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4. Because of the complexity introduced by the
stripping process, it is not possible to establish the
existence of a term in cos'tI in any of the distributions.
In the ground-state neutron distribution, however, it is
necessary to assume either that the forward maximum
is a result of stripping or that a pronounced cos'0 de-
pendence is present; with the present data the least-
squares analysis favors the latter assumption (Table II) .

5. In the neutron distributions, the relative contribu-
tion resulting from stripping seems to increase with in-
creasing E (decreasing Q).

To discuss the compound-nucleus eGects, we may
assume that B"states are formed by incoming deuterons
with orbital angular momentum /~=0 or 1 (we expect
that higher values of l& are improbable by considerations
of penetrability). Possible B" states are listed (spin
and parity) in Table III, along with values of orbital

angular momentum l' for the outgoing particle corre-
sponding to various possible final states of B"or Be'
(listed by spin; parity assumed +). On the basis of
penetrability alone, one could account for a relatively
low yield to the states E,= 1.74 Mev in B' and E =0.0
Mev in Be" by assuming in agreement with others'
that these are both states of J= 0 and that the B"states
involved are some combination of 5/2, 3/2+, 5/2+, and
7/2+ or perhaps 3/2 and 7/2+. Two B" states of
opposite parity are needed to account for the cos8 terms
on the basis of compound nucleus formation. A model
which assumes only the B" states 5/2 and 3/2+ is in
agreement with these considerations. In addition, it
leads to similar angular distributions, with very little
cos'8, for states in B" and Be" having spins 1 or 2

and to a more pronounced cos'8 term for states with
spin 3 (ground state of B").
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The effect of the quadrupole moment induced in the 1s shell on the nuclear quadrupole coupling q in
the Li2 molecule has been investigated for several wave functions. For the most accurate variational wave
function of James, the inclusion of the induced moment gives g/2e= —0.00106un '. This result, together with
the quadrupole coupling egQ =+0.060 Mc/sec for Li', leads to a negative value of the quadrupole moment
Q(Li ).However the value of q is so close to zero that the magnitude and even the sign of Q is uncertain. The
value of 1/g which determines Q is very sensitive to changes in the molecular wave function, and it is shown
that a small modiication of the James wave function would lead to a negative Q(Li') which agrees in order
of magnitude with the prediction of the nuclear shell model. Calculations of q were also carried out for the
Heitler-London and Coulson-Duncanson wave functions for the Li2 molecule.

I. INTRODUCTION

' 'N a recent investigation of the quadrupole coupling
~- in the Li2 molecule, Harris and MelkanoG' have
shown that the sign of the electric field gradient at the
Li nucleus is very sensitive to the detailed behavior of
the molecular wave function, since the gradient is the
difference between the nuclear and the electronic terms
which nearly cancel each other. These authors confirm
an earlier result of Foley' that the Bartlett-Furry wave
function for Li2 gives a positive quadrupole coupling q
which would lead to a positive quadrupole moment Q,
in view of the experimental observation' that eqQ is

*The part of the work carried out at Brookhaven National
Laboratory was done under the auspices of the U. S. Atomic
Energy Commission.

$ Supported in part by a grant from the National Science
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positive (+0.060 Mc/sec). However, Harris and
MelkanoG' also carried out a calculation of q with the
more accurate variational wave function obtained by
James. ' The electronic term of q as calculated with this
wave function is appreciably larger than for the
Bartlett-Furry function; the resultant q is negative,
although small. - This work does not enable one to draw
a definite conclusion about the sign of q, although it
shows that a negative sign of q is not excluded. This
result is of interest since a positive Q(Li') would be hard
to understand on the basis of any simple model of the
nucleus. ' '

Harris and MelkanoG' did not take into account the
eGect of the quadrupole moment induced' in the 1s
shell by the nuclear Q. The induced moment around the

«H. M. James, J. Chem. Phys. 2, 794 (1934).' R. D. Present, Phys. Rev. 80, 43 (1950).
6 R. Avery and C. H. Blanchard, Phys. Rev. 78, 704 (1950). .
~ R. M. Sternheimer, Phys. Rev. 80, 102 (1950);84, 244 (1951).

The latter paper will be referred to as I.
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nucleus (A), whose quadrupole coupling is considered,
has two effects: (1) it shields the other nucleus (8) and
the density connected with the 1s shell surrounding it
by the amount p„, where p„ is the ratio of the total
induced moment to Q; (2) it shields the valence electron
density by an amount less than p which depends on
the extent of the penetration of the valence electrons
inside the 1s shell. The purpose of this paper is to
include the e6ect of the induced moment as calculated
from the James and Heitler-London wave functions. For
the more accurate James wave function, the inclusion
of the induced moment gives q/2e= —0.00106aH '. The
value obtained for the Heitler-London function is
q/2e =0.00266an ' as compared to 0.00390an ' obtained
by Harris and Melkano6. '

q is smaller by a factor of
order 1—y„=0.76 than without shielding. However,
not much weight can be given to the positive sign of q
as obtained with the Heitler-London function, since this
function is presumably much less accurate than that
of James. The difference between the Heitler-London
and James results arises from the fact that the James
electron distribution is concentrated more heavily for
small angles 0~ with the internuclear axis at the expense
of the large values of Og. As a result the value of .

