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Slight deviations of the coefficient of the linear Zeeman term
from the elementary Lande value arise from the following effects:
(u) small departures from Russell-Saunders (R-S) coupling,
(b) the motion of the nucleus, (c) relativity corrections, (d) inter-
play between the magnetic field and various kinds of magnetic
interactions within the atom, and (e) the Schwinger electro-
dynamical corrections, In the present paper an effort is made
to estimate the magnitude of the effects (o), (b), (c), (d) with the
goal of examining whether the residual discrepancy between
Rawson and Beringer's measurements on oxygen and the ideal
Lande value is in accord with Schwinger's formula for (e),

The effect (d) may be further divided into modulation by the
magnetic field, or Larmor precession, of (d j ) ordinary spin-orbit,
(ds) spin-other-orbit, and (dq) orbit-orbit interaction. The theory
for c and d& has already been developed by Margenau and Breit,
and d.„ to a certain extent by Lamb, while that for b was first

given by Phillips. The corrections (d) can. in each case be obtained
by substituting p+eA/c for p in the corresponding magnetic
interaction terms in the Pauli two-component Hamiltonian func-
tion, but can also be derived more fundamentally from the
four-component Dirac equation. From the standpoint of the
Dirac equation, the segregation of (c) from other magnetic effects
is rather artiffcial, but (c) has the simple physical interpretation
that it is tantamount to substituting the transverse mass for the
rest mass in the ordinary Zeeman energy.

The numerical estimate of effects (b)—(d) requires knowing the
wave functions in some detail. Certain rather crude approxima-
tions are made in the present paper, including omission of exchange
terms in some places. However, the agreement between the calcu-
lated and observed Zeeman coe%cients after all the corrections
(a—e) are included is gratifying.

INTRODUCTION

Y using quantum electrodynamics, Schwinger' has
shown that the gyromagnetic ratio g, of the elec-

tronic spin is g, =2(1+n/2~), where n is the fine
structure constant, rather than exactly 2, as prescribed

by the one-particle Dirac theory. A higher-order ap-
proximation calculated by Karplus and KrolP gives
for g, the value

g, =2~ &+—2.973—~=2X&.OO&WS.

These theoretical results have stimulated several very
accurate measurements' of atomic gyromagnetic ratios
or Lande factors, with microwave or molecular beam
techniques to measure the Zeeman splittings of an
atomic multiplet in an applied magnetic field.

From the observed values of these Lande factors one
should be able in principle to deduce g, by a straight-
forward calculation if the type of vector coupling pre-
vailing in the atom is known. In practice this problem
is complicated by the necessity of applying to the value
of g, obtained in this way a certain number of correc-
tions, which take into account relativistic and diamag-
netic eGects, the departures from a simple vector
coupling scheme, etc. The only cases considered so far
have been those of a single electron outside of closed
shells. The recent measurement by Rawson and 8cr-
inger' of the microwave Zeeman effect in atomic
oxygen, which has four 2p electrons outside of closed
shells, requires a more comprehensive treatment. The
present article constitutes an attempt at such a treat-
ment.

' J. Schwinger, Phys. Rev. 73, 416 (1947).' R. Karplus and N. M. Kroll, Phys, Rev. 77, 536 (1950).
3 P. Kusch and A. M. Foley, Phys. Rev. 74, 250 (1948);Koenig,

Prodell, and Kusch, Phys. Rev. 88, 191 (1952).
4 E. B. Rawson and R. Beringer, Phys. Rev. 88, 677 (1952).
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FIG. 1. I i1ergy levels of atomic oxygen in a magnetic Geld.

THE MICROWAVE ZEEMAN EFFECT IN ATOMIC
OXYGEN

The ground state of atomic oxygen is 2p'. Russell-
Saunders coupling is known to predominate in oxygen.
From the configuration 2p' the spectral terms 'P, 'D, 'S
can be constructed. The two singlets 'D, '5 are, respec-
tively, 15 867.7 and 33 792.4 wave numbers above the
ground multiplet 3P2. The levels 'P'1 and 'P'0 are sepa-
rated from 'P2 by 158.5 and 226.5 wave numbers,
respectively.

An applied magnetic field splits V'& and 3P2 into 3
and 5 magnetic 'sublevels, respectively. Rawson and
Beringer have been able to measure the energies of the
transitions g, b, c, d, e, f depicted in Fig. 1, or rather
the magnetic fields at which resonances occur for a
fixed oscillator frequency v. These fields B, II&, ~ ~ ~, H~
were measured in relative magnitude by the frequencies

f„fq, etc. of the proton resonance in these fields. An
absolute calibration could be made from the known
value of the proton moment in Bohr magnetons, g„/2.

