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The effect of carrier traps on the behavior of a semiconductor with respect to injected carriers is analyzed.
Two problems are considered : photoconductivity, and spread of excess carrier concentration under applied
field. It is shown that trapped minority carriers, by causing an increase in majority carrier concentration,
give rise to increased photoconductivity which may be nonlinear with light intensity and have a very long
time constant. These conclusions are in agreement with recent experimental results. The drift of excess
carriers is treated, neglecting diffusion. Expression is obtained for the time and space distribution of excess
minority carriers, and the effect of traps on the apparent drift mobility is discussed.

IN a semiconductor, imperfections of the crystal may
introduce in the forbidden energy gap discrete
energy levels with localized wave functions. We may
speak of these localized states as carrier traps. An
increase in the number of electrons in these states gives
trapped electrons whereas a decrease corresponds to
trapped holes. Shockley and Read! have analyzed the
hole-electron recombination rate resulting from the pres-
ence of such traps under constant perturbed electron dis-
tribution. The effect of the traps considered was that of
an intermediate step for the transition of an electron
from the conduction to the valence band. Recent
investigations on photoconductivity?® and decay of
injected carriers® as well as experiments on drift mo-
bility® indicated the necessity of considering the effect

of traps in these problems where the accumulation or -

depletion of trapped electrons or holes has to be con-
sidered. In general there may be several different types
of imperfections, and an imperfection of each kind may
give several discrete levels. However, under a given
condition it may be that only one set of traps is effective.
In the following we shall give an analysis of this simple
case. The problem of photoconductivity will be con-
sidered first, where a uniformly irradiated region of the
sample is sufficiently wide and the applied field is
sufficiently low that we do not have to deal with spatial
variations. Then the problem of injected carriers
drifting under an applied field will be discussed.

PHOTOCONDUCTIVITY

Consider a semiconductor in which the radiation of a
suitable wavelength excites electrons across the energy
gap, producing hole-electron pairs. The resulting photo-
conductivity measured by the increase of conductivity
is given by

Ao=e(uAn+urlp), (n

where u, and u, are electron and hole mobilities, and
n and p are electron and hole concentrations. Let #, be
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the concentration of electrons in the traps. When the
electrons and holes deviate from their normal concen-
trations, #, will also change from its normal value. We
speak then of trapped electrons (An;) or trapped holes
(Ap,= — An;). Condition of electrical neutrality requires

An=Ap+Ap.. 2)

Although trapped electrons or holes do not participate
in the conduction directly, their presence may change
An and Ap, thus affecting Ag.
~ Consider the rates of electron transition between the
traps and the valence and conduction bands owing to
the processes which establish thermal equilibrium.
Excitation owing to the irradiation will be considered
separately. Let R be the rate of transition per unit
volume and let subscripts ¢, v, and ¢ refer to traps,
valence band, and conduction band, respectively. We
can write

Rtv‘:"vntpy

3
Rct=rcn(N_'nt)7 ( )

where N is the concentration of traps and 7. and r, are
coefficients which may depend on the temperature.
According to the principle of detailed balance R,;= Ry,
and Ry, =R, in equilibrium. Furthermore, R,; should
be proportional to the concentration of vacant traps,
and R, should be proportional to the concentration of
electrons in the traps. Therefore,

Ri=rmupo(N—ny)/ (N —n0)=r.p1(N—mn),
71 7 /2 25 7 )

Ri.=rmo (N”— ”to)ﬂt/nto =TV Ny,

subscript O referring to the normal condition. According
to Fermi-Dirac statistics the ratio of empty to occupied
traps is ‘

(N —1m40)/n0=exp[ (Ee—{)/ kT,

where E; is the energy level of traps. Thus,
m=no exp[ (E:—{)/kT]
— 2(2em kT /12)* expl (E— E)/ET],
1= po expl —E.)/kT]
=2Q2mmpkT/h*)? exp[ (E,— Ey)/kT],

©)
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EFFECT OF TRAPS ON CARRIER

where E, is the bottom energy of the conduction band
and E, is the top energy of the valence band. We see
that p; and #; are equal to the hole and electron
concentrations, respectively, when {= E,. The net rates
of transition from the traps to the two bands are

Ruy—Ry=r[ pr—pr1(N—n,) ],
(6)
Ri—Rou=r L nm—n(N—n,)].