((3 cos'0~ —1)/2r~s) is greater, increasing the electronic
term. If in the actual wave function the electrons are on
the average closer to the nucleus than for the James
function, ((3 cos'8~ —1)/2r~s) will be further increased
and q is definitely negative.

Besides the determination of q for Li~, a further aim
of this paper is to show how the induced moment cor-
rection is calculated for the case of molecules, previous
calculations' having been restricted to the case of free
atoms. It is found that the correction to q can be
obtained by simply calculating the interaction of the
induced moment with the asymmetric (valence) part
of the electronic density in the molecule, in the same
way as for atoms.

II. CALCULATION OF THE INDUCED MOMENT

In order to obtain the correction to q for any of the
wave functions considered, it is necessary to obtain the
moment induced in the 1s shell. A complete proof that
the correction for q due to the polarizability of the 1s
shell is accurately given by the induced moment, will
be presented in Sec. III.

The induced moment was calculated using the
method described in I. For the unperturbed 1s function,
we took the same function as was used by James

u, = (8.82/42)r exp( —2.69r), (1)
where r is the distance from the nucleus and Np is r
times the 1s function normalized according to

f &4 P'll

Np'dr)& sinedo= 1,J, J,
where 8 is the angle subtended by the radius vector and
the axis of the quadrupole moment. The equation to
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Fro. 1. Induced quadrupole density Q; and d-wave perturbation
u1' of j.s function.

be solved is

(Hp —Ep)ui = —Hiup, (2)

where Hp and H~ are the unperturbed and the perturbed
part of the Hamiltonian, respectively; N~ is r times the
d wave perturbation. We have

IE'

Hp= — Vs+ Vp
2m

Hi = —o'Q(3 cos'e —1)/4r'

(3)

where Vp is the spherical potential. Up. was taken as
(—5.38/r) Rydbergs in order to be consistent with the
wave function, Eq. (1). Similarly the energy ~Eo1 is
taken as (2.69)'=7.24 ry. TJpon defining the radial
functions Np' and N~' as in I,

one obtains

up—=2—lup'(r),

ui Qui'(r)=—(3 cos'0 —1)/2&2,

d' 6 5 38 5 up'

+—— +7.24 Iut =
~ .

dr' rs r ) ra

(5)

(6)

(7)

can be shown by substitution to be

ut'=1 —
1 exp( —Zor)L1+ (Zo/3)rj. (9)

As shown in I, the induced moment due to both 1s
electrons, Q;(r)dr between r and r+dr is given by

Q,dr = (8/5) Qup'ut'r'dr. (10)

Figure 1 shows ui' together with Q, . The total induced

Equation (7) can be solved exactly because of the
special form of the unperturbed function ep' which can
be,written Irr exp( —Zpr), with a=8.82, Zp ——2.69. The
solution of

( d' 6 2Zp 5+ — +Zo )ut'=a exp( —Zor)/r (8)
E
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moment

Q;.= Q;dr

IIL THE QUADRUPOLE COUPLING FOR THE
JAMES VARIATIONAL FUNCTION

The variational wave function for the Li2 ground
state obtained by James' is

uo' dr=a' r' exp( 2Z—or)dr= 1, (12)

whence g= 2ZO'. Upon inserting this value in (11a) one
finds

Q' =2Q/(3Zo) (13)

For the present case, with Zo ——2.69, Q,r ——0.248Q. It
may be noted that the present values of Q; are quite
close to those obtained previously in I (see Table I)
using as the unperturbed 00 the 1s function obtained
by Fock and Petrashen. The corresponding value of
le, o/E@ l

for the atomic 2p state (0.166) is somewhat
smaller than Q;r/Q because of the penetration of the
2p function into the 1s shell.

Equation (13) shows that the contribution to the
induced moment from the 1s shell decreases as Z ' with
increasing atomic number Z. However, the number of
shells increases with Z; this effect compensates the
decrease for any one shell as given by Eq. (13). This
result is consistent with the behavior of the Fermi-
Thomas model according to which the total induced
moment for the entire atom is independent of Z.