The fields used are not infinitely small and incipient
Paschen-Back effect due to the off-diagonal . matrix
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elements of the Zeeman Hamiltonian between the
diR'erent multiplets 'P2, 'P't, 'Po cannot be disregarded.
Solving the secular equations, we find that the fields
H, H&, etc., are given by the following approximate
equations:

hv= gipH, +CiH, '= g,pHb CiH—b'-,

hv =gggH, +C2H, 2 = g2pHg C2Hg—',

(2)

(3)

g pH, =hf„g pHb hfb, etc.——

From (2) and (5) we get

v (1+f'/fb'i
g =g,—

ff. E 1+f.gb &

(5)

In the same way from (3), (4), and (5), two independent
values are obtained for' g2.

It is important to notice that in (6) the Paschen-Back
quadratic corrections have been eliminated experi-
mentally rather than calculated. We can, however,
calculate them by second-order perturbation theory
from the known multiplet splittings. It is best to express
them in terms of differences H —Hb, H,—Hf, H~ —H„
as is done in Table I. We see that the assumption of
Russell-Saunders coupling for the calculation of the
oB-diagonal matrix elements works very well. (A calcu-
lation by Rawson and Beringer' giving 17.2 gauss for
H~ —H and indicating a very strong departure from
R-S coupling was the result of an arithmetical error. )

Two other points can be made with respect to terms
quadratic in H: (u) it follows from the agreement
between the two columns of Table I that all other
corrective terms in H', such as the quadratic diamag-
netic corrections, must be small; (h) even if they were
not small, all those corrections would be eliminated by
the experimental procedure as far as determination of
gi and g~ are concerned.

Only corrections linear in H need to concern us.
The experimental results of Rawson and Beringer'

are

gi= 1.500971 g2= 1.500905

with an uncertainty of a few parts in a million,

(7)

hv= gpHg+CbH j=g2pH, —CbH, '. (4)

In these formulas P is the Bohr magneton; gi and g2
the Lande factors of the multiplets 'P~ and 'P2, Ci, C2,
and C3 are constants which depend on the distances
between the different 'P multiplets.

These formulas are very good approximations, for it
is easily shown that terms .of the third order in H are
missing if Russell-Saunders coupling is assumed in the
calculation of off-diagonal matrix elements, and fourth-
order terms are completely negligible (smaller than one
part in a million of the linear terms).

These equations have to be supplemented by the
proton resonance conditions:

TABLE I. Differences between the values of magnetic fields at
resonance, due to second-order e6'ects.

Hb —H
Hd, —H,
Hf —EI,

Measured

10.20 gauss
0.581 gauss
1.744 gauss

Calculated

10.22
0.580
1.742

gi = g2
——1.501145. (8)

The discrepancy between (7) and (8) is 174&&10 for gi
and 240&10 ' for g~, which is much larger than the
experimental error. These are the discrepancies which
have to be explained away through the different correc-
tions previously mentioned.

The problem of calculating these corrections can be
formulated in general terms as follows: According to
first-order perturbation theory, we describe the linear
change in the energy of an atom, induced by an applied
field H, as, the expectation value of a certain operator Z
(for Zeeman) taken over the unperturbed wave func-
tion f. Errors can result either from an incorrect
choice of iP or an incorrect Z. In the approximate theory
which gave (8), we took Z to be given by PH (L+g,s)
and P to be an eigenstate of I. and S. Neither of these
assumptions is quite correct and we shall examine them
in turn.

CORRECTIONS CAUSED BY DEPARTURE FROM
R-S COUPLING (WRONG Q)

Because of magnetic interactions involving the spin,
vis. spin-orbit, spin-other-orbit, and spin-spin inter-
actions, 1.and S are not perfectly good quantum num-
bers. (Magnetic orbit-orbit interactions, however, do
not affect R-S coupling. ) Several observations are in
order at this juncture.

(a) In the case of the 'I'0 and 'I'2 terms, perturba-
tions by, respectively, the states '5 and 'D also belong-
ing to the configuration 2p' can cause deviations from
Russell-Saunders coupling even if configuration inter-
action is neglected. In the case of the 'P~ term, however,
this is not the case, and here it is customarily said' that
the departures from Russell-Saunders coupling are due
to combination of magnetic (mainly spin-orbit) inter-
actions and configuration coupling through electrostatic
repulsion between electrons —for instance, a (2p)''P
term .may through configuration interaction get an
admixture of (2p)'3p 'I", and if 'I" is not a pure R-S
state, neither will be 'P'. lt is, however, preferable to
get the configuration interaction completely out of the
picture by disregarding the central field approximation

' See, for instance, M. Phillips, Phys. Rev. 88, 202 (1952).

