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f(A) plotted against (r,/2t, )sh for two values of t /ri.
Starting from f(0)=0.25 the curves go through a
maximum which rapidly increases with increasing
t,/r&. Differentiating f(6), we find that at the maximum

4/~)Ii(V ~)/Is 4/t)') 2t*/r ~

The function on the left-hand side increases with d.
It approaches 4 as t) —+0. Therefore, f(A) has no
maximum for t,/r, &2 On . the other hand, for large
t,/ri the value of 6 corresponding to the maximum of
f(d) will be large and we have approximately

I.V~)-~ (d~)-"'/(2-d~):.
Therefore, the maximum of f(A) corresponds to

2t,/r, . —
3, being related to t by (30), we find that the peak of
pulse of excess free holes at distance x from the injection
point occurs at

t=t (ra+re)/ri (36)

and that the magnitude of the peak is

~p ..=3~*/(4 ):j(&/,)( /t. )-:"-'". (»)
For suKciently large t,/r, , the initial step in hp, equal
to P„will be negligible compared to the peak. Ap will

appear to rise gradually; and it will, therefore, be
impractical to determine t, from the first arrival of the
pulse. The time corresponding to the easily observable
maximum is given by (36). This result is easily under-
stood. As ~, is the average time required for releasing
a trapped hole and r& is the average time required for
trapping a free hole, r&/(rt+r, ) is the fraction of time

during which the hole remains free. Therefore, the
time required for most of the holes to reach the collector
is (r&+r,)/ri times longer than 'the transit time t, in
the absence of traps. The apparent drift mobility will

be r&/(t&+r, ) times the true mobility. Small apparent
drift mobility has been reported for silicon' and for
germanium at low temperatures. '
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Generalized variational equations are derived for calculating the elastic and inelastic scattering amplitudes
associated with the scattering of electrons by hydrogen atoms. The derivation of these equations is such
that no unnecessary restrictions are imposed on possible trial wave functions. Two equivalent formulations
are given: one involving the use of symmetrized wave functions; the other involving wave functions of the
conventional (Mott and Massey) typo. For trial wave functions consisting of only the incident wave (multi-
plied by a hydrogen eigenfunction), these variational equations yield the same results as are obtained by
the approximations of Born and Oppenheimer. Various calculation procedures are discussed.

In an appendix, it is shown that the Hulthen variational equation for the scattering phases is a special
case of the Kohn variational equation for the scattering amplitude.

I. INTRODUCTION

'HE first development of a variational procedure
for dealing with the scattering of electrons by

hydrogen atoms was carried out by Huang. ' His method
is based on two assumptions: the wave function's
asymptotic value contains only the incident and elasti-
cally scattered waves; only S-wave scattering takes
place. By an extension of Hulthen's one-body scattering
variational procedure, Huang thereby obtains a vari-
ational equation for determining the S-wave phase
shifts. The calculation procedure based on the Hulthen-
Huang variational equation was improved and extended

*A brief report of this work and that of reference 8 was pre-
sented at the 1952 Thanksgiving Meeting of the American.
Physical Society Lsee Phys. Rev. 89, 913 (1933)j.' S. S. Huang, Phys. Rev. 76, 477 (1949), A variational pro-
cedure for the analogous nuclear problem, n-d scattering, was
developed by: W. Kohn, Phys. Rev. 74, 1763 (1948), and M.
Verde, Helv. Phys. Acta 22, 339 (1949)..

by Massey and Moiseiwitsch who carried out detailed
calculations for the S-wave phases. ' Where a comparison
was possible, they found that the results of their vari-
ational methods, even for very simple trial -functions,
are in very good agreement with the results obtained
previously by direct numerical integration of the wave
equation. Erskine and Massey extended this work still
further by calculating variationally the 1s—+2s excita-
tion cross section at low energies. ' Their method
assumes that only S-wave scattering takes place and
that a "distorted wave" approximation is valid.
Moiseiwitsch has improved the variational method for
dealing with the inelastic scattering processes. ' His
procedure is based on two variational equations whose

'H. S. W. Massey and B. L. Moiseiwitsch, Proc. Roy. Soc.
(I.ondon) A205, 483 (1951).' G. A. Erskine and H. S. W. Massey, Proc. Roy. Soc. (London)
A212, 521 (1952).

