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The Dissociation of H&+ by Electron Impact*
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Department of Physics, Iowa State College, Ames, loroa

(Received August 3, 1953)

The collision (in Born approximation) of electrons with Hs+, in which the molecule is raised from the
ground state to the lowest, lying repulsive state and is therewith dissociated, is discussed as the simplest
example of a collision resulting in molecular dissociation. Both the angular distribution of dissociated
protons and the excitation of the molecule to a state of definite angular momentum are investigated, and
the connection between them is made clear. For the former, rules giving the dominant characteristics of
the angular distribution are stated and illustrated by an example; for the latter, a detailed example is
given which brings out the scope of the Franck-Condon principle and shows that near the energy of dissoci-
ation that gives the Franck-Condon maximum of the scattering amplitude there are also other sizable
maxima, i.e., the Franck-Condon principle has a sort of fine structure.

INTRODUCTION

S the cross section for excitation by electron
~

~

impact of a vibrational state of a diatomic
molecule in a fixed electronic state is very small, ' it is
clear that dissociation of the molecule by an impinging

,charge must occur predominantly through an alteration
of the electronic state from one which gives nuclear
binding to one which gives nuclear repulsion. Roscoe'
and Massey and Mohr' have examined the excitation
of H2 to various electronic states; the latter consider
the dissociation of the molecule, but without regard to
the angular distribution of dissociated atoms or to the
details of nuclear motions that reveal details of the
Franck-Condon principle. In this report we study, as the
simplest example of molecular dissociation, an electron
collision with H2+ that raises the molecule from the
ground 1so 'Zo+ state to the 2po 'Z„+ repulsive state;
we shall show in what sense the Franck-Condon
principle has a structure and shall bring out the char-
acter of the angular distribution of dissociated atoms.
Though several simplifying approximations will be
made, the quantitative nature of the results will not be
seriously forsaken. We shall treat the collision in Born
approximation (neglecting electron exchange effectse),
the molecular motions in the usual Born-Oppenheimer
approximation with the simplest type of molecular-
electronic wave functions, the repulsive motion of the
protons in the Gnal continuum state by means of
essentially a Coulomb Geld, the initial vibrational
motion by means of I'ues's diatomic molecule model,
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4This neglect is justifiable so long as the incident electron

energy is not too low, which it mustn't be anyway for the validity
of the Born results. See N. F. Mott and H. S. W. Massey, The
Theory of Atomic Collisions (Clarendon Press, Oxford, 1949),
Chaps. 8 and 11.

and shall introduce some approximations of a mathe-
matical sort.

K being the electron momentum change kp ks, —with
k;s= (2sst/it') (E E;) E= 'sstR'—+Ep, an-d E, the energy
of the ith target eigenstate; e is the interaction energy

g2 g2

fR—-', yf f
R+-', pl fR—rf

For the target eigenfunctions we write rpp
——Pp(p, r)xp(p)

and rps=ps(p, r)xs(9), the f representing electronic
wave functions and)depending parametrically on the
nuclear separation p, the g representing wave functions
for the nuclear motion. Using the well-known simple
linear combination of atomic orbitals for the f, we
write (in atomic units):

Pp ——UpLtt(r t)+ I (rs) j,
A= Usl:N(rt) —N(rs) 3,

~"=2-tL1~e- (1+p+-'p')3-l
(2)

with N(r) =sr te "; rt and rs are radial distances, meas-
ured from the protons as centers, of the molecular'
electron. Because of the orthogonality of pI, and po in

FIG. 1. Labels of the co-
ordinates for an electron
(R) impinging on H2+ (mo-
lecular electron, r; protons,
-', y and ——',y).