Equation (7) assumes that the perturbing potential
is that of the unshielded nuclear moment Q. However,
as pointed out in I, the total perturbation includes a
contribution from the induced moment. In the present
case each 1s electron experiences the perturbation due to
the moment induced in the other 1s state, which
amounts to Q,/2. In order to include this effect, one
defines

r 00

y(r) = (1/Q) —~ Q;dr'+r2 Q;r' 2dr'

0 r

y is 0 at r=0 and (Q;r/Q) for large r.
The equation satisfied by the perturbation upon

inclusion of the shielding, is obtained from Eq. (7) by
replacing uo'/r' by (1—y/2)uo'/r2. The resulting equa-
tion was solved numerically for the perturbation, say
u~', using the procedure described in I [Eqs. (1)—(12)].
The effect of the —y/2 term was found to be very
small. The new induced moment Q,r calculated with
u& is 0.240Q, only 3 percent lower than the initial value.
The function y as obtained with the induced moment
Q,—= (8/5)Q ufo'r w2ill be used in the calculation of the
quadrupole coupling.

V. Pock and M. Petrashen, Physik. Z. Sowjetunion 8, 555
(&935).

can be obtained by integration using Eqs. (5), (9), and
(10):

Q,r =Qz'/(6ZO').

The value of ~ is determined by the requirement

%'z= (1/jVz&) P C „;~(P „;2+/„„~;), (15)
mn jk

where the C „;~ are constant coefficients, Xg is a nor-
malization constant and f „,2 is the following deter-
minant:

0-'= l(A ~)(1)(4.P)(2)(f-j~)(3)
&& (f:0)(4) (0 .'~) (5) (0 .'0) (6) I (16)

with f,=exp( —2X)X"pj; (17)

p~
——6

J

where dr2 6 indicates the space and spin coordinates of
electrons 2—6 and 02 is the spin of 1. From (16) and (18)
one finds for the density pff of the valence electrons,

Pjj= (1/&1) 2 2 &mnj2&m'n'j'2'
mngI m'n'2'I '

X[fmj fm'j'I na, n'2'+fntfn'k'I mj, m'j '

+fntcfm'j 'I mj, n'X'+ fmjfn'a'I nk, m'ji]&
where

(19)

(2o)

& gym:g'dy (20a)

J' .—I P e 2x) mpjdP'—(20b)

X and p, are elliptic coordinates; X= (r~+ rjj)//R,
j2= (r~ —rjj)/R, where r~ and r jj are the distances from
nucleus A and 8, respectively, R is the internuclear
distance; p2, and f~,' are 1s wave functions centered on
nucleus A and 8, respectively, whose normalization is
Q~,2d V= 1 (d V= volume element). n and P are the
eigenfunctions for spin up and down, respectively. The
notation Q2,n)(1) means that the coordinates of p~,n
are those of electron 1. In Eq. (16),P „;q is a d'etermin-
ant whose terms include all permutations of electrons
1—6.

Instead of the original wave function obtained by
James' which has 18 terms, Harris and Melkanoff' used
a function composed of 12 terms. It was shown by
MelkanofP that the difference in the values of q ob-
tained with the two wave functions is small. Thus, it
would not aGect the present considerations of the effect
of shielding on q. We have used the same function as
was used by Harris and Melkanoff, so that the sum in
Eq. (15) has 12 terms.

We must first calculate the total electron density p&
for the James function. p~ is given by
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Nz is obtained by integrating ~+z~'over all coordinates
(dri 0). One finds

1VJ'= P P CmnjoCm'n'j'o'[I mj mipI no nips
m, njlg mrn~jjjgi

+I' 0, pI'„,, „0.) (21)

Since fi, and f; are not orthogonal, there are terms
in p~ of the form Pi,f,. These terms contribute to the
electric held gradient at nucleus A. If p,f denotes the
part of p~ which is linear in Pi„one finds

I

psj= (4'is/&g) P P CmnjÃm'm'j'0'
~md mIn j a~

X(fm;Pm jI'no, n o+~n oI'no, m j)
+fno[JnioiI mj imp+ jmijlI mj

+fm'j'PmjI no, n'o'+~noI mj, 'on')

+f 'n[oI knI mj, m'j'+ImjI nk, m'j')) ~ (22)

wave function [Eq. (17)).The most important term of

q which arises from this substitution is associated with

Pi,'. The/i. ' terms of p~ can be written a/i, '. Harris has
given the value' c=2.0268; cubi

0 is replaced by cgiao,

which includes a term 2'&,fd. This term is the only one
of first order in the perturbation which has the
(3 cos'e~ —1) dependence. The contribution to q' is

hq = j~—2cgi,gd(3 cos'8"—1)/2r~'dV. (25)

It can be easily shown that Aq1 as given by Eq. (25)
can be expressed in terms of the function y associated
with the induced moment Q, :

f
hq'= — [y(3 cos'0~ —1)/2r~')

X( pfj— p—,j+p&)dV (2. 6)

The value of q can be calculated from these expres-
sions and from the value of the net charge concentrated
at nucleus 8.Because of the non-orthogonality, the coef-
ficient of fi," in p~ is not exactly 2, and there is also
a term linear in Pi, ' similar to p,j. Upon using Harris's
value for the net charge due to both terms, —1.973e,
one obtains +1.027e for the charge at 8 which repre-
sents nucleus 8 and the surrounding 1.s shell. Instead
of the quadrupole coupling q, we will frequently use q',
defined by q'—=q/2e, so that q' is the average of
(3 cos'0& —1)/2rz' over the charge density of the mole-
cule excluding nucleus A.

