is linear in ¥4,, one finds

Psf= — (‘l’ls/NJ) Z Z CrinitComtm jrer

mnjk m’n’j'k’

XA fmil T me it T ny worr T eI iy mr
F furl T i I mg, me it T mr it I i, ikt ]
A+ fonr it LT mil nty e+ T ad mi, i
A Furid [Tk s, m s T il i mrio 1}

The value of ¢ can be calculated from these expres-
sions and from the value of the net charge concentrated
at nucleus B. Because of the non-orthogonality, the coef-
ficient of ¥, in ps is not exactly 2, and there is also
a term linear in ¥y, similar to p,;. Upon using Harris’s
value? for the net charge due to both terms, —1.973¢,
one obtains +1.027¢ for the charge at B which repre-
sents nucleus B and the surrounding 1s shell. Instead
of the quadrupole coupling ¢, we will frequently use ¢/,
defined by ¢'=gq/2e¢, so that ¢ is the average of
(3 cos?@4—1)/2r 43 over the charge density of the mole-
cule excluding nucleus 4.

In order to obtain the shielding effect without am-

(1)

(22)

biguity, it is best to consider this effect as a result of -

the distortion of the 1s shell by the asymmetric poten-
tial caused by the other charges. The correction to ¢
is then due to the part of the distortion which behaves
as (3 cos?#4—1). This picture is equivalent to the con-
sideration of the induced moment, as will now be shown.

The distortion of the 1s states is caused by the asym-
metric part of the potential of the charges other than
the 1s state being considered. The density of the type
pss with spin up (or down) is one-half of the expression
given by Eq. (22). Hence, the density p’ which produces
the distortion is

p'=—psr—3pss+ps, (23)

where pp is a charge 4-1.027 concentrated at B. Because
of the potential produced by p’, ¥1, is changed to

=1 Hdptdat- -,

where ¥, and ¥4 are the p and d wave perturbations,
respectively. These perturbations can be obtained by
solving the Schrédinger equation for the 1s function
including the potential resulting from p’.

The correction to ¢ for the polarizability of the 1s
shell is obtained by replacing ¢1; by ¢¥1s in the James

(24)

? E. G. Harris, thesis, University of Tennessee, 1953 (unpub-
lished). ,
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wave function [Eq. (17)]. The most important term of
g which arises from this substitution is associated with
Y12 The 1,2 terms of p; can be written ¢ 2 Harris has
given the value® ¢=2.0268; 1 is replaced by ¢/,
which includes a term 2c10q. This term is the only one
of first order in the perturbation which has the
(3 cos?04—1) dependence. The contribution to ¢’ is

A¢'=— f 2e19a(3 cos04—1)/2r43dV.  (25)

It can be easily shown that A¢’ as given by Eq. (25)
can be expressed in terms of the function vy associated
with the induced moment Q;:

A¢'=— f [v(3 cos?a—1)/2r %]

X (=psr—3psstpp)dV. (26)
In order to prove Eq. (26), o’ will be written
o' =poPo+p1Pi+psPot- -+, (27)

where P;(64) is the Legendre polynomial of order / and
the p; are functions of 74 only. The potential produced
by p2 is :

1 r ©
Vo= (8#/5)[—3] 177"2d1'/+7’2f Ur"“"‘dr']Pg
7 0

T

= (87/5)gPy, (28)
where o (7') =por’2. The function in the square bracket
is denoted by g. We note that a factor 2 arises from
Rydberg units and a factor Z from the integration over
04. The d wave perturbation #; of the 1s function is
determined by an equation similar to Eq. (4) of I:

Mﬁ1= —_ (871'/5)gP2M(), (29)
where M denotes the operator
@& 6
M=——+—+V—E,. (30)
ar?  r? .

In the present case, Vo= —25.38/7, Ey=—7.24 ry. Here
and in the following, the #’s denote » times the corre-
sponding parts of the 1s wave function. If we let
uo=2"tuy’ [see Eq. (5)], #: can be written

171= (—SW/S\[Z_)ﬁ1/P2, (31)
where 7, satisfies
Mﬁ1’= guo'. (32)
The contribution to ¢’ is given by
A¢=—4 f f " (uofly/73) Podr sinfdd,  (33)
. 0 0

where the factor 4 arises from the fact that the per-
turbed density is 2u,f, for each 1s electron. Upon insert-
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ing Eq. (31) into (33) one obtains

321!' Mo’ﬁ1’
A¢=—o

25 78

dr. (34)