On the other hand the theory for R-S coupling gives

gi=g~= 2(g&+gs)i

where g& is the orbital gyromagnetic ratio. If we take g&

equal to unity and g, as given by (1), we find
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from which the configuration coupling idea stems.
Before spin-dependent terms are introduced L and S
are good quantum numbers even though the "configura-
tion quantum numbers" relating to individual electrons
are not rigorous. For the ground state of oxygen, for
instance, it is a very good approximation to say that it
is 'P, a much poorer one to say that it is (2p') 'P. The
ideal g value is impaired only insofar as spin-dependent
magnetic terms blend states of diferent L, S and so
cause slight deviations from Russell-Saunders coupling.

(b) When such a blending is included, the wave func-
tion of the atom instead of being P(1., S, J) becomes of
the form

~=L~.(L, S, J)+~'(I', S', J)J(1+-')-' (9)

be coupled to 'P~ or 'P2 through magnetic interactions,
belong to diferent configurations (this expression has
to be taken with certain reservations; the configuration
is a much worse quantum number in oxygen than
I. or S) and are about 10' wave numbers away from 'P.
The nearest is 2s'2P'(4S)3P sP, which is 86600 wave
numbers above 'P. Although we do not know the magni-
tude of the matrix element of the magnetic interaction
between 'Pi and 3p 'Pi, there seems to be no good
reason why it should be significantly larger than the
one between 'Pi and 'Di (the opposite is much more
likely); and, the energy difference 3P 'Pi 'Pi bei—ng
about 6 times larger than 'D—'PJ, we shall expect the
corresponding correction for g~ to be smaller than 10 '
and disregard it.

The admixture coefficient n will be of the order of magni-
tude OR/hE, where OR represents the magnetic inter-
actions (mainly spin-orbit) and DP. is the distance
between the different R-S terms mixed together. Since
the Zeeman Hamiltonian Z=PH(g~L„+g, S,) commutes
with 1. and S, the expectation value (Z)=(Q(Z(f),
where f is defined by (9), will differ from Q s (Z(it s) only
through terms quadratic in n. The correction will thus
be small.

(c) The departure from the interval rule should not
be considered as a. measure of the departure from R-5
coupling. In oxygen the ratio ('P&—'Pi)/('Pi —'Ps) has
the value 158.5/68 = 2.33 instead of 2 exactly as required
by Lande's rule. But as shown by Aller, UGord, and
Van Vleck' this is due mainly to the fact that the
magnetic interactions which produce the Zeeman split-
tings are not only the spin-orbit coupling but also the
spin-other-orbit and spin-spin couplings. The first-order
contributions of the latter two to the intervals have no
reason to, and in fact do not obey Lande's rule. The
difference between 2.33 and 2.00 is in no way a measure
of the admixture n from wave functions with diferent
L and S.

The term most likely to cause any perturbation in
oxygen is 'Ds perturbing 'Ps. If we call $ the spin-orbit
coupling coeKcient of a 2p electron, the main part of
the admixture n of 'D2 in 'P~ is

CORRECTION TO THE ORBITAL GYROMAGNETIC
RATIO CAUSED BY MOTION OF NUCLEUS

Because the nucleus has a finite rather than infinite
mass, the orbital gyromagnetic ratio is not exactly
unity. The general theory of the eGect of the motion of
the nucleus on the orbital g factor has been developed
by Phillips. We must make the application to the
particular case of oxygen, which is somewhat more
complicated than the explicit examples treated in her
paper. The theory developed on the first page of her
article shows that the orbital gyromagnetic factor for a
neutral atom is, in general,

( tii ) 15

u)
where 3f is the mass of the nucleus, and C is the wave
function of the atom, inclusive of spin but exclusive of
the trivial factor which depends only on the coordinates
of the center of gravity and which represents a uniform
translational motion of the whole atom. 8, is the 2 com-
ponent of the vector

B=g;(;b;;, (12)

b;,=@-'Lr;Xp,+r;X p,).
with

The quantity 8, is readily shown to be proportional in
R-S coupling to the component L, of orbital angular
momentum in the direction of the applied field, and so
the g factor given in (11) is independent of how the
atom is oriented, as must be the case if the expression is
meaningful.