In order to obtain the shielding eGect without am-

biguity, it is best to consider this e6ect as a result of
the distortion of the 1s shell by the asymmetric poten-
tial caused by the other charges. The correction to q
is then due to the part of the distortion which behaves
as (3 cos'0~ —1). This picture is equivalent to the con-
sideration of the induced moment, as will now be shown.

The distortion of the 1s states is caused by the asym-
metric part of the potential of the charges other than
the is state being considered. The density of the type
p,j with spin up (or down) is one-half of the expression
given by Eq. (22). Hence, the density p' which produces
the distortion is

P Pjf opaj+P~) (23)

where ps is a charge+1. 027 concentrated at B.Because
of the potential produced by p', f&, is changed to

gi.=Pi.+4,+A+

In order to prove Eq. (26),' p' will be written

p poP0+plP1+poPo+ (27)

d' 6
+—+Vo—Eo

dr r
(30)

In the present case, Vo ———5.38/r, Eo —7.24 ry. Here-—
and in the following, the n's denote r times the corre-
sponding parts of the 1s wave function. If we let
uo=2 'uo' [see Eq. (5)), ui can be written

ui ——(—8m/542)ui'Po,

where ui' satisfies

(31)

where P&(8z) is the Legendre polynomial of order / and
the p' are functions of r~ only. The potential produced
by p2 is

Vo= (8n/5) —" or"dr'+r'j or' 'dr' Po
p r

= (8~/5)gPo, (28)

where o(r') =p~r". The funct—ion in the square bracket
is denoted by g. We note that a factor 2 arises from
Rydberg units and a factor 5 from the integration over
0~. The d wave perturbation I' of the 1s function is
determined by an equation similar to Eq. (4) of I:

3fui —(8m./5) gP, u——,,

where M denotes the operator

(32)MNy =glp.
The contribution to q' is given by

where P~ and Pg are the p and d wave perturbations,
respectively. These perturbations can be obtained by
solving the Schrodinger equation for the 1s function
including the potential resulting from p'.

The correction to q for the polarizability of the 1s ~q'= —4 ) (uoui/r')Podr sinede,
4

(33)

shell is obtained by replacing fi, by g&, in the James

9F 0 Harris thesis University og Tennessee 1953 (unpub- where the fact«4 ar»es from the f«t that the Per
lished). turbed density is 2Npg& for each is electron. Upon insert-
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ing Eq. (31) into (33) one obtains By partial integration L can be transformed to

32K' ~ No N1
dr. (34)

re —
$ ~r ~co

L— o up ui r"dr'+r' up'ui'r' 'dr' dr,

It will be shown that the same expression is obtained,
if the quadrupole energy is calculated as the interaction
of the induced moment with p'. The perturbation u~ due
to the nuclear Q is determined by

Mui =QPpup/r'.

Hence, N~ can be written

ui ——QP,u, '/v2,
where N~' satisfies

Mui' ——up'/r'.

(35)

(37)

In view of Eq. (36), the perturbed density due to ui is

Apz„p= 4upui= 2Qup ui Pp. (3g)

The potential due to Ap;„q is

f
V;na ——(8/5) Q — up'ui'r"dr'

. r p

00

+r' ~ up'ui'r' 'dr' Pp= (8/5)Qg'Pz, (39)
r

goo
g

P';„~p2I'2r dr singdg
~o &o

= (32 Q/25) g' d (40)

Since Eq. (40) equals Aq'Q, the two expressions for Aq',
Eqs. (34) and (40) are equivalent, provided that the
radial integrals are equal; these integrals will be denoted
by L and L, respectively. Using Eq. (37) one finds

where g' denotes the function in the square bracket.
The interaction of V;„z with p is given by

which equals L by virtue of Eqs. (39) and (40). Thus
the correction Aq' can be calculated as the interaction
of the induced moment with the charge outside the 1s
shell. The main advantage of this method, as compared
to the procedure in which n~ is calculated, is that the
distortion by the nuclear Q can be used with several
external distributions without the need of solving a
diGerential equation each time. Moreover, in the present
case, I& can be obtained analytically, whereas this is
not possible for z7~.

Aside from the term 2aji,gq, there are other shielding
terms which arise from the lack of orthogonality of

on f„,. These terms arise as follows from the
substitution of P&, for P„ in Eq. (16): (1) there are
additional terms in pz caused by the fact that f„ in

p,f [Eq. (22)) should be replaced by Pi, . The pertur-
bation in the density arising from f„ is p~&, defined as
the result of replacing f„by f„in the expression for p,~.
P„was calculated by solving a differential equation
similar to Eq. (29). The contribution to q' due to p„z
was found to be 10 'aH '. An even smaller contribu-
tion is obtained from pdf, defined as the result of re-
placing Pi, by Po in p,i. (2) The J;[Eq. (20b)) should
be calculated using Pi, instead of f„.This was found
to change J&o by 0.1 percent and would result in
similarly small changes for the other J;. It can be
concluded that the additional shielding terms just
described are negligible.