REDUCTION OF THE SCATTERING AMPLITUDE

In Fig. 1 we label the coordinates of the protons
(-', p,

—-,'9), incident electron (R), and molecular electron
(r), reckoned from the center of mass which we place
at the midpoint of the protons. The Born amplitude
for scattering of the incident electron with excitation
of the target from the state pop(r, 9) to the state rps (r, p)
ls

1 2sN

fs ———— e'x "rpg,*tt'popdrdpd R,
4X k2~
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2
fk ———e' '

I I ( r)r—Q (ts) j'drU(p)gk*xpd8 (3)
E'&

2 ] l(l+1) i
Ro k + Ro k+I 2PPok 2tbl 0 k IRO k 0 (6)

p E p' )U(p) —= Up(p) Uk(p).

the coordinate r, the terms e / I
R& s 8 I

in e drop out. where Vo, k(p) are the effective nuclear potential energies
The integration over dR gives (4x/E') exp(iK r), so in these states and p is the reduced molecular mass. The
that (using atomic units throughout now) radial parts of yo, ~, which describe the vibrational

motions, satisfy

J(k, E). '

E'(4+E')'
(4)

J will be referred to as the radial integral.
We observe before going ahead that the use of the

simple f's of Eq. (2) is probably better than might be
expected at erst sight. For, if better electronic wave
functions of the form'

ary+& ark —
p ~& br] —

&
brs— —

(where (b and k are functions of p) had been used one
would have, instead of sb'(r&) —st'(r&) in Eq. (3), the r
integral

et&'r{e (p'+bl "&—e (p'+bin+I e p"s b"&—O &"1»2$}dr

The contribution to this from the terms in square
brackets will be small, at least for the range of small E
that is of most importance, while a(p)+b(p) stays very
nearly constant at two (see Fig. 32 of reference 5)
down to p that are of any consequence in the remaining

integral; the latter contains, for example, the ground
state vibrational wave function which is strongly peaked
at the relatively large equilibrium nuclear separation
distance, and what happens at smaller p, where a+5
rises, will have negligible sects.

PROPERTIES OF THE RADIAL INTEGRAL

J(k, E) contains now the desired information on the
angular distribution of dissociated protons (one of
which goes off bearing an electron) and of scattered
electrons, and on the range of continuum states g~
that can be signi6cantly excited.

The yo and g~ are eigenstates of the Hamiltonians for
the nuclear motions in initial and final states:

( 1
I

——&p'+&o, k IXo, k=&o, kXo, k, (5)
E 2p'

SN. F. Mott and I. N. Sneddon, W'arne Mechanics and Its
Appticutiols (Clarendon Press, Oxford, 1948), Sec. 33.

Introducing, by Fig. 1, r=r&+-', y=rs —-', 8 for the inte-
grals in dr involving tt'(r&) and u'(rs), respectively,
gives, on carrying out the r integration,

—64i
fk= sinx(K. 8) U(p)Xk*gody

E'(4+E')s~

—64i

and the angular parts are spherical harmonics. For go
let us take a definite rotation-vibration state,

yo=Pt (cos8)e' pRo(p),

the polar axis being taken along K for convenience. In
order to answer the question, what is the amplitude for
scattering of the incident electron into some small solid
angle when the protons dissociate along a specified axis
within a small solid angle and with a specified energy
in a small energy range, we must normalize p& suitably.
If the wave function 4 for the whole problem be
written in the usual way as

+=&'"' v p(&, p)+4'-. ,

the normalization of yI, must be chosen so as to provide
that f„,tb in the limit of large rko shall give an outward
radial Qux. The normalization is similar to that for the
problem of the ionization of a hydrogen atom by
electron impact, ' and is such that Xk* (and not gk) has
the asymptotic form

eikp

X e~&—tkp coso'+ g(8~)
p

cos8'=cos8 cos8p+sin8 sin8p cos((o—(op),

Oo, qo being the orientation of the axis of dissociation
with respect to the polar axis K, a,nd k' being. 2pEk,.
we may place (op ——0 by choosing the plane of k(8o (po)

and K to be the xz plane.
The correctly normalized x~ for 6xed k may be built

up from the radial functions Rt(kp) of Eq. (6) as

yk= P, A,R, (kp)P, (cos8').