In Russell-Saunders coupling the total spin S is a
good quantum number and we can assume C to be also
an eigenstate of S and S,. We can expand C into a sum
of Slater determinants C =Pn~~, where D„= (ai, as,

, a,) and the a; are one-electron states (spin in-

cluded);
(C(B(C)=g, ~ a*a (D (B(D ) (13)

In order to facilitate the estimate of (C (8(C), we
make the restrictive assumption that all the occupied

' M. Phillips, Phys. Rev. 76, 1803 (1949),

-= (2)-:~/(~ —&.).
For the state f= ('Ps+n'Ds) (1+n') '*, J,=2, we find:

2g.=«(g ~.+g.S.(~)=(1+-) (g+g.+2--g)
—Z~+g —n (g —gi)

gs (gi+g )—

All other excited states in atomic oxygen which might

Aller, UGord, and Van Vleck, Astrophys. J. 109, 42 (1949).
7R. H. Garstang, Month1y Notices Roy. Astron. Soc. 111,

j.is (1951).

This gives a correction Dg, = —isn' to the value (8).
If we take f= 146.6 (Garstang), 7 ED Ei ——15 800 cm ', —
we find

~g2 —2IX10 ' (1o)
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&&.I&ID.& = —&', (~'(1)~ (»lb»l~ (1)~'(2)&

where a; is an occupied one-electron state outside of
closed shells and a; is inside a closed shell and corre-
sponds to the same spin as a,. The existence of (14) is a
consequence of the Pauli principle which establishes a
correlation between electrons of the same spin.

If the expansion of the wave function in Slater de-
terminants is known, the expression (13) can forthwith
be evaluated.

We consider now the case of atomic oxygen with the
electronic configuration (2p)', but all the formulas

apply to the case of any atom having only s and p
electrons in closed shells, and outside of closed shells

p electrons only, that is, to any atom from lithium to
fluorine and from aluminum to chlorine.

In that case it is easy to show that &B&,/L, is inde-

pendent of the way in which the p electrons outside of
the closed shells are coupled together (as long as it
is Russell-Saunders coupling), and this quantity is

given by

(B&,/L, = —P„&ns(1'), P„(2) I (his). IP+(2), Ns(1)&. (15)

In (15), p+ is the orbital state of a p electron with
orbital momentum f,=+1, ns is the orbital state of an
s electron with principal quantum number e, and the
summation is over occupied orbital s states, each orbital
state being counted once only. If one uses the definition

(12) of b;; and the fact that for a nonrelativistic elec-
tron p, =mv =mi, the following alternative expressions
can be given for (15):

&B& /L*= —(4/&)Z- &Ns I*IP+&&P+ I P. l ~s&, (16)

(B&./L. = —(2/&) 2- {&p+I
~

I ~s&&~e
I P. I P+&

—&p+lyl~s&&~~l p*l p+&}, (»)

&B&./L, = —'(4m@s)P. &~el. lP,&

x&p Iyles&(E„—E ). (18)

In (18), E„and B„,are the total energies of the p and rss

one-electron states, respectively.
If we call f„(r) and g(r) the radial parts of the wave

functions ms and p+, respectively, (16) becomes

one-electron states outside of closed shells have the
same parity. This is generally the case for atoms in
their ground state.

It is then easy to show, by the application of the
rules of calculation of Slater determinants, that because
of parity and symmetry considerations, (12) reduces to

&C I&l@&.=Kin, l'&D. I~ID.&., (14)

In the same way (18) yields

6M

The Hartree wave functions and (20) give J'fsgr'dr
= 1.15 (by numerical integration or use of Lowdin's"
analytical representation) and E~ Zs, = 1.22—, thus
leading to

(B),/L, = —ss (1.16)'(1.22) = —1.11.

Believing the Hartree functions. to be a less crude
approximation for this problem than the Slater wave
functions, we henceforth use the formula:

gr. 1+0.11(m/M) for oxygen. (21)

RELATIVISTIC AND DIAMAGNETIC CORRECTIONS

The general problem of the relativistic and diamag-
netic corrections in a complex atom like oxygen is
somewhat complicated, and it is instructive to review
first the previous work on the subject.

jRelu]iris/ic correc/ion. —Breit" and Margenau, " both
of Yale University, have calculated the magnetic mo-
ment of a Dirac electron in a central field V(r) and
derived the correction to be applied to the result of
the nonrelativistic calculation which uses as a non-
relativistic Zeeman Hamiltonian:

Zs ——PH. (I+2s). (22)

For brevity we shall refer to it as the Breit-Margenau
or Yale correction. In these calculations the magnetic
field is taken into account by replacing y by p+eA/c in
the relativistic Dirac Hamiltonian,

K=c(p n)+pmcs+ V.
9 J. C. Slater, Phys. Rev. 36, 57 (1930).' Hartree, Hartree, and Swirles, Trans. Roy. Soc. (London)

A238, 229 (1939);see also the empirical analytical representation
of the Hartree results by P. O. Lowdin, Phys. Rev. 90, 120 (1953)."G. Breit, Nature 122, 649 (1928).