It follows from the preceding discussion that q' is
given by

q'= — I (1—y) [(3cos'8~ —1)/2r~')p~~d V

L= " (up'ui'/r')dr=, (M ') u'dru

ui'(Mui')dr, (41)

where the last step follows by partial integration. In
view of Eq. (32), Eq. (41) becomes

up'ui' — gr"dr'+rPJI or' 'dr' dr. (42)
0 r o r

+[1—y (E)) [(3cos'8~ —1)/2r~') pied V

+~V'-.~ (44)-

The last term in (44) represents a small exchange
contribution of the induced moment of the type which-
has been discussed in I. The expression for Aq,„,h' and
its evaluation, are given in the Appendix.

The integrals in Eq. (44) involving pff and p, i will be
denoted by Aff and A,f, respectively. A~f and A,f
were obtained by a double numerical integration. In
this work, the expressions for p~f and p,f given by
Harris' were used. These expressions were also checked
by means of Eqs. (19)—(22), using Harris's values' of
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the coefficients C „;~. The resulting expressions agree
satisfactorily with those of Harris.

pff and p,f were evaluated for the internuclear distance
5.63an for which James' calculated the variational
function, instead of the observed 8=5.05aH. Therefore,
the electronic term of q' will be slightly in error. Harris
and MelkanoG' have carried out calculations for a
Heitler-London wave function for various values of E,
from which they showed that for this wave function the
electronic part of q' is not sensitive to R. (In the range
from 8=4.71aH to 5.50aH, this part decreases by only
0.00013aH '.) For the term produced by pz which
varies more rapidly with E, the observed distance will

be used.
To obtain Aff and A,f, the radial integration was

carried out first for 11 angles 8~. The radial integral for
Aff is

Aff'"'(8~)= ~ (1 y)py—f(r~, 8g)/rgdr~ (45)

Since pff is 6nite at r~=0, a small region near r~ ——0
must be excluded. The integral was taken from
r~ ——0.2aH to ~. It can be easily shown that when the
angular integration is carried out for r~~0.2aH, the
contribution from this region to q' is negligible (of the
order 10 ba& '). The same considerations apply to A,~.
The 11 values of 8~ were taken at intervals of 11.25'
for 0'&8~ &45' and at intervals of 22.5' for 8~ &45'.

The results are

A ff—0.00748aH —', A,f———0.00087aH —'.

The term due to p& is given by

q~'= (0.757) (1.027)/E'= 0.00603aa '. (46)

The factor 1.027 is due to the charge 1.027e associated
with nucleus 8 and its surrounding 1s shell; the factor
0.757 represents the shielding. "As shown in the Ap-
pendix hq, „,h' ———0.00048cH ' so that the value of q'

including shielding is qJ = —0.00106aH '.
As a check on the calculations, q' was evaluated

without shielding by setting y=0 in Eq. (44). The
resulting values of the integrals are Aff, p=0.00984,
A f, p

——0.00096aH '. Here and in the following, the
subscript 0 indicates that shielding is not included.
The nuclear term is 1.027/R'=0. 00797an ', so that

qz, p'= —0.00091mB—'. This value is in eery good agree-
ment with that obtained by Harris, ' 1/E' —0.00868
= —0.00092uH '. Although the agreement 'to 10 ~aH '
is fortuitous, it indicates that the integration procedure
used is adequate.

As was found previously by Harris and MelkanoG, '
the small value of qg' makes it impossible to obtain

with certainty the actual sign of the electric 6eld.
gradient. We note that Aff is reduced by shielding in
the ratio 0.760 which is =(1—Q,r/Q). The reason
this ratio is obtained is that pff is almost completely
external to the 1s shell, so that the induced moment
has maximum eGectiveness in shielding the nucleus. The
p,f term is reduced by only a factor 0.92. Here the effect
of penetration is greater and, in any case, the minimum
ratio is 1—Q,r/2Q=0. 878. It is seen that the inclusion
of shielding does not greatly aGect the total value of qz'
for the James wave function, although the individual
terms are changed appreciably. The reason is that the
important terms of qq', namely q~' and Aff, are reduced
by the same factor ( =0.76) so that one expects
qJ 0.76qJ, Q Since qJ; b' is close to zero, the difference
0.24qz, p' is very small.