4 B.I.. Moiseiwitsch, Phys. Rev. 82, 753 (1951).
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development involves the following assumptions: a
partial wave type of wave function must be used whose
asymptotic value contains the incident wive, elastically
scattered wave, and only one inelastically scattered
wave (the one of particular interest).

In the present paper, we shall develop generalized
variational equations for dealing with the scattering of
electrons by hydrogen atoms. These variational equa-
tions are such that no unnecessary restrictions are
imposed on possible trial wav'e functions other than
that they exhibit the proper asymptotic form. Our
development is based on the "spatial orientation de-
generacy" of the wave function and the availability
of a complete set of ortho-normal eigenfunctions of the
hydrogen atom. This development of the variational
equations is an extension of a method devised by Kohn
for a one-body scattering problem. ' The result is a set
of simultaneous variational equations for the elastic
and inelastic . scattering amplitudes. ' For calculation
purposes, these variational equations can be considered
to displace the equivalent set of simultaneous integro-
diGerential equations in terms of which the theory is
usually formulated. v

Two equivalent formulations of the variational
equations are presented. The first is a "symmetrized
formulation" in which the wave functions display"
their proper symmetry character throughout. The
second is a "conventional formulation" in which the
asymptotic wave functions exhibit separately what
might be called an "ordinary" and "exchange" type of
collision.

For trial wave functions which consist of the incident
wave (multiplied by a hydrogen eigenfunction) alone,
our variational equations give for the scattering ampli-
tudes the same expressions as are obtained with the
usual approximation of Born and Oppenheimer. ' Calcu-
lations have been carried out to obtain a variational
improvement of the Born approximation for the elastic
scattering of fast electrons by taking into account
e6ects due to "distortion" and "polarization. '" The
results of these calculations will be presented for
publication shortly.

We might note here that the existence of two separate
variational equations for describing a scattering situ-
ation (e.g. , our Eqs. (8) and (11)) is directly traceable
to the existence of the "reciprocity" and "unitarity"
properties of the 5 matrix. More will be said about
this at some later date.

II. SYMMETRIZED FORMULATION

We consider 6rst the eigenfunctions for both the
bound and continuum states of the isolated hydrogen

' See W. Kohn, reference 1.'It is not di%cult to show that Kohn's variational equation
for the scattering amplitude is equivalent, for a partial wave type
of trial function, to Hulthen's variational equation for the scat-
tering phases. The proof of this is given in the Appendix.' N. F. Mott and H. S. W. Massey, Theory of Atomic Collisions
(Clarendon Press, Oxford, 1949},second edition, Chap. VIII.' J. G.&'Jones, thesis, University of Florida, 1953 (unpublished}.

4.*(r)f,(r)dr =~., (1a)

where the summation sign is used throughout to signify
a sum over the discrete and integral over the con-
tinuous parts of the spectrum. For this purpose, we
can consider the state o as specified entirely by E, and
the particular angular momentum quantum numbers
(l„m,). Now the alternative set of eigenfunctions P.*
also satisfy (1) and (1a). We shall find it convenient
to designate separately the state o* of the atom as that
state having the particular eigenfunction P,~. The
state o* can be entirely specified then by E, and the
particular angular momentum quantum numbers
(f„—m, ). It should be evident, then, that the two
alternative sets of states, o and o*, are merely re-
arrangements of each other.

The wave equation for the electron plus hydrogen
atom system, with total energy E, is taken in the
following form

[Z—a(1, 2)]~(1,2)
= fAi+A2+E+2/ri+2/r2 —'2/ri~ j@(1,2) = 0, (2)

and
+(+)(1 2) —~+(6) (2 1) (2a)

are the two solutions; one (+) symmetric, the other
(—) antisymmetric in the space coordinates of the
two electrons, corresponding, respectively, to their
antisymmetric (S=0) and symmetric (S=1) spin
states.

Solutions of Eq. (2) are desired which represent the
situation in which an electron is scattered by an atom
initially in some state o (not necessarily the ground
state). Hence, by way of defining this situation, these
solutions must satisfy the following boundary condition:

+.(+) (1, 2; n )—+P, (2) exp(ik, n. r,)
+ (1/ri)EQ &a(2) &Q '+'(".' ») exp(f&vari)

as ri~ ~, (3)
where

k,'=E—E„
and the sum in (3) extends over all energetically
accessible final states q of the atom (i.e., such that
k, )0). n, is a unit vector in the direction of the inci-
dent electron's momentum, and is of unspecified orien-
tation —hence the "spatial orientation degeneracy" of
the wave functions. n~ is a unit vector in the direction

atom. The wave equation is taken in the form (we use
Hartree atomic units throughout),