Then, using the addition theorem for Legendre functions
and writing x= cos8, J(k, E) is of the form

+8 r
J(k, E)=p g

~

sin(-,'Epx)Pt„(x)e'"'pP, „(x)
e m=sJ

XP,~ (xo)e ' '&dxd poA, *R,*URpp'dp, (9)

whence orily nz'=its in the P ~ contributes. Since
sin(xsEpx) is odd in x and P; (—x)=(—1)t P; (x),
we have that only those terms in g. contribute for
which /+s is odd. Hence, the scattering amplitude for
scattered electrons and dissociated protons is given by
a superposition of P, (cos8p) that is either even or odd

P H. S.W. Massey and C. B.O. Mohr, Proc. Roy. Soc. (London)
A140, 613 (1933).See also reference 4, Chaps. 11 and 14.



DISSOCIATION, OF H2+ B Y ELECTRON I M PACT

EVALUATION OF THE RADIAL INTEGRAL

In Fig. 2 we exhibit the correctr potential curves g
and 8 for the nuclear motions in initial and final states,
and simple approximations thereto, F and C respec-
tively, that are sufficient to our purposes. F is the Fues
potential

t'1 Po 1 Po )
Vo(p) = D+ (2~»)'pp—o'l +

E2 p 2 p')

where D, s p, pp are potential curve depth, frequency of
small oscillations about equilibrium, and equilibrium
nuclear separation. C is a Coulomb potential plus an
additive constant chosen to make the potential agree
with A near pp,

VI = —ep+ —,
p

op= 0.65.

We should really cut C off at p&
——(eo—s) '=6.67 and

continue it as C', but little harm will be done by leaving
it alone, as pi is far from the interesting region, immedi-
ately around pp', we merely restrict the eigenvalue E& of
Eq. (6) to Ey,)——',. Va of course does not have the
detailed structure' of A but nevertheless is an adequate
representation of it.

~ E. Teller, Z. Physik 61, 458 (1930).
I

under ep~ —ep according as l is odd or even. This
states formally what is expected from the symmetry
properties of the original amplitude fo of Eq. (1) and
the symmetry of 4' in the proton coordinates. Note
that for m different from zero and for any l no dissoci-
ation occurs in the direction Op

——0, and that for m=0
and even/ (only odd s terms in J(k, E)) no dissociation
occurs in the direction ep ——m/2: thus, for excitation from
the ground state there is no dissociation at right angles
to K. Also for m different from zero there will be no
dissociation in the direction 8p= 7r/2 when m is odd and
/ is odd (only even s terms) and when m is even and t
even (only odd s terms).

The angular distribution of dissociated protons will
be dominated by the terms P&~&, (cos8p) in J(k, E), so
that, for example, if the molecule is initially in the
rotational ground state the dissociated protons will
have mainly a cos ep distribution; or if the initial state
is an /=1 state a spherically symmetric component to
the distribution will be important. It is therefore
relevant to ask directly for the amplitude for excitation
to a state of definite t and Eq (within dEI,), under-
standing from the preceding discussion that we thereby
find a contribution, more or less important depending
on what / we select, to the angular distribution of
dissociated protons. Also this amplitude will be of
interest in itself, apart from questions of angular
distribution in the dissociation. In what follows, the
main discussion will be around this amplitude but we
shall also consider the angular distribution in a little
further detail.

-.2

«4.

-.5-

«.6-

;9-
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FIG. 2. Potential curves for initial and final nuclear motions.
A and 8 are the correct curves (after Teller, reference 7), F and C,
respectively, are the approximate curves that are used, F being
the Fues potential, C begin the Coulomb potential —1.3+2/p
Rydberg. It suQices to use C everywhere, though, strictly, it should
be cut oG and continued as O'. The nuclear separation p is in
atomic units.