It will be shown that the same expression is obtained,
if the quadrupole energy is calculated as the interaction
of the induced moment with p’. The perturbation #; due
to the nuclear Q is determined by

MM1= QPguo/?'3. (35)
Hence, #; can be written
U= QP2M1,/\/2—, (36)
where %, satisfies
Mu/=uy /v, 37

In view of Eq. (36), the perturbed density due to u; is

Apina=4ugu=2Quy'u,’ Py (38)

The potential due to Aping is

1 r
Vina= (8/ 5)Q[—3 f wouy'r"2dr’
e Yy

+72 f uo’ul’r’—sdr’]P2= (8/5)Qg' Py, (39)

r

where g’ denotes the function in the square bracket.
The interaction of Vi,q with p’ is given by

2w f f V inap2Por?dr sinfdf
o Yo -
— (3200/25) f Jodr. (40)
0

Since Eq. (40) equals A¢’Q, the two expressions for A¢/,
Eqgs. (34) and (40) are equivalent, provided that the
radial integrals are equal ; these integrals will be denoted
by L and L, respectively. Using Eq. (37) one finds

izf (%0'ﬁ1'/r3)dr=f (Muy )ity dr
0 0

- f w! (May')dr, (41)

where the last step follows by partial integration. In
view of Eq. (32), Eq. (41) becomes

L= f uo'us gdr
0
(o] 1 T (-]
= f uo’ul'[—;— f or’?dr’ 2 f or":‘dr']dr. (42)
0 7° Yo

T
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By partial integration Z can be transformed to

L] 1 r )
L= f a[—- f wuo'uyr"2dr" 12 f uo’ul’r""’dr’]dr,
3
0 ¥ 0

r

(43)

which equals L by virtue of Egs. (39) and (40). Thus
the correction A¢’ can be calculated as the interaction
of the induced moment with the charge outside the 1s
shell. The main advantage of this method, as compared
to the procedure in which #; is calculated, is that the
distortion by the nuclear Q can be used with several
external distributions without the need of solving a
differential equation each time. Moreover, in the present
case, #; can be obtained analytically, whereas this is
not possible for ;.

Aside from the term 214, there are other shielding
terms which arise from the lack of orthogonality of
Y¥1s on fn;. These terms arise as follows from the
substitution of Y1, for ¢i, in Eq. (16): (1) there are
additional terms in p; caused by the fact that ¥y, in
pss LEq. (22)] should be replaced by ;.. The pertur-
bation in the density arising from ¢, is p,;, defined as
the result of replacing y1; by ¥, in the expression for p,;.
¥, was calculated by solving a differential equation
similar to Eq. (29). The contribution to ¢’ due to p,,
was found to be ~10-%ax~2. An even smaller contribu-
tion is obtained from pg4s, defined as the result of re-
placing ¥1, by ¥4 in pss. (2) The J,; [Eq. (20b)] should
be calculated using ¢, instead of ¥y,. This was found
to change Jio by ~0.1 percent and would result in
similarly small changes for the other J,; It can be
concluded that the additional shielding terms just
described are negligible.

It follows from the preceding discussion that ¢’ is
given by

q’=——f(1——~/)[:(3 cos™a—1)/2r 43TosdV
——f(l—'y/Z)[( 3c0s?04—1)/2r 43 Jps AV

H[1—7(R)] f [(3 cos04—1)/2r4%lppdV

+Aq’exch~ (44) :
The last term in (44) represents a small exchange

contribution of the induced moment of the type which

has been discussed in I. The expression for Agexen” and

its evaluation, are given in the Appendix.

The integrals in Eq. (44) involving ps; and p,s will be
denoted by A;; and A, respectively. A;; and A,;
were obtained by a double numerical integration. In
this work, the expressions for p;; and pss given by
Harris® were used. These expressions were also checked
by means of Egs. (19)-(22), using Harris’s values?® of
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the coefficients Cuyj. The resulting expressions agree
satisfactorily with those of Harris.

psr and pss were evaluated for the internuclear distance
5.63am for which James* calculated the variational
function, instead of the observed R=>5.05¢u. Therefore,
the electronic term of ¢’ will be slightly in error. Harris
and Melkanoff' have carried out calculations for a
" Heitler-London wave function for various values of R,
from which they showed that for this wave function the
electronic part of ¢ is not sensitive to R. (In the range
from R=4.71ex to 5.50ay, this part decreases by only
0.00013¢x~%.) For the term produced by pp which
varies more rapidly with R, the observed distance will
be used.