(~+~ +2/r)4. (r) =o (1)

We designate the state o of the atom as that having
the particular. eigenfunction P, and, incidentally, the
eigenvalue E,. We shall require here that the eigen-
functions are so chosen as to form a normalized,
orthogonal set; that is, such that
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of ri. 5„&+&(n„ni) is the singlet/triplet amplitude of
the scattered wave (in a direction specified by the
orientation of ni relative to n, ) corresponding to the
o—&q transition of the atom. The value of the wave
function as r2~~ is obtained from (3) via the sym-
metry requirement (2a). The set of wave functions
having the property (3), for all possible initial states
0(k,')0) and all possible n„ form the total set of
possible scattering solutions of (2) for a given total
energy K

We assume that the complete set of hydrogen eigen-
functions satisfying Eqs. (1), (1a) is given so that the
only parts of (3) which must be determined from a
solution of (2) are the scattered wave amplitudes. We
now proceed to develop generalized variational equa-
tions which can be used to determine these F,.&+'.

For the first of these variational equations, we intro-
duce an alternative set of scattering solutions of Eq. (2)
for the same total energy E. These solutions represent
the situation in which the electron is scattered from an
atom initially in some state p* and have then the
following asymptotic form analogous to (3):
+~*&+&(1,2; n&,)~P„*(2)exp(ik„nb r&)

+ (1/ri)P, P,*(2)P,„*&+'(n&„n&)exp(ik, ri)
as ri-+ ~; (4)

where n&, has the same significance as n, of (3), and
F,~~&+&, analogous to P,.&+& of (3), is the amplitude of
the scattered wave corresponding to the p*~q* transi-
tion of the atom. Referring to the remarks following
(1a), it should be apparent that the two alternative
complete sets of scattering solutions, %„~&+&(1,2; nb)
and 4,&+&(1, 2; n, ), are merely rearrangements of each
other.

We now define the following variational integral:

a'„.&+&(n, ; —n&) = (-', ) I%'„*&+&(1,2; n&,)[E—Hj
X%'.&+& (1, 2; n.)d7.id'„(5)

which is zero for 4', &+&(1, 2;n) satisfying Eq. (2).
Consider possible (physically admissable) trial wave
functions, 4'+I&%, which are restricted only in that their
asymptotic forms differ from (3) or (4) by the replace-
ment therein of each 5' by 8+8%; e.g. ,

84,&+&(1, 2; e )~(1/r, )P,P, (2)8P„&+&(n„n,)
Xexp(ik, ri), (6)

resultant surface integrals [which are equal due to the
symmetry requirement (2a) $, one obtains

&&y &6&(n ~

n~)

I [%'~*&+&(1, 2; n&) V,W, &+& (1, 2; n, )

—W, &+&(1, 2; n, )V&+~*&+&(1,2; n&) j'd&ridr2. (7b)

Inserting into this expression the asymptotic values of
@ and b%' from (4) and (6), carrying out first the
integral over dr2 via (1a), then the surface integral over
a sphere at ri—+~, one obtains [see Eq. (3.7) of refer-
ence 5)

gy„,&+& (n. ;
—n&) = —4mb&„.&+& (n, ;

—n&), (7c)
or

l&[g„,&+& (n„—n,)+4~5„,&+& (n, ;
—nb) j=0; (8)

that is, the quantity in the brackets is stationary.
By the same procedure as above, one also finds

8[8.„*&+&(n&„—n,)+4m r,„*&+&(nb,' —n )j=0, (9)

where the roles of 4'„+&+'(1, 2; n&) and 4', &+& (1, 2; n, )
in (5) are interchanged to give

X+„~&+&(1,2; nb)dT18T2. (9a)

Equations (8) and (9) represent the first of the general-
ized variational equations for F~.(+'.