"H. Margenan', Phys. Rev. 57, 383 (1940).

&B)/L = lZ—- I
' f-g"~ I (E. &-—), (2o)

E s )
where distances and energies are measured in atomic
units.

Since E„—E„,)0, (20) shows that (B),/L, is negative
and therefore according to (11)the orbital gyromagnetic
factor is larger than 1—(m/M).

In order to estimate gl. numerically for oxygen, we
have evaluated (19) by using Slater'ss analytical wave
functions, and (20) by using Hartree'sm self-consistent
wave functions for oxygen. In both cases it is found that
the contribution of the is orbital is negligible compared
with 2s.

Slater functions and (19) lead to

&B)./L. = —s,
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Here and elsewhere A= 2(H&&r) is the vector potential
from which the magnetic field is derived.

The relativistic interaction between the electron and
the external magnetic field is Z=e(n A) and the ex-
pectation value (Z) of this expression gives the change
in the energy of the' electron produced by the applied
field H, and is thence a measure of the magnetic moment
of the electron. In the case of slow electrons with kinetic
energy much smaller than the rest mass, Margenau"
gives the following expressions for the magnetic moment
of the electron expressed in Bohr magnetons:

2)

l= j+-'„

2j+1 T
p=(j+l) 1—

/+1 2mc

j 2j+1 T
(i+2) 1—

j+1 - j 2mc'

Z'=PH (1+2s)
~

1— ~+ s (~'V&&A). (24)
mc') mc'

Using integration by parts and Schrodinger's equation,
one can show that the second term of (24) is equiva-
lent to

where T is the average kinetic energy of the electron.
Written in this form these formulas are not very suitable
for an atom like oxygen where R-S coupling prevails.
Also the physical nature of the Yale correction does not
appear very clearly.

%e recalculate .this correction by using the well-
known method of reduction of Dirac's equations to
large components. In this method, a nonrelativistic
operator Z' is derived such that its expectation value
taken over the nonrelativistic wave function agrees
with the relativistic expectation value (Z) within, :(c/c) .

A straightforward 'calculation gives

l

The introduction of the magnetic field modifies the
spin-orbit coupling, since it changes the velocity p/m of
the electron by adding to it the extra velocity resulting
from the Larrnor precession of the electron in the mag-
netic field. This is equivalent to replacing p by p+eA/c
in (26). If we do so, we obtain the second term of (24).

We see that (24) could have been written straight-
away without mentioning Dirac's equation simply using
the relativistic variation of the mass with velocity and
Larmor's theorem. However, we naturally feel safer
with the authority arid rigor of Dirac's equation behind
us. We can say that the first part of the Yale correction,
—PH (1+2s)T/mc, is the relativistic-correction proper.
It depends only on the velocity of the electron and will
always be there whatever the electromagnetic inter-
actions between the electron and its surroundings,
nuclei or other electrons. The second part, (P/mc')s

(~'U&&A), is the result of velocity-dependent inter-
actions between the electron and its surroundings (in
the present case the central field gradient) which are
modified by the change in the velocity of the electron
due to Larmor precession. Both parts of the Yale cor-
rection are sometimes referred to in the literature as the
relativity correction, as they disappear in the limit
c= ~; the same property also, however, applies to our
remaining magnetic corrections which are superposed
when there is more than one electron and which we
discuss in the following sections. We therefore prefer to
use the term relativity correction only in connection
with the first part of (25).

Lamb's diamagnetic correction. —Lamb" has considered
the case of an electron outside of a core formed of closed
shells. In an external field a current is induced in the
core, caused by the Larmor precession of the electrons
in this field. It is given by j= (e'/mc) pA, where p is the
electronic density in the core. This current in turn pro-
duces a vector potential,

(r s)—pH. f—S
r2 mc'

e' t' A(r')p(r')
A'(r) = — dr'

mc'" (r—r')
(27)

and (24) can be rewritten as

(Z'=PH (l+2s)~ 1—
~

—P~
mc'

(r s)r

r2

T
(25)

mc'

Lamb then considers the interaction of the spin mag-
netic moment of the valence electron with the magnetic
field rotA':

It is easy to show that the expectation value of (25)
reduces to (23).