Under thermal equilibrium both these rates are equal
to zero.
(A) Steady State Under Continuous Irradiation
Under such conditions
‘(Rtv— th)"‘ (th‘ Re)=0. (7)

It follows from (6) and (7) that the fraction of traps
occupied by electrons is

7y rn+7op1
—= ®)
N fc(%+ﬂ1)+fu(P+P1)

There is a continuous electron transition from the
conduction band to the traps and from the traps to the
_ valence band, given by
np—noj)o
R,;=Nr., (Y]
re(nt-n1) 47, (p+ p1)

This is the hole-electron recombination rate resulting
from the existence of the traps in agreement with the
formula derived by Shockley and Read. Introducing

B=r.(notn)+r,(pot+p1), (10)

Rct th Rtv

N=ro+7,p1,

we get
éﬁzrc(ﬂ_v W)An_rv’?Ap. 1)
N BB+r.An+tr,Ap)

Experimentally we usually have Ag/oy<K1. Therefore,
An and Ap are small compared to the normal concen-
tration of majority carriers which is #,, assuming
n-type samples; hence,

ntO/N= "7/6,

7 An<B.

If r,Ap is also small compared to B3, then An, will vary
linearly with Az and Ap. It is found,? at least in ger-
manium, that the part of photoconductivity resulting
from traps saturates with increasing light intensity. This
can be expected if 7,Ap becomes large compared to 3.
Neglecting the terms containing 7,An, we get

—An/N=(u/B)[Ap/ (B/r)+Ap]
= (nu/ N)LAP/ (B/r)+Ap]. (12)
This approximation amounts to assuming

76K, (13)

INJECTION 1425
For steady state under irradiation the number of elec-
trons on the traps remains constant; therefore, Ap is
determined by the rate (per unit volume) of hole-
electron excitation, L, and recombination. If an excess
hole has a deﬁnite rate 1/7, of recombining with a
conduction electron, then

AP"—‘LTT' (14)
Substituting (14) into (12), we get
L
Api= — Any= . (15)
B/rvti L

Thus we get, under irradiation trapped holes, minority
carriers. Since Ap according to (14) is independent of
the existence of traps, the trapped holes just cause a
corresponding increase in Az according to (2). Although
the trapped minority carriers cannot conduct them-
selves, by increasing the excess of majority carriers
they enhance the photoconductivity. Expression (14)
is in agreement with observations on low temperature
photoconductivity in germanium.? For small excitation
intensity Ap; is proportional to L. For high excitation
intensities,
L>B/7,7+,

the trapped holes tend to saturate, approaching #u.

It has been suggested that hole-electron recombina-
tion is mainly determined by some traps present in the
material.! It should be pointed out that if the traps
considered here were also the traps determining re-
combination, then the photoconductivity should not
show saturation. For, in that case, the recombination
rate is given by (9) which should be equal to the
excitation rate, L, under steady state

np—nopo AP
~ N7y pg—,
B-Frobn-tr,Ap "8/t p

in view of po<Kno and An<<no. Substituting into (12),
we get

L=Nrey

Apy=— Any= (n/7:1m0N)L.

The trapped holes, consequently the photoconductivity
caused by them, are proportional to the light intensity.
For n-type material ¢ should be close to the top of
the energy gap. Therefore, we may expect (¢—E)>0;
consequently,
111
It follows then:

N0/ N =

and  p>>po. (16)

n/B~1, B/ripit-ran/r.. an

Now p; varies exponentially with 1/7" according to (5).
At the same time, for semiconductors with low impurity
activation energy, such as germanium, the majority
carrier concentration #, remains constant over a wide
temperature range. Therefore, 3/7, will be determined
by p: if the temperature is sufficiently high. With
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increasing temperature, $; should eventually become so
high as to make Ap; negligible according to (12). This
explains