The value of qq' would give Q (Li') = —12X10 "cm'.
Interpolation from the curve of quadrupole moments
published by Townes, Foley, and Low" gives Q(Li7) =
—1 6)&10 "cm'. It should be emphasized that a rela-
tively small change of the valence density would lead
to a value of q' which gives Q of the order of the pre-
dictions of the nuclear shell model. Along any line
8~ ——constant, pff increases rapidly with increasing r~
near nucleus A. Because of the factor 1/r~', the elec-
tronic part of q' would be increased considerably if the
actual density would rise faster near A than pg. Thus,
if the valence density p~f were changed to a density pff
such that' pff (rg, 8z) = 1.2 p~~ (I;2r~, 8g), A fr would be
increased to 1.2' Aff and q' would be —0.0065uH '
leading to Q= —2.0X10 "cm'. Moreover, A~f is very
sensitive to changes of the angular dependence of the
density. If pff is increased by a factor 1.15 at 8& ——0',
1.10 at 22.5', 1.05 at 45', and decreased by a factor 0.80
for 8~ ~90' (to ensure normalization), q' becomes
—0.00354aH ', so that Q= —3.6X10 " cm' If the
actual valence density should be both more internal
and more peaked near the internuclear axis, in the
manner just described, one 6nds q' = —0.0107aH 3

leading to Q= —1.2X10 " cm'. These considerations
show that, although the value of q' obtained from the
James wave function is unlikely, it is quite possible
that the James wave function is still accurate enough
for many purposes, since a small change of the wave
function results in a considerable change of 1/q'.

IV. THE QUADRUPOLE COUPLING FOR THE
HEITLER-LONDON AND COULSON-DUNCANSON

WAVE FUNCTIONS

The calculation of the shielding eGect has been carried
out for the Heitler-London wave function for Li2 dis-

cussed by James. 4 This function has also been con-
sidered by Harris and MelkanoG' and is given by

' The factor 0.757 rather than 0.760 is used because the is
term of pg is 2.027 QIp, so that the induced moment is increased to
(0.240) X (2.027/2) Q.

+HL= (1/+HL ) Q'ub+4'ba)y

"Townes, Foley, and Low, Phys. Rev. 76, 1415 (1949)."The factor 1.2' is required for normalization.

(47)
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where 1VHz, is a normalization factor, P„z is the deter-
minant

4. = l(4. )(1)(4.P)(2)(~)(3)(bl0)(4)
X(4.' )(5)Q.'p)(6)l, (48)

and fq, differs from P,b by the interchange of a and b.
Here,

where Pi, ' is the 1s function centered on B. The quad-
rupole coupling is given by

q'= —0.894 ~ (1—7)[(3cos'8~ —1)/2r~'$b'd V

u= nr—~ exp( —0.65r~),

b =nrzi e—xp( —0.65riz),

(49)

(50) +0.273 (1—y/2) [(3cos'8~ —1)/2r~ggi, bd V

where
p„= (1/1Vzir, )[a'Igt, +b'I +2abI, pj,

~aa Ibb +1 Ja Jb )

I,b= E2—2J,Jb,

1Vz= I abdV,

(51)

(51a)

are valence functions centered on nuclei A and 8, re-
spectively; e is a normalization constant to be deter-
mined below. In Eq. (48) the determinant includes all
permutations of electrons 1—6,

The expressions for the density for the James wave
function can be used here. Equation (47) corresponds
to a single term of O'J in Eq. (15) with f; and f„z
replaced by u and b, respectively. The valence density
is given by

+0.756eg/E'. (57)

The integrals appearing in q' will be denoted by A»,
A b, and A&, b, respectively; in the last term, e& is the
effective charge associated with nucleus 8 and its
surrounding 1s shell. It is given by

ee =3—2.035+0.342' +0.273I~= 1.035. (58)

Abb, A b, and A&, , b were evaluated by the same pro-
cedure as the A's of the James function. However, for
the angles 8~&45' an interval of 5.63', rather than
11.25', was used because the A's have a fairly pro-
nounced variation in this region. The reason is that
the closest distance of the line 8~=11.25' to nucleus 8
is ~aH, and b(rs) has a maximum at r~=1/0. 65
= 1.54aH. As a result, the radial integral A»("'

Azb'"i (0&)=)" b'(rz, 0&)/rzdr~, (59)

By integrating over all coordinates one finds that %~1,
is given by

1Vzrr, =I '+I,g'. (52)

Similarly to Eq. (22), one obtains for the density due
to the overlap of Pi, with the valence functions,

Pew= (2418/IV HI ){e[IZbb+ItAb)
+b)JzI +Ij,b j). (53)

The 1s density surrounding nucleus A is given by

-=V.P' )[I-(&+I-)+I.(1V+I. )3 (54)

The constant n in (49) and (50) was so chosen that
1VP+1V2z=1. In order to obtain n, we note that a
value n =0.111 would give 1Vi——1 from Eq. (51a). With
this normalization one obtains E&=0.586 by analytic
integration. Hence

n=0.111[1+(0.586)'i !=0.103. (55)
The resulting values of the integrals are: Xj=0.863,
E2 0+506) I~~ Oe835) I~b 0 487) J~ 0 I 156) Jb 0 0625 e

In all of these calculations the actual E.=5.05aH is
used. With these values of the constants, the electronic
density is

pzzz. 2.035fiP—0.342gz, a— 20——3P7, ib
+0.894(a'+ b')+1.042ab 0.342/i, 'b—

0.273/i, 'a+ 2.035/i, ", (56)

has a maximum at Og =11.25'; here 5 is a small radius
introduced to give a convergent integral. A similar
result holds for the integral over ab. The results of the
integration are: Abb=0. 00276aH ', A~b=0.00123aH ',
A&, b.