To obtain Ay and 4., the radial integration was
carried out first for 11 angles 64. The radial integral for
A ff is

Ay (00)= f (A=1)pss(ray 04)/radra.  (45)

Since py; is finite at 74=0, a small region near 7,=0
must be excluded. The integral was taken from
r4=0.2an to . It can be easily shown that when the
angular integration is carried out for 74=<0.2am, the
contribution from this region to ¢’ is negligible (of the
order 10~%¢x?). The same considerations apply to A4,;.
The 11 values of 84 were taken at intervals of 11.25°
for 0° <6, =45° and at intervals of 22.5° for 64 =45°.
The results are

A7;=0.00748ax3, A.=-—0.00087an3.
The term due to pp is given by

g5'= (0.757)(1.027)/R¥=0.00603a~2.  (46)

The factor 1.027 is due to the charge 1.027¢ associated
with nucleus B and its surrounding 1s shell; the factor
0.757 represents the shielding.’® As shown in the Ap-
pendix Agexen’= —0.00048ax~% so that the value of ¢’
including shielding is ¢,"= —0.00106ax~2.

As a check on the calculations, ¢’ was evaluated
without shielding by setting y=0 in Eq. (44). The
resulting values of the integrals are Ay =0.00984,
Agp0=—0.00096¢5~3. Here and in the following, the
subscript O indicates that shielding is not included.
The nuclear term is 1.027/R3=0.00797a¢x73, so that
¢7,0’=—0.00091¢5~2. This value is in very good agree-
ment with that obtained by Harris,® 1/R*—0.00868
=—0.00092ax—2. Although the agreement to 10~%¢x—3
is fortuitous, it indicates that the integration procedure
used is adequate.

As was found previously by Harris and Melkanoff,!
the small value of ¢,/ makes it impossible to obtain

10 The factor 0.757 rather than 0.760 is used because the 1s
term of ps is 2.027 12, so that the induced moment is increased to
(0.240) X (2.027/2)Q.
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with certainty the actual sign of the electric field
gradient. We note that Ay, is reduced by shielding in
the ratio 0.760 which is = (1—Q.r/Q). The reason
this ratio is obtained is that ps; is almost completely
external to the 1s shell, so that the induced moment
has maximum effectiveness in shielding the nucleus. The
pss term is reduced by only a factor 0.92. Here the effect
of penetration is greater and, in any case, the minimum
ratio is 1—Q,;r/20=0.878. It is seen that the inclusion
of shielding does not greatly affect the total value of ¢,/
for the James wave function, although the individual
terms are changed appreciably. The reason is that the
important terms of ¢/, namely ¢z’ and Ay, are reduced
by the same factor (=0.76) so that one expects
g/ =0.76¢;,¢. Since ¢s,0" is close to zero, the difference
0.24q;,¢' is very small.

The value of ¢;/ would give Q(Li")=—12X 1072 cm?.
Interpolation from the curve of quadrupole moments
published by Townes, Foley, and Low! gives Q(Li") =
—1.6X107% cm? It should be emphasized that a rela-
tively small change of the valence density would lead
to a value of ¢’ which gives Q of the order of the pre-
dictions of the nuclear shell model. Along any line
64=constant, p;; increases rapidly with increasing 74
near nucleus 4. Because of the factor 1/74% the elec-
tronic part of ¢’ would be increased considerably if the
actual density would rise faster near 4 than ps. Thus,
if the valence density p;; were changed to a density py,
such that®? g (74, 04)=1.2%0,;(1.274, 04), Az would be
increased to 1.28 A;; and ¢’ would be —0.0065a573
leading to Q= —2.0X10-26 cm?. Moreover, 4, is very
sensitive to changes of the angular dependence of the
density. If pss is increased by a factor 1.15 at 6,=0°,
1.10 at 22.5°,1.05 at 45°, and decreased by a factor 0.80
for 84 =90° (to ensure normalization), ¢’ becomes
—0.00354ex7%, so that Q=—3.6X10"26 cm?. If the
actual valence density should be both more internal
and more peaked near the internuclear axis, in the
manner just described, one finds ¢'=—0.0107ax~3
leading to Q=—1.2X10726 cm?. These considerations
show that, although the value of ¢’ obtained from the
James wave function is unlikely, it is quite possible
that the James wave function is still accurate enough
for many purposes, since a small change of the wave
function results in a considerable change of 1/¢’.