We consider next a companion form of the above
variational equations. We define as the variational
integral here:

X~,&+&(n„n&) =-', JI @~&+&*(1,2; n&)[E—H]

X+.+'(1, 2; n, )dridr2, (10)

where the left-hand wave function in the integrand
differs from the corresponding member of (5) in that it
it is the actual co~plex conjugate of the appropriate
member of the set of wave functions +,&+&(1, 2; n,).
Applying to this integral the same considerations
which led from (5) above to the variational Eq. (8),
one finds

as r~—&~. Then, if such trial wave functions are inserted
into the integral (5), its resultant first-order variation is &[X„,&+& (n„n&)+47r F„,&+& (n„n&,))

bd„.&+&(n. ; —n ) = —', I%'„*&+&(1,2; n )[E—H]

X8%.&+& (1, 2; n,)dridr2. (7a)

=2ig, k, P,„&+&*(n&„n)8F,.&+&(n. ; n)dQ, (11)

where the solid angle integration is over all orientations
Inserting the explicit value of (E H) from (2), of n. —Equation (11) is the second of the generalized
applying Green's Theorem, and combining the two variational equations for.determining the F„,&+'.
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In either of the above formulations, (8)—(9) or (11),
one has available a set (generally in6nite) of simul-

taneous variational equations for determining the
required 8„,&+'. These equations can be considered to
replace the equivalent set of simultaneous integro-
diGerential equations in terms of which the theory is
usually formulated. '

In the particular case where one uses as trial wave
functions merely the first terms of (3) and (4), one
obtains values for 5„,&+' which are the same as those
obtained via the Born-Oppenheimer approximation, as

. might be expected (see below).

III. CONVENTIONAL FORMULATION

We consider, now, the formulation of the above
variational equations in their nonsymmetrized forms.
These are related more directly with the conventional
integro-differential equation formulation of the electron-
hydrogen scattering problem as presented by Mott and
Massey. 7 It must be emphasized here that this relation-
ship is not a perfect analogy, however, since the Mott
and Massey formulation is based ub initio on certain
assumed expansions for the total wave function whose
validity has recently been questioned. ' " The formu-
lations of the variational equations given in this section
follow directly from those of the previous section and
are, therefore, free of the questionable expansions used
by Mott and Massey. For purposes of comparison,
however, we adopt a notation which directly parallels
that of Mott and Massey. The present section intro-
duces nothing essentially new, but serves to formulate
the results of the previous section in conventional form.

If 4'i+)(1, 2) and 4'i '(1, 2) are each solutions of
Eq. (2), it then follows that

+(1, 2) =-'[+"'(1,2)++' '(1, 2)7, (13 )

4'(2, 1)= is[@&+)(1, 2) —0 t '(1, 2)7, (13b)

The f and g are usually thought of as the scattering
amplitudes corresponding to an "ordinary" and
"exchange" type of collision, respectively. '

Corresponding to the asymptotic forms (3) and (4)
of the two sets of wave functions considered in the

. previous section, we now have the following asymptotic
forms of the nonsymmetrized wave function (13a):

@.& &(1, 2)~f, (2) exp(ik~ .r,)
+ (1/ri)P, f,(2)f„(n„ni) exp(i k,r,),

as r~—+~;
and

%.i')(1, 2)~(1/rs)+, 1t,(1)g,.(n. ; ns) exp(ik, rs),
as

which follows directly from (3), (13a), (14); and

e„*ib&(1,2)—+f„*(2)exp(ik„nb r, )
+ (1/ri) Z, 4.*(2)f-'(»;») exp(ik. ri)

as r~—+00;
and

0, &')(1, 2)—+(1/rs)p, p,*(1)g„(nb,ns) exp(ik, rs),
as

which follows directly from (4), (13a), (14).
We dehne now the following two variational integrals,

which are equivalent to (5):

I„.(n ;
—nb)

J%'„+&b)(1,2)[E—H7%', &')(1, 2)dridrs, (17a)

J„.(n„—nb)

= )f4„~&b)(2, 1)[E—H7+, ~') (1, 2)dridr, . (17b)

are also solutions. From this, one may write

+&+)(1,2)=(1aX)+(1,2), (13c)

One then finds, corresponding to (8),

8[I„,(n. ;
—nb)+4z f„(n.; —n,)7=0, (18a)

8[J„(n„—nb)+4z-g~, (n, ; —nb)7=0, (18b)

We dehne
(1+X)'=2(1&X). (13cl)

where X is an operator which interchanges the position
coordinates of the two electrons. Ke recognize that X
is hermitian and commutes with (E—H) of (2), and
also that

which follows from (5), (8), (13c, d), (14c). The vari-
tional equations which correspond to (9) follow in
similar fashion.