The vibrational ground-state wave function Rp(p) is

(2~)x+f

Ep
——Epp"e

—
&, Xp=

(27~+ 2)!~
(10)

where p=p/k, k'=2@(Eo+Ep), and No is a suitable
normalization constant; for later use we introduce also
a'=2(Eo+ep)

The function U(p) = Up(p) Ua(p) that enters into
J(k, E)is a smooth 'function varying slowly and
monotonically near pp and diverging for small p as p '.
It can be replaced for purposes of manageability of the

p integration by a function of the form a+bp ' exp (—cp)
with very good accuracy; but this is unnecessary be-
cause with respect to U, Rp(p) is practically a delta
function around pp. It would be sufFicient to take U
outside the integral as U(pp), but at no extra cost we

improve on this by representing U(p) as cp/p with cp

adjusted so that U(pp) = cp/pp, this gives cp ——1.234.
The radial integral for the transition (0, l, m)~

(k, t, m'), say, is now, apart from constant factors,

J(k, E) " sin(-,'Epx)Ft„(x)Fc (~)e"" "'"
XdxdfoF((kp) p"e &p&p, (12)—

so that ns=m' and l and t must be of different parity.
We shall discuss a special case of this, illustrative of
more general cases, in order to avoid complicating the

with X= —'s+~o(1+4b)i, et= (X+1) '(po/2b) ', and
b =in'p sp'p 4/O' The continuum functions Rq(p) are

Nsp'e '"&F(l——+1 sP, 21+—2, 2skp) =NaF)(kp), (11)
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analysis needlessly. To this end we set i=m=0. Ex- Then Eq. (13) involves integrals of the form
panding sin( —,Kpx) in Legendre functions then gives

Ji(k) K) =colVoNa(2t+1) l

X ~ J (-'~&) "" "F (k)d, (13)
0

where j& represents the spherical Bessel function and t
is an odd integer. For the small-angle scattering of
the incident electron Ji(-', Kp) may be replaced by
(s'/(t+-,')! 2"+') (Kp) ', and it is at once clear that t = 1
is by far the most important of all t (J' has to be multi-
plied by K ' to give the amplitude fz); in terms of our
earlier discussion, cost30 dominates the angular distri-
bution of dissociated protons. Reversing the roles of /

and t above we obtain the scattering amplitude for the
transition from diferent initial l' states to the con-
tinuum t=0 state; for /= 1 in particular we are then
evaluating the important spherically symmetric contri-
bution to the proton angular distribution for scattering
of electrons oG the molecule initially in the first rota-
tional state. Detailed results will later be given for this
special case as an illustrative example.

For sufIiciently small E, which in practice will often
cover the whole range of K of primary interest, Eq. (13)
involves the integral

S(io, t) =
) p"e ~&e '~&F(t+1 iP, 2t+—2, 2ikp)dp, (14)

0

with e=X+t+1 for short. We evaluate S by making
use of the representation of the conQuent-hypergeo-

. metric and hypergeometric functions as contour in-
tegrals

( c) Re t"
pne aPe—ikP—e ', iIcP—

sl Im" o

XF(t+1 iP,—2t+2, 2ikp)dp (.17)

The Re, Im refer to the real, imaginary parts with
respect to iK as first written, but because Fi(kp) is
itself real, the real and imaginary parts of the whole
anal result may be taken as well.

Introducing Eq. (15) into Eq. (14)'gives

r (2t+2)
S(~, t)=

I' f„
p

r(t+1 ip)r—(t+ 1+ip) ~ ~

Xexp —p n+ik—
2iks

(4dp
1+s (1+s)2i+2

r(2t+2)
m!( + 'k)-"—'

Ir(t+1+ip) I'

with

Using Eq. (16), ,

X (1+m) " 'ds (18)
J (1+,s)2i+i—~

v= (n —ik)/(n+ik).