IV. THE QUADRUPOLE COUPLING FOR THE
HEITLER-LONDON AND COULSON-DUNCANSON
WAVE FUNCTIONS

The calculation of the shielding effect has been carried
out for the Heitler-London wave function for Li, dis-

cussed by James.* This function has also been con-
sidered by Harris and Melkanoff! and is given by

Yur=1/Nur®) Yar+¥sa),

it Townes, Foley, and Low, Phys. Rev. 76, 1415 (1949).
12 The factor 1.23 is required for normalization.

(47)
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where Ny, is a normalization factor, ¥, is the deter-
minant

Yao=| (1.) (1) ($1:) (2) (aa) (3) (868) (4)
X (1) ) @1s'8) (6)[,  (48)

and ¥, differs from ¥, by the interchange of ¢ and 8.
Here,
(49)

(50)

are valence functions centered on nuclei 4 and B, re-
spectively; 7 is a normalization constant to be deter-
mined below. In Eq. (48) the determinant includes all
permutations of electrons 1-6,

The expressions for the density for the James wave
function can be used here. Equation (47) corresponds
to a single term of ¥, in Eq. (15) with f.; and faux
replaced by @ and b, respectively. The valence density
is given by

a=nr4 exp(—0.6574),

b=nrp exp(—0.657p),

Py= (I/NHL)[azlbb—l-b?Im-f-QGbIab], (51)
where
Iaa=Ibb=N1'_Ja2—]bg:
Iab=N2*2]a]b;
N1=fa2dV, Ne= fade, (51a)

]a=fzhsadV, Je= fybl,,de.

By integrating over all coordinates one finds that Ngy,
is given by

Nur=I2 1. (52)

Similarly to Eq. (22), one obtains for the density due
to the overlap of ¢, with the valence functions,

psv=— 215/ Nur){a[Jalss+Tolas]

+b[jblaa+-]alab:l} . (53)
The 1s density surrounding nucleus 4 is given by
Pss= (‘l’lsZ/NHL)[IM(N1+[M)+Iab(N2+Iab):|- (54)

The constant # in (49) and (50) was so chosen that
N2+N2=1. In order to obtain #, we note that a
value #=0.111 would give N;=1 from Eq. (51a). With
this normalization one obtains N.=0.586 by analytic
integration. Hence

7=0.111[1+4(0.586)% T-t=0.103. (55)
The resulting values of the integrals are: N;=0.863,
N3=0.506, I,,=0.835, I,,=0.487, J,=0.156, J,=0.0625.
In all of these calculations the actual R=5.05ax is
used. With these values of the constants, the electronic
density is
prr=2.035¢1,2—0.342¢1,a—0.273¢1,b

+0.894 (a?*+8%)+1.042ab—0.342¢,,'d

—0.273¢1,/a+2.035¢1,2,  (56)
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where ¥4,/ is the 1s function centered on B. The quad-
rupole coupling is given by

¢'=—0.804 f (A=) 3 costs—1)/2r 5 J2dV
—1.042 f (1=7)[ (3 cos?Ba—1)/2r 43)abdV

+0.273 f (1= /2L (3 cosba—1)/2r 5 JprsbdV
+0.756¢5/R%.  (S7)

The integrals appearing in ¢’ will be denoted by Ass,
A, and 41,3, respectively; in the last term, ep is the
effective charge associated with nucleus B and its
surrounding 1s shell. It is given by

e5=3—2.035+40.3427,40.2737,=1.035.  (58)

Ay, Aap, and A5 were evaluated by the same pro-
cedure as the 4’s of the James function. However, for
the angles 64<45° an interval of 5.63° rather than
11.25°, was used because the A’s have a fairly pro-
nounced variation in this region. The reason is that °
the closest distance of the line 6,=11.25° to nucleus B
is ~au, and b(rp) has a maximum at rp=1/0.65
=1.54an. As a result, the radial integral A,®

AnO0)= [ Ba0/radra,  (59)
8

has a maximum at 84 =11.25°; here § is a small radius
introduced to give a convergent integral. A similar
result holds for the integral over ab. The results of the
integration are: A;,=0.00276a5=3, A4,=0.00123ax73, -
A15,=0.00121ax~3. The resulting value of g1’ as ob-
tained from Egs. (57) and (58) is ¢xz'=0.00266ax%.

In order to check the numerical integrations, the
value of ¢’ without shielding was also calculated. By
setting y=0 in Eq. (57), one finds Az, 0=0.00357,
Aap,0=0.00159, and A1, 50=0.00128a52. These values
of the 4’s are in satisfactory agreement with those of
Harris and Melkanoff,'* who obtain 0.00350, 0.00154,
and 0.00141, respectively. The resulting value of ¢’ is
qHL, o’ = 0.00354(11{_3.