Equation (24) admits a simple physical interpreta-
tion. If in the nonrelativistic Zeernan Harniltonian Zo
given by (22) we replace the mass m of the electron
by its relativistic value m(1 —~'/c') & and expand
(1—v'/c')'* as1 ——',e'/c', we obtain the first part of (24).

The second part is obtained as follows. In the absence
of a magnetic field, there is a term in- the nonrelativistic
Hamiltonian of the electron representing the spin-orbit
coupling which can be written as

(po" rotA' ). (28)

This gives an extra term in the Hamiltonian, pro-
portional to the external field H, which results in a
correction to the magnetic moment of the electron.

Since Lamb considers s electrons only, he retains
solely the spherically symmetrical part of the inter-
action (28). For the same reason he does not consider
any diamagnetic effects resulting from orbit-orbit inter-
action. We shall use the term Lamb correction for (28)
rather than the less general expression valid for s
electrons only that Lamb derives from (28).

(5/2mc') (V'VXp) s. (26) '3 W. Lamb, Phys. Rev. 60, 817 (1941).
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The geeeyut case.—Ke are now ready. to tackle the
general problem of the corrections to the magnetic
moment of a complicated atom like oxygen.

We know that in an atom there are velocity de-
pendent interactions between electrons, the so-called
Sreit interactions, as well as interactions between the
electrons and the nucleus. Their contribution X to the
non-relativistic Hamiltonian is written below:

Ze2fi ( 1
~p ~,

l

—Ixp' ~;
4m2c2 ' Er; 3

e2$2 (11+ p ~I —Ixp; ~;
4m2c2 awe Er,q)

)1+ Q &,
I

—xp,
4m'c' '~& (yg,

eVP

(D)
1—(p,"p„)+ (r;, (r,~ p;) ya) .

2m~c~ ~&& yg, y'a'

e2

(D) is written in this complicated fashion because of the
noncommutability of p; and x;&. These interactions
which were Grst written by Heisenberg on a purely
phenomenological basis were derived by Breit" by re-
duction to the large components of the following
Hamiltonian:

e
se;„2———Ze' p —+Q—

i&kyA

(ir,"iri) (a' r.v)(iii. rg, )—+ (30)
yik yi7c

The last term of (30) represents the retarded velocity-
dependent interactions between electrons up to the
order (n/c)2 and is sometimes referred to as the Moiler
interaction.

The reduction of the first term of (30) leads to the
terms (A) in (29); the second, Pe2/r, i„gives through
reduction the term (8) of (29); the third or last term
of (30) gives (C) and (D) of (29).

The reduction of (30) gives, of course, other terms
than (29), but these are independent of velocity and do
not concern us.

We will account for the presence of the magnetic
field by replacing in (29) all the p's by 22= p+eA/c.

It is not obvious that this is the correct procedure.
We know, for instance, that if in the nonrelativistic
Hamiltonian (p2/2m)+V we replace p by p+eA/c we
completely miss the coupling Po H of the spin with the
external Geld. It is in the Dirac equations themselves
that we must replace p by p+eA/c and then carry the
reduction along the lines which lead from (30) to (29).

Our problem is now solved in principle. If one has a
good set of atomic wave functions (self-consistent
Hartree-Fock functions are available for oxygen, ") all
one needs is to write the wave function of the whole
atom as a sum of Slater determinants and take the
expectation value of (31) for it. This is perfectly possible
in principle and should allow a reasonably accurate
estimate of the relativistic and diamagnetic corrections.

Although straightforward in principle, this calcula-
tion is lengthy because of the somewhat complicated
nature of the operator (31) and of the numerical in-
tegrations involved in the use of Hartree functions. We
shall introduce simplifying approximations into this
calculation.

Except for the first two terms, (31) is a sum of two-
particle operators, and its expectation value taken over
an antisymmetric wave function involves contributions
from exchange matrix elements of the type

f'
P;*(1)pi*(2)W(1, 2)gi, (1)$,(2)drAr2)

where P; and fi, are one-electron wa, ve functions. For
simplicity we shall drop them.

We shall then be able to show that then the expecta-
tion value of (31) reduces to the sum of the Yale cor-
rection, the Lamb correction, and an extra term coming
from the orbit-orbit interaction which Lamb did not
consider since he. dealt with s electrons only.

I.et us consider the second and third terms of (31)
and in these terms focus our attention more particularly
on the spin of, say, electron one.