——0.00121uH '. The resulting value of q~i' as ob-
tained from Eqs. (57) and (58) is qHz. '=0.00266uH '.

In order to check the numerical integrations, the
value of q' without shielding was also calculated. By
setting y=0 in Eq. (57), one finds A», 0 ——0.00357,
A,b 0——0.00159, and Ai, , b, 0=0.00128aH '. These values
of the A's are in satisfactory agreement with those of
Harris and Melkanoff, ' ' who obtain 0.00350, 0.00154,
and 0.00141, respectively. The resulting value of q' is
q~, ,'= 0.00354~I-3.

The fact that q~~' is positive cannot be given too
much weight because the Heitler-London function is
only very approximate. The reason for the difference
of the signs of q~i.

' and qJ' is that the electronic part
of q', q, i', is smaller for the Heitler-London function.
By plotting both p& and p~i. as a function of r& for
various Og, it was found that part of the difference of
the q, i' arises from the fact that pg is more peaked
around 0~ ——0' than p~i.

The value of q' obtained with the Bartlett-Furry"
function, q~p', can be obtained from the preceding

' J. H. Bartlett, Jr., and W. H. Furry, Phys. Rev. 38, 1615
(i93&).
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i',AiP2, Bd V= 0 506, . (63)

so that NcD = 1.506. Because ($2,A+$2, B) is orthogonal
on fi„no cross terms involving Pi, appear in q' which
is given by

results by setting J,=Jb——0. This procedure corre-
sponds to the fact that the Bartlett-Furry function does
not include the inner shells. One thus Ands

qBr' ——0.760/R' —1ViA pp
—2Ã2A, p=0.00227an '. (60)

Coulson and Duncanson" have obtained a molecular
orbital type wave function for the Li2 molecule in which
the state of the valence electrons is represented by

+CD (2A CD) [$2@A(1)+4'2gB(1)j
XB ~ (2)+A. (2)lr (1)P(2)—I8(1) (2)j, (61)

where XcD is a normalization constant and $2,A is a 2s
function centered on A, which is given by

p„A 22C——D(rA 1.0—1) exp( 0 8—1rA). , (62)

IP28B is obtained from tP»A by replacing rA by rB .
, 22cD

is a normalization constant chosen as eq~=0.301, so
that J"$2,A2d V= 1. By analytic integration" one finds

can be calculated from the perturbation ui of the is
function by the nuclear Q. The overlap of Ni with the
valence function produces a term Qhq, ,h' in the elec-
trostatic energy from which Aq,„,h' is obtained.

If one would use the actual James wave function for
the valence electrons, the calculation of Aq, ,h' would
be very complicated. However, since the e6ect is quite
small we make the approximation of replacing +q by
the following wave function for the valence electrons

where
+.(1, 2)=~.(1)~.(2),

4.= ( e/2)'.

(A1)

(A2)

Here pff and P„are regarded as functions of rA and 8A.

C, is a product wave function which gives the same
valence density as the James function. The use of 4„
is not expected to introduce any serious error and should
give the correct order of magnitude of the exchange
eGect.

g„, as defined by Eq. (A2), is a superposition of s, p,
d, f, ~ waves centered at A. We write

y.=y.Qp+y Hi+a.Q2+", (A3)

where Qi=[(21+1)/2)'Pi. P„P~, and @A are, respec-
tively, the radial s, p, and d, functions, and are obtained
from

qcD' =0.760/R' —(1/XcD)
, A(rA) J 4 ep, 1, 2 sin8Ad8A (A4)

X (1—y) [(3 cos'8A —1)/2rA )\$2 B'dV

+2. (1—y) [(3cos'8A —1)/2rA')$2, A/2 BdV . (64)

By numerical integration, the. integrals appearing in

(64) were found to have the values 0.00367 and
0.00127aH ', respectively. The result for q' is

qcD' ——0.760/R' —0.00412=0.00178aH—'. (65)

Concerning the positive sign of qgL)', the same remark
applies as for the Heitler-London result.

We would like to thank Drs. E. G. Harris and M. A.
Melkano8 for sending us their results in advance of
publication. We are also indebted to Dr. H. S. Snyder
for several helpful discussions. ,

APPENDIX. EFFECT OF EXCHANGE ON THE
SHIELDING CORRECTION

The exchange contribution to the shielding correc-
tionv arises from the fact that the field acting on the 1s
electrons includes a term arising from the overlap 6f 1s
with the valence wave function with parallel spin. The
perturbation of the is function caused by this field

contributes to q'. The same treatment as was given
above [Eqs. (26)—(43)j shows that the change of q'

'4 C. A. Coulson and W. E. Duncanson, Proc. Roy. Soc,
{London) A181, 378 {1943).