The fact that gmz’ is positive cannot be given too
much weight because the Heitler-London function is
only very approximate. The reason for the difference
of the signs of ¢gnz’ and ¢, is that the electronic part
of ¢/, g, is smaller for the Heitler-London function.
By plotting both ps and pxz as a function of 74 for
various @4, it was found that part of the difference of
the g’ arises from the fact that ps is more peaked
around 0,4=0° than pz.

The value of ¢’ obtained with the Bartlett-Furry®
function, ggr’, can be obtained from the preceding

(113 J.) H. Bartlett, Jr., and W. H. Furry, Phys. Rev. 38, 1615
931).
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results by setting J,=J,=0. This procedure corre-
sponds to the fact that the Bartlett-Furry function does
not include the inner shells. One thus finds

gpr' =0.760/R3— N 1App— 2N 24 05 =0.00227a572.  (60)

Coulson and Duncanson' have obtained a molecular
orbital type wave function for the Li; molecule in which
the state of the valence electrons is represented by

Vep= (2N ep) H[Y2sa (1) +2,5(1) ]
X[W204(2)+¥2:5(2) JLa(1B(2)—B(Da(2)],  (61)

where N¢p is a normalization constant and ¥4 is a 2s
function centered on 4, which is given by

1//23,4:%01)(1‘1;——1.01) exp(—O.Ser), (62)

¥2sp is obtained from ¥s,4 by replacing 74 by 75; #ep
is a normalization constant chosen as #¢p=0.301, so
that [y»,42dV=1. By analytic integration'® one finds

f VYosa2s3dV =0.506, (63)

so that Vep=1.506. Because (¥2;4+¥2:5) is orthogonal
on ¥1,, No cross terms involving ¥, appear in ¢’ which
is given by

QC’D,= 0760/R3— (1/NOD)

% { f (A=) (3 cosa—1)/2rs* WausdV

+2 f (1—=7)[(3cos?04—1)/2ra* WasapospdV ;. (64)

By numerical integration, the integrals appearing in
(64) were found to have the values 0.00367 and
0.00127ax3, respectively. The result for ¢’ is

gop’ =0.760/R3—0.00412=0.00178ax~3.  (65)

Concerning the positive sign of g¢p’, the same remark
applies as for the Heitler-London result.

We would like to thank Drs. E. G. Harris and M. A.
Melkanoff for sending us their results in advance of
publication. We are also indebted to Dr. H. S. Snyder
for several helpful discussions.

APPENDIX. EFFECT OF EXCHANGE ON THE
SHIELDING CORRECTION

The exchange contribution to the shielding correc-
tion” arises from the fact that the field acting on the 1s
electrons includes a term arising from the overlap of 1s
with the valence wave function with parallel spin. The
perturbation of the 1s function caused by this field
contributes to ¢’. The same treatment as was given
above [Eqgs. (26)-(43)] shows that the change of ¢

14 C, A. Coulson and W. E. Duncanson, Proc. Roy. Soc.

(London) A181, 378 (1943).
15 C, A. Coulson, Proc. Cambridge Phil. Soc. 38, 210 (1942).
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can be calculated from the perturbation #; of the 1s
function by the nuclear Q. The overlap of #; with the
valence function produces a term QA¢exn’ in the elec-
trostatic energy from which Agexen’ is obtained.

If one would use the actual James wave function for
the valence electrons, the calculation of Agexa’ would
be very complicated. However, since the effect is quite
small we make the approximation of replacing ¥; by
the following wave function for the valence electrons

év=(pss/2)%. (A2)

Here p;r and ¢, are regarded as functions of 74 and 4.
&, is a product wave function which gives the same
valence density as the James function. The use of &,
is not expected to introduce any serious error and should
give the correct order of magnitude of the exchange
effect.

¢, as defined by Eq. (A2), is a superposition of s, p,
d, f, - - - waves centered at 4. We write

0=0:001+¢,01+¢0s+- - -, (A3)

where ©;=[(20+1)/2P;. ¢, ¢, and ¢g are, respec-
tively, the radial s, p, and d, functions, and are obtained
from

where

bs,p.a(ra)= f »00,1,2 5In04d0 4, (A4)
0 .

where the subscripts 0, 1, 2 correspond to s, p, d,
respectively. The f and higher terms of ¢, make a
negligible contribution to the exchange effect and will
be disregarded. ¢, ¢,, and ¢4 were obtained by nu-
merical integration for about 10 radii in the interval
0<74<3au. For larger 74, ¥1. and u," are very small,
so that the overlap with ¢, can be neglected.