( c) Re
TI rc, t, I= n!( +ik—-', iK) " '

s& Im

S(N, t)=n!(n+ik) " '
XF(1+t—iP, n+1, 2t+2, 1—e). (19)

Similarly

F(a, c, x)=

F (a, b, c, x) =

iVr (c)

r (a)r (c—a)

lVr (c)

r (a)r (c—a)

F(1+t iP, m+1, 2t—+2, 1—n), (20)

I= (n —ik ——',iK)/(n+ik —-', iK).

i( * )i, , 1, ,d (1 )
By a change of variable in Eq. (18) or by

k1+s F(a, b, c, x) = (1—x)
—F(a, c b, c, x/(x —1)),—

Eq. (19) may be written

XJI L1+ (1—x)s] 's' '(1+s)~'ds. (16)

%hen the real part of n) 0, Ã= 1 and the contour is a
straight line from 0. to ~. For larger E the whole
spherical Bessel function must be used, and in any
particular case may be written as a combination of
trigonometric functions and inverse powers of ~Ep.

8 W. Gordon, Ann. Physik 2, 103j. (1929).

S(e, t) =n! (n+ ik) "+' 'e (n —ik) ' '+*'e

XF(1+t—iP, 2t+1—e, 2t+2, —2ik/(n —ik)), (21)

and similarly for T. Now e is in general a large number
since X is large; numerically X is 38.10 (and n is almost
exactly —,'l%,). If we round off X to an integral value no
serious error is committed and then (except for very
large t) the F function in Eq. (21) is a polynomial.

Thus 5 and T are expressed in closed form. However,
the results are complicated and we return to Eq. (18)
for a more useful approximate result. %e write for
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Eq. (18)
r (2t+ 2)

S(e, t)= rs!(n+(k) " ' "Q(s)
I
1'(t+ 1+'P) I!

'

with

Xexp i(v+1) 0— logs ds, (22)
m+1

s'[Re(1+sv)] " '
(s) =

(1ys)or+1—a

s'
(1+s'voo+2svp cos&o) '"+'&"

(1+s)PE+1 n—
n p since

Q(s) = —arg(1+sv) = tan —'
1+svp cos~

is stationary for the roots .s& and s& of

pp since

p '(s) =o=
1+8 vp +2svp costa

0/(~+ 1)

Both these roots are real positive if ~ is not too small.
We have also q "(s~ or s2) = [P/(n+1)]/sa' or sp'. For
Eq. (22) we get

1(2t+2)
S(e, t)~ e!Re(a+ok) " '

(r(t+1+oP) ~'

+same function of so . (23)

where vp is
~

v
~

and

~= —argv= 2 tan '(k/n).

For T one has a similar result involving u instead of e.
Integrating along the real axis from 0 to ~ we are in a
position to capitalize on the largeness of m by using the
method of stationary phase. %hat we then obtain is
the asymptotic form of S (or 7) in the limit of both
n(X) and P=p/k= pl/L large. This seems to place an
undesirable restriction on the range of ~ which we may
wish to examine, but it turns out that for the ~ of most
interest (~ 1), in the Franck-Condon region, P is
indeed comparable with A. and it is just here that the
method of stationary phase is valuable. For small ~ it
is advisable to proceed difFerently anyway (as discussed
below), and for large ~ one can use the asymp-
totic form of R&, & of Eq. (11) directly in the integral
for J(k, E) [but already in this range of x, J(k, E) is

very small].
The phase

po(s) =Q — logs
n 1

Q hen K is suKciently small, the region around p= pp

is a region of negative kinetic energy for the proton
motions and there the Coulomb functions Ro, g [Eq.
(11)]do not oscillate but vary rnonotonically. We have
in fact that in the limit of small ~, RI,, ~ and therefore
J (k, E) [Eq. (12)]are small. As a increases a point will
come when RI,, ~ has a first large maximum near pp and
joins forces with Rp to make J(k, E) large. As ~ in-
creases further R~, ~ oscillates within the range where Rp
is large and generally J(k, E) becomes small again,
though not uniformly with increasing ~ since RI,, ~ will
reinforce with Rp when the higher extrema of RI, ~ are
centered near po. Thus one expects J(k, E)to rise'

monotonically as ~ first increases, pass through a rela-
tively large principal maximum, and then oscillate with
more or less rapidly decreasing amplitude. These re-
marks (which are of course conditioned by the E
dependence of J (k, E)) restate the Franck-Condon
principle and endow it with a "structure" which we
exhibit in the example below.