We de6ne now the following two variational integrals,
which correspond to (10):

so that

f=1[p(+)+p(—)7

~
—r [p(+) p(—)7

P(k) =f~g

(14a)

(14b)

(14c)

E„,(n; nb)

~%', ib)*(1, 2)[E—H7+.&~) (1, 2)dr, dr2, (19a)

' T. Y. Wu, Phys. Rev. 87, 1012 (1952).
' S. Borowitz and B. Friedman, Phys. Rev. 89, 441 (1953)."It is not difIIcult to show, however, that the 6nal results

obtained by Mott and Massey from these expansions are quite
valid as far as the discrete spectrum of states (excitation, but
not ionization) is concerned.

I.„,(n, ; nb)

= ~f4„&b)*(2, 1)[E—H7+.&~) (1, 2)dr, dr, . (19b)
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One then finds, corresponding to (11),

8[X„,(n, ; ni,)+4~f„,(n, ; ni,)]

= 2ig, k,) [f,„*(nb,' n)5f„(n. ; n)

+gq ,*(ei,, 'n)bg„(n, ; n)]dQ; (20a)

6[1.„,(n. ; nb)+4irg„. (n. ; nb)]

= 2ig, k,
~

[f,~ (nb,' n) 5g„(n. ; n)

+g,~*(nb, n)bf„(n„n)]dQ. (20b)

We now consider the results that are obtained when
one uses as trial wave functions merely the first terms
of (15) and (16); i.e.,

0', 'i (1, 2) =P,(2) exp(ik, n, ri), (21a)

4„*"&(1,2) =P„*(2)exp(ik„ni, ri). (21b)
I

Substituting these trial wave functions into (1ga, b) or
(20a, b), one finds

4m f„.(n„; nb) =~I [2/ri —2/ri~]P„*(2)P, (2)

&&exp(ik,n ri ik„n—i, ri)dridr2, (22a)

47rg~, (n, ; nb) = [2/ri —2/ri~]P„*(1)P,(2)

Xexp(ik, n, ri —ik~ni, r2)drid7 2. (22b)

These expressions are equivalent to those obtained by
the Born-Oppenheimer approximation. The expression
for f„, agrees exactly with that given by Mott and
Massey. ~ The expression for g„„however, divers from
that of Mott and Massey in that the 2/ri in (22b) is
2/r2 according to them —a difference which is significant
only in the continuous spectrum. That the above
expressions are correct has been pointed out by other
workers using diferent approaches to these same
results. ' "

IV. CONCLUDING REMARKS

Variational equations for the scattering of electrons
by hydrogen atoms which are comparable to those given
above have been independently obtained by Borowitz
and Friedman. " Their development is based on a
generalization of the Schwinger (integral equation)
variational formulation of the one-body scattering
problem. As Kohn has shown in the one-body case, his
scattering amplitude variational equation (derived
from the spatial orientation degeneracy of the wave
function) reduces to the comparable Schwinger vari-
.ational equation when use is made of the integral
equation for the wave function. ' Hence, a similar

relationship, at least in part, undoubtedly exists be-
tween the variational equations given above and those
of Borowitz and Friedman.

In the Schwinger method, the integral equation for
the wave function provides for a definite iteration
procedure for systematically improving the trial wave
function. " Indeed, Kato has shown that a modification
of this iteration procedure will yield upper and lower
bounds for the scattering coefficients. " For the scat-
tering of electrons by hydrogen atoms, however, the
appropriate integral equations given by Borowitz and
Friedman are formidably complex so that there is little
hope that such an iteration procedure (except for a
one-body approximation, or the like) can be readily
carried through. "

The procedure adopted by the London group'' for
applying the variational equations is simple to carry
out although there is no guaranty, in general, concerning
the quality of the results. This procedure involves
choosing a reasonable trial wave function which is linear
in all the variational parameters, (scattering amplitudes
iricluded) and for which the variational integrals can be
evaluated without difhculty. Two different methods are
then used to determine the variational parameters: a
linear (Kohn') procedure; and a quadratic (Hulthen")
procedure. The linear procedure leads to a value for the
scattering amplitude and wave function which satisfy
identically the, integral equation which relates them;
that is, the wave function so determined satisfies a
necessary (but not suKcient) condition for its being an
exact solution. In the quadratic procedure, the wave
function is required, as an auxiliary condition to the
variational equation, to satisfy the equation (quadratic
in the variational parameters): variational integral =0,
which is also a necessary (but. not sufhcient) condition
for the wave function to be an exact solution. In the
limit where the trial wave function approaches the
exact solution, the two procedures must give the same
results. .Hence, the closeness of the results obtained by
the two procedures is a-criterion for the reliability of the
results. What is lacking, of course, is a proof, if one is-

possible, that this criterion is sufficient for determining
the reliability of the results. "Even so, such a criterion
may be more stringent than necessary, since it serves to
judge the quality of the trial wave function and one
may suppose it to be possible for some relatively poor
trial wave function to give fairly good results varia-
tionally for the scattering amplitudes by one or the