The terms containing this spin can be written

—, ~il — — +2 —IxAi .~i.
2mc' E r, ~~i r»J

(32)

This somewhat tedious calculation is not reproduced
here. It shows that it is indeed correct to replace p by
y+eA/c in (29), since all extra terms resulting from the
non-commutability of the 22's (as opposed to the p's)

. cancel out.
If after replacing p by p+eA/c in (29) we write out

all the terms linear in A and add to these the relativistic
correction proper, —PH (I+2s) 7'/mc2 for each electron,
we Gnd that all the relativistic and diamagnetic cor-
rections are represented by the expectation value of
the following (nonrelativistic) operator:

6Z= —PH P; (I,+2s,) T~/mc2
—(8Ze2/2mc2)g; [V';(1/r;) X A;] e,
+ (2/2mc2)PP, „[v,(1/r, ,)XA,] ~,
+ (e'/2mc')PP, „[V';( 1/r, ,)X A,] 2e„
—(e2/2m2c2) P,„„[r,,—'(A,"yi,)

+r,„'(r i A,)(r,i, pi,)]. (31)

"G. Breit, Phys. Rev. 34, 553 (1929). With our convention to disregard the exchange matrix
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elements, the expectation value of (32) can be written as

(P/2mc2) P,*(1)LV,VX A,j.4r,f, (1)dri, (33)

where
Z8 f

y(1) (34)

We call $4, the wave function of the electron, spin in-
cluded; Unless specified otherwise the integration over
dr includes summation over spin variables. If we observe
that (34) is precisely the definition of the self-consistent
potential energy of electron one, we find that (33) is the
second part of the Yale correction, i.e., the expectation
value of the last term of (24).

From comparison of (24), (31), and (33), it is seen

that the first three terms of (31) represent the sum of
the Yale corrections for all the electrons of the atom.
It is, of course, obvious that only electrons outside of
closed shells give a nonvanishing contribution to this
correction.

(b) If we apply the same considerations to the fourth
term of (31), its expectation value gives a sum of terms
such as

l3e' t t A(2)p(2)
~ pi*(1)4ri rot dr2 |l i(1)dri, (35)

lr,—r, l

with p(2)=pi, „iipi,*(2)fi,(2). From (27) and (28) we
see that (35) is precisely the Lamb correction for elec-
tron one, which we have to sum over all the electrons
of the atom. Here again only electrons outside of closed
shells contribute, but the fields acting on these electrons
usually come from closed shells.

(c) Finally, the expectation value of the last term
of (31) gives for electron one:

r t p(2)A(2)
Pi*(1) 2

2mc' ~ ~
l
ri —r2l

q {(ri r2) A(—2))p(2)dr2

lri —r2l
pal, (1)dr i, (36)

and we have to add contributions from all electrons.
Again only electrons outside from closed shells con-
tribute.

CALCULATION OF RELATIVISTIC AND DIAMAGBETIC
CORRECTIONS IN OXYGEN

C

We have now broken down our corrections into three
diferent groups, the Breit-Margenau or Vale correction,
the Lamb correction, and the orbit-orbit correction.
I.et us consider them in turn:

(a) Breit Margenau correction The B-reit.-—Margenau
correction is the expectation value of the parts of (25)
proportional to T/mc' for each electron. It is easy to
show that for a p electron in a state defined by l, =m&,

bg~=—
T 12T

Ag2= ——
mc2 10 mc2

To estimate 1' we can

(1) Calculate
f—(t'4'/2m) $2o*V+2+r

for Slater's rough analytical wave functions. The result
is T/mc'=1. 36X10 4.

(2) Make the same calculation using Lowdin's quite
accurate analytical representation of Hartree's wave
functions. This gives 1.36&10 4.

(3) Calculate the kinetic energy by subtracting the
potential from the total energy, with the integrals
evaluated numerically with Hartree wave functions.
One thus obtains 1.24)&10

In the light of (1), (2), and (3) we take

7/mc2= 1.3X10 4.

The result is then

Agi ———130X10 ' t1g2
———156X10 '. (38)

This value of 7.' is considerably higher than those
considered in discussions of atomic beams experiments
on alkalies. This fact is not surprising. In oxygen each
2p electron is imperfectly screened from the nucleus
by the other three 2p electrons, and spends more time
near the nucleus where potential and kinetic energy
both have large absolute values.

(b) Lamb correction The Lamb corre.—ction is given
for each electron by (35). We make the further simpli-
fying assumption that

p(2) =P&~i P&*(2)fi,(2) has spherical symmetry.