"C.A. Coulson, Proc. Cambridge Phil. Soc. 38, 210 (1942).

where the subscripts 0, 1, 2 correspond to s, p, d,
respectively. The f and higher terms of @„make a
negligible contribution to the exchange eGect and will
be disregarded. P„P„, and @q were obtained by nu-
merical integration for about 10 radii in the interval
0 &rA &3aH. For larger rA, fi, and ei' are very small,
so that the overlap with p„can be neglected.

It is convenient to use functions normalized to a
, volume element r~'dr~ sin8~d0~. We write

@„=—(2~) *'-y„= (B,ep+ p,Hi+ BAQ2)/rA, (A5)

so that B„v~, and 2|A are (22r)&rA times p„p~, and pA,

respectively.
Consider the exchange of P„'(1) with the 1s electron

of parallel spin which will be labeled 2=3. The corre-
sponding electron density is

1 Np QQi P2
~ip=- + (1)4."(«)

2 v2r v2r

1 Np Ni P2+- + . (3)~."(1)
2 U2r V2r

Np' QNi'P2~
+ &.

' (1)
r V2r

Bp QZAi P2
X — + P,' (3). (A6)

V2r V2r
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The last term gives the exchange eGect. Upon using
Eq. (A5) for P„' this term becomes

pexch=
up QuyiPp v80~p+vvO~y+vgO~p

+
' "

(1)
42r %2r r

uo' Qui'Pp vseo+v ei+vaep
X + (3) (A7)

( e
PpO~p sm8id8i iPp(3))

= —(2/5&)QVi'(rp)Pp(3), (A9)

where V&' is the function in the square bracket; r; and
8, denote r and 8 for electron i. Vi(3) acts on the fol-

lowing density

This gives
pl (3)= 2 'up v ep/r 4 . (A10)

AEi t V&(3)pz'(3)r——podrp sin8pd8,
Jo ao

= —(2/5:) V, 'u, ",dr,
J0

(A11)

p h gives rise to the following terms AE; in the electro-
static energy: (1) B,Ei arising from the Pp part of the
potential of the density (Qui'vs&Op)(1) acting on
the term (up'v, O'p) (3); (2) AEp arising from the Pi po-
tential of (Qu&'P&v„O&) (1) acting on (up'v„O&) (3); (3)
BE3 arising from the P& potential of (Quj'Ppv, Op) (1)
acting on (uo'40p)(3); (4) AE4 arising from the P&

potential of (Qui'PpvqOp) (1) acting on (uo'vqO~p)(3). In
addition, there are four. terms which are obtained from
the preceding by interchanging electrons 1 and 3.

In order to obtain AE& one writes the density with
the coordinates (1),

pj, (1)= —(2 '* Qug' vg PpO~ o/r') (1). (A8)

The relevant term in the potential 2/r» is 2' (1)Pp (3)/r),
where r& is the greater of ri and r3. The potential due to
pi(1) is

"3 p 00

Vy(3) ——. 2~Q — uy vddry+ uy v~y dry
1

ro Jo

Equation (A7) shows that p, ,h has a term p, '(1)pi(3)
which gives the same electrostatic energy as pi(1)pi'(3).
The contribution to hq, ,g' from both terms is

hqi'= 26Ei/Q= —(4/5~) Vx'uo'v, drp .(A12)
J0

The contributions Aq,
' of the other terms 268; can

be found in the same manner as Aqi'. The results are
as follows:

d q
'= —(8/15) ) V 'up'v„dr,

0

(A13)

where

Vp'(r) = (1/ro) ' u&'v„r'dr'+r
J0 ~i„

Ni'e„r' 'dr', (A14)

&qp'= —(4/5&) J
Vp'up'vgdr,

0

(A15)

Vp'(r) = r ' ui'v, r"dr'+ro iu' rv' Pdr'

0 r
(A16)

hq4' ———(8/35) V4'N0'vgdr, (A17)

V4'(r) = r ' ug'vier"dr'+r'
~00

Ni'e~'-'dr'. (A18)

If the integrals appearing in Eqs. (A12), (A13),
(A15), and (A17) are denoted by E&, E&, Ep, and E4,
respectively, Aq,„,h' can be written

Aq. .h'= —2[(4/5&)Eg+ (8/15)Ep
+ (4/5-:)E,+ (8/35)E, ), (A19)

where the factor 2 takes into account that both valence
electrons contribute to the exchange.

The E;were evaluated by numerical integration over
and vg. The values are: Ei= 11.66X10-',

&2=1.87X10 ', E3=573X10—') &4=0.25X10 ', so
that hq,„,g'= —0.00048aH '.