%e note 6rst that for su%ciently small I~, when RI,, ~

varies monotonically in p near pp, we can without
serious error pull it (or p times it) outside the radial
integral 13:

J(k, K) coiVplVI. (2t+1)*kpoFt(kpo)5

(a+ ao) (a —rto'I
w&(pp) = (2 cosrl) l sin'+']

[ cos '(
E 2 ) E 2 )

( v ) cosset
Xe. p —

J3i
——

g i+(t+-', )) cosgp.~= (k~. (t)LO'+(t+ —',)']-
singo=P[P'+ (t+o')'-] ',

0(gp(-,'+.

(25)

ILLUSTRATIVE EXAMPLE

As indicated before, we illustrate our general results

by the example: initial state, 3=1; final state, 1=0.
This amplitude for transition to a final state of definite
angular momentum gives also the large spherically
symmetric component of the angular distribution of
dissociated protons resulting from the dissociation of
the molecule in the assumed initial rotational state.

i~(oE()(-"'~ "d(. (24)
p

Further, we .can use a %KB approximation for
~~(po) =poF ~(kpo)

T is to be treated the same way. ' Yost, %heeler, anc1 Bl'eit, Phys, Rev. 49, 174 (1936).
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For small K we have, "from the discussion above, the dissociated protons is

J(k, E)= 'cgXpXi, (3'E/6)S(lt, 0),

and for larger E,

(26) do- kl, kI, 64'
=—If I'=— J'(k, E),

dpodW kp kp E4(4+E')4

~
Ico+kfc

EdE J'(k, E).
dW kp'~ sp—so E4(4+E')'For suKciently small ~ and also small E,

J(k, E)=cplVpXs(3lE/6)wp(pp)(lb+1)!/cr"+', (28)

In Fig. 3 we show j(s)=J(k, E)/(3~E/6) in the
small E limit, when this quantity is independent of E,
as a function of a (here the continuum function is

while for small ~ and larger E,

J'(k, E)= colVoXo3*'wo(po)

'T(X—1, 0, s) T(lt, 0, c)
I

and, integrating over all angles of scattering, the total
J(k, E) cogog„3*

I

. (27) cross section per dW is
—,'E

(lt 2) t Ep
X I sinI tan '—

I

I -'E'(rr'+-'Es) &"-'&» ( 2 )

(X—1)!
r E(ir2+ 1E2)x/2

( E'l
cosI tan '—

I
. (29) 0-

We normalize the continuum function on the 8'= ~k'
scale, for which

f' 2kP q
'*

cV,= I I
c-:-&

Esinhy&

8

O

a l2

in Eq. (26) and Eq. (27) but 1V&
——(2/irk)' in Eqs. (28)

and (29).
The differential cross section per unit solid angle"of

the scattered electron and per unit interval of 8 of

-l6—

.6- O.OI O. l l.0 to

4-

C

Vl p
'Io

4-

-.6-

-.8
.75 .8 I.p l.2

'0 The roles of t and l in the previous discussion are reversed,
as remarked after Eq. (13).

FIG. 3. Illustration of the fine structure of the Franck-Condon
principle. j(a) is proportional to the radial integral J(k, E) which
gives the scattering amplitude. This example is for the dissociation
of H& from the initial /=1 state to the final /=0 state. j(a) for a
small region around f~=0.94 was found by interpolation; the error
of the approximation used is such that j(ft) should descend
somewhat more steeply to the left of the principal maximum than
is shown.