This is equivalent to replacing the probability distri-
bution of all the electrons acting on the one under con-
sideration (but not the probability density of this elec-
tron itself) by its average over the angles. Then p(2)

s,=re„with the z axis along the 6eld, this can be re-
written as the expectation value of

—PP (2'/mern) Lmi+-,'m, (8—2mP) $. (37)

We can calculate the expectation value of (37), summed
for the four 2p electrons for the states 'D2, J,=2 and
'E2, J,=2. The corresponding energy corrections for
'D2, 'I'2 for J,W2 then follow immediately since, with
given J, general rotational transformation properties
require them to be proportional to the magnetic
quantum number J,. The energy corrections for 'E&

can be found by utilizing the invariance of the diagonal
sum for J,=1 in the same way as in Goudsmit's calcula-
tion of multiplet constants, thus avoiding the need of
including nondiagonal elements omitted in passing from
(25) to (37). The resulting alterations to the g factors
are found to be
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becomes a spherically symmetrical function p(r2). The
, expression (35) can be rewritten as

TABLE II. Corrections to gg and g2.

Pe2 t A(2)
, rot p(2)d,),mc' ~ r1—r2

where the expectation value is to be taken over the
wave function of electron one. (39) can be rewritten as

Type of correction

Departures from R-S coupling
Orbital moment (nuclear motion)
Breit-Margenau from (37)
Lamb from (43)
Orbit-orbit from (46)

0
+2—130—28—31

—21
+2

-156—42—31

Corrections in units of 10 e

hg1 hgfl

—(Pe'/me')(o, rotLA(1) V/(r, )j),
where the spherically symmetrical function V(r&) is de-
6ned by.

V(r) =
a PV(r)+ W(r))

TotaI —187

The totality of corrections added to (8) gives

g1= 1.500958, g2 ——1.500897.

—248

1 r7'

V(r) = r"p(—r')dr', W(r) =
r3 4p

For comparison the experimental values are Lsee
r'p(r')dr'. (40) Eq. (7)1

gg
——1.500971, g2= 1.500905.

~g~ = —
a {W—

k V)/(137)'
~g2= —

a {W+—:oV)/(137)'
(43)

In (42) and (43) all the distances are expressed in atomic
units. We postpone the estimate of V and 9 until after
the orbit-orbit correction has been considered.

(c) The orbit-orbit correction The o.
—rbit-orbit cor-

rection is given by (36).If the density p(2) is spherically
symmetrical the second term in the large bracket is
easily seen to vanish. Then (36) yields:

—(e /2nt'c') pt*(1))HXr~f &(r~)ping~(r)drt, (44)

where V is defined by (40).
The expression (44) can be rewritten as

—(Pe'/mc') H (1V). (45)

This results in the following corrections for gI and g~ .'

~g~= ~g2= —e (V+W)/(137)'. (46)

To estimate V and 8', we use Slater's wave functions.
We 6nd for V and lV expressed in atomic units:

V= 1.27, W= 2.2.

In Table II we recapitulate all the corrections from
the beginning.

If we take H along the s axis, (39) becomes

—(e'/ntc')PH'(o;{e (3 cos'0 —1)V(r)+-,'W(r))). (41)

Here 8 is the angle between r and the s axis. Only the
second, spherically symmetrical part of (41) was con-
sidered by Lamb.

For a 2p wave function, (41) is equal to

—PII(o, {-',W——,'(mP —-', )V}/(137)'), (42)

where V and 8"are to be taken in Hartree atomic units.
This leads to the following corrections:

The agreement is excellent, but doubtless partly
accidental. The smoothing due to the neglect of ex-
change matrix elements and averaging over the angles
of the density p has probably reduced the di6erence
between Ag& and hg2.

Beringer's experimental measurements can hence be
regarded as essentially a condrmation of, or at least,
in good accord with, the Schwinger electrodynamical
corrections. It is instructive to express the results in
the form of a theoretical g factor inclusive of only the
electrodynamical correction, and experimental values
correspondingly corrected for everything but the elec-
trodynamical eBect. The Schwinger theory then gives
Lsee Eq. (8))

g1=g2= 1.501145,

and experiment gives

g1= 1.501158, g2= 1.501153.

It is, of course, the deviations from the simple Lande
value 1.5 which are signi6cant.

The agreement could presumably be improved by
more accurate numerical calculations. Notably we have
omitted the exchange terms in certain places Lsee
remarks following Eq. (31)] and we have used only
crude wave functions to evaluate (40). A subtle and
diKcult re6nement would be to base the calculations
on wave functions for groups of electrons rather than
simply additively from unpolarized single electron wave
functions in the usual Hartree-I"ock fashion.
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