It is convenient to use functions normalized to a

. volume element 7 42dr 4 sinf1df4. We write

&) = (2m)ip, = (v,00+1,0:14+2402) /74,  (AS)

so that v;, v, and vg are (27)% 4 times ¢s, ¢,, and ¢q,
respectively.

Consider the exchange of ¢,’(1) with the 1s electron
of parallel spin which will be labeled ¢=3. The corre-
sponding electron density is

1 {uol

B +Q141'P 2
P13—2 V2r  V2r
1 Mol QM]_’Pz
+—{—+
C202r V2r
uo’ Qu "Py
e
V2 V2r |

X [Mo' +Qu1’P2:|¢ ,} (3)
vir var 1 '

}2 (D,”(3)

“(3)en(1)

w} M

(A6)
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The last term gives the exchange effect. Upon using
Eq. (AS) for ¢, this term becomes

e — { [“o' . Qulfpz][v.,@o—f—v,,@l—l—vd@] } W

3r \Zr 7
o' Qui/ Pa[vs@0+2,0:141,0,
ﬂ x[[ ] ||o- @n
V2r - \2r r ;

Pexeh gives rise to the following terms AE; in the electro-
static energy: (1) AE; arising from the P, part of the
potential of the density ~(Qui'vaP20:)(1) acting on
the term ~ (%4'v,00) (3) ; (2) AE, arising from the P; po-
tential of (Qu:'Pw,01) (1) acting on (#'2,01)(3); (3)
AE; arising from the P, potential of (Qui'Pa;®0) (1)
acting on (#'v402)(3); (4) AE, arising from the P,
potential of (Qui"P340s) (1) acting on (#0'2403) (3). In
addition, there are four terms which are obtained from
the preceding by interchanging electrons 1 and 3.

In order to obtain AE; one writes the density with
the coordinates (1),

p1(1)=— (27%Qu1"vaP205/7*) (1). (A8)

Therelevant term in the potential 2/713is 2Py (1) Po(3) /7>,
where 7> is the greater of 7; and ;. The potential due to

pi(1) is { .
V1(3)=~— Z%Q[" f w1 "vadr+- f uy"var 1_1d7’1]
0 Ty

73

X(f .P2®2 Sin01d01)Po(3)
0

= — (2/59QVY (rs)Po(3), (A9)

where V¢’ is the function in the square bracket; 7; and
0; denote 7 and @ for electron 7. V1(3) acts on the fol-
lowing density

pll (3) = 2_%140,713@0/7'32- (AIO)
This gives

AE1=ff
0o Yo

0

Vl (3)_p1’ (3)7’32d1’3 sin03d03

=~/ [ Viwledrs (A1)
0
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Equation (A7) shows that pexecn has a term py/ (1)p1(3)
which gives the same electrostatic energy as p1(1)ps (3).
The contribution to Agexen’ from both terms is

Aql'= 2AE1/Q= - (4/5%)f Vl’uolvsdriﬁ- (A12)
[}

The contributions Ag,” of the other terms 2AE; can
be found in the same manner as Ag;. The results are
as follows:

Ags'= — (8/15) f Viugngdr,  (Al3)
0
where
Vo' (r)=(1/7%) f v dr’+ ;'f uvr' 2y, (Al4)
0 T
Aq;;,= - (4/5§)f Vg"lzto'?)ddf’, (A15)
0
Vs (r)=r*3f wuy vy 2 dr’ 12 f /v 3dr’. (A16)
0 r
AQ4I= - (8/35)f V4luol'l)dd7’, (A17)
0 .
Vi(r)=r3 f i var"2dr’ 412 f uy v 3y’ (A18)
0 r

If the integrals appearing in Egs. (A12), (A13),
(A15), and (A17) are denoted by K1, K, K3, and Ky,
respectively, Agexen’ can be written

Agexen” = —2[ (4/5) K1+ (8/15) K>
+(4/5HK s+ (8/35)K4],

where the factor 2 takes into account that both valence
electrons contribute to the exchange.

The K; were evaluated by numerical integration over
95, ¥p, and vg. The values are: K;=11.66X1075,
K.=1.87X1075, K;=5.73X10"5, K,=0.25X107%, so
that AQexch, =—0.00048ax72.

(A19)