Fio. 4. The modulus of the scattering amplitude, !fo!', which
gives the differential cross section do/do&dW for the same process
as in Fig. 3, for several s (the upper two curves belong to the K

corresponding to the first extrema of j(sl; atomic units are used
throughout.

normalized on the it scale). The principal extremum is
for ~ very close to 1. The neighboring extrema are by
no means negligible: the Franck-Condon - principle
clearly has a structure to it, as previously remarked.
Considering the small range of a in which J(k, E) is
large, this structure is to be considered a fine structure.

In Fig. 4 we plot I fsI' against E for several a to
show the angular distribution of scattered electrons;
and in Fig. 5 we give the total cross section do/dW for
K= 1.

FURTHER REMARKS ON ANGULAR DISTRIBUTION
OF DISSOCIATED PROTONS

Vile conclude by sketching the analysis that gives
the complete angular distribution of dissociated protons,
leaving a fuller discussion for a later report.



D I SSOCIATION OF Hg+ 8 Y ELECTRON I M PACT 1447

The correctly normalized 6nal-continuum wave func-
tion6 yI,

* here, apart from a normalization constant,
1s

xk*——e'p y'~e yJs[2(ik&'y)l]dy, t'= p(1+cos8'),

with cos8 as given in Eq. (8). Taking the initial state
as the ground state, and writing sin(2K 8) (=sinsEs,I being the polar axis) in exponential form, the radial
integral to within constant factors is

J(k K) ~

&)' le apei2—pe ',—ixzyi//e -yJsdtdg—

—s.f. (—K), (30)

F/G. 6. Angular distribution of dissociated protons resulting
from electrons impinging on H2 in the ground state according to
Fq. {32) (solid curve) in comparison with a cos80 distribution
{dotted curve) which, as discussed in the text, should dominate
the distribution. The two agree everywhere to within 1& percent.
The solid curve refers to the data a=1.4, k0=10, E'=smallest
value (electron scattering in the forward direction); in this case
g0 is measured from the axis k0 which is the same as K.
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FIG. 5. Total cross section do./dW for the same process as in
Fig. 3, for dissociation of H2+ to a continuum state at ft.= 1 within
d8" near where the cross section is largest. Atomic units are used.
for k0, units of m.a0 for a.

[(n—ik ——,'iE) (n —ik+-'2iE) ]'~
X —s.f.(—E). (31)

[(22+k2+-'IC' kE cos8—2] s+'

This may be evaluated by writing the derivative as a
Cauchy integral and choosing a suitable steepest
descent contour in the complex (2 plane. [Actually it is
better to lump exp( —np) and exp(ikp) together in
Eq. (30) and take the derivatives with respect to n ik ]- .

It is apparent from Eq. (31) that, as discussed before,
J(k, E) vanishes for 8()——2r/2 and there is no dissociation
in the direction perpendicular to K.

For sufficiently large k, XI, may be adequately
represented by the plane wave exp(ik 8). Then the
evaluation of J(k, E) is elementary and gives

where s.f.(—K) means "same function of E."—
Introducing parabolic coordinates $ =p(1+cos8),
2) = p(1—cos8), (2, dy =

2 pd(dr/d i/2, Eq. (30) may be
written

sin(X+1)o)s sin(X+1)o)1
J(k, E)=

(~2+K 2) (1+1)/2 K (~2+K 2) (X+1) /2

E1 ()2= ks+-'EsakE cos82,

o)1, 2
——tan —'(E1,()/n).

(32)

+21ik(t+2/))y"'e yJsdtdgdr/di/2 S f. ( K)—. —

This integral has been treated by Massey and Mohr. '
One uses the addition theorem for Jo making use of
the fact that

f= $ coss'282+)) sins-'28()+2(pr/)'* cos282 sin-', 82 cosy,

Since the initial state has been taken as a state of zero
angular momentum, we expect from our earlier discus-
sion that the angular distribution of dissociated protons
will be dominated by eos 80. In Fig. 6, where the distri-
bution arising from Eq. (32) is compared with a cos28()
distribution, this is verified. The two agree to within
slightly more than one percent for all 00.

The author is indebted to Miss Pauline Thielman for
assistance with the numerical work.