"Bee, e.g, J. M. Blatt and J. D. Jackson, Phys. Rev. 76, 18
(1949)."T.Kato, Progr. Theoret. Phys, 6, 295, 394 (1951).' Variational calculations for elastic electron-hydrogen scat-
tering using the one-body approximation have been carried out
by T. Kato, reference 13; L. Mower, Phys. Rev. 89, 947 (1953);
S. Altshuler, Phys. Rev. 89, 1278 {1953)."See, e.g. , reference 7, page 128.

"For the elastic 5-wave scattering case, the London group
(reference 2) found that when the two procedures gave essentially
the same results, these results agreed very well with those from
direct numerical integrations of the wave equation.
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APPENDIX: RELATIONSHIP BETWEEN KOHN'S VAR-
IATIONAL EQUATION FOR THE SCATTERING
AMPLITUDE AND HULTHEN'S VARIATIONAL
EQUATION FOR THE SCATTERING PHASES

plus an additional term (from 6g„) which gives, because
of (ASa), no contribution to the integral (A4) which
becomes

We restrict our considerations here to a one-body
scattering situation and a central force potential V(r).

&&( . ) (1/k2)~ (2 +1)(2
The wave equation is

(E—H)f (r) = [6+4'—V(r)]P(r) =0; (A1)

and a solution is desired which has the asymptotic form:

f& &(r)—+exp(ikn, r)+ f(n„' n)(1/r) exp(ikr). (A2)

Xexp(ig. +in ) G (r)Z~G (r)dr

X P~(nb n)P~(na n)d&. (A8)
cJThe variational integral is de6ned as follows (see

reference 5, Sec. III):
Making use of the Addition Theorem for Legendre

(A3) Polynomials, one obtainsI (n„—nb) = p&'&[E Hfp&~&dr—.ap b

bI(n. ; —nb) = (4~/k') g, (2n+1) (—1)"
Xexp(i2g„)8L„P„(n, nb), (A9)For trial functions f+g having the same asymptotic

form as (A2), but with f rePlaced by f+8f, one obtains ~h~re
to first-order,

bl(n„—nb) = ~ p'b&[E H)8$&'dr—
(A9a)8I.„= G„(r)ZSG„(r)dr.

0

From (A6) one has
A4

4~Sf(n„—nb) = (4+/k)p„(2n+1) (—1)"
Xexp(i2g„)8g„P„(n, nb). (A10)

4~8f(n-. ; —nb),

which is Kohn's variational equation for the scatt
amplitude f.

The solution of (A1) having the asymptotic form
(A2) can be expanded into partial waves and thereby
written in terms of the scattering phases q as follows
(see reference 7, Chap. II):

Hence, from (A4), (A9), it follows that

(A11)

which is Hulthen s variational equation for the scat-
tering phases q„." Hence, one may conclude that
Hulthen's variational equation for the phases is a
particular case of Kohn's variational equation for the
scattering amplitude. Kohn' has already shown that
his scattering amplitude variational equation reduces
to the comparable Schwinger variational equation when
use is made of the integral equation expression for the
wave function. Hence, the above discussion serves as a
further link between the various forms of the one-body

scattering variational equations. ."

f&'& (r) = (I/kr) g „(2n+1)i~
Xexp(ig„)G„(r)P„(n. n); (A5)

where

ZG„= [d'/dr' n(n+1)/r'+k' V—(r)]G„(r)=0, (—Asa)

and
G„sin (kr ——,'nm+ g„), (A5b)

asymptotically. Then

f(n. ; n) = (1/2ik) P„(2n+1)
X [exp(i2q„) —1]P„(n, n). (A6) "See also: T. Kato, Phys. Rev. 80, 475 (j.950).

other procedure, but not both, depending on certain Now, we have from (A5):
factors as yet unknown.

6P& ~ = (1/kr)g„(2n+1)i"
Xexp(ig„)8G„(r)P„(n. n), (A7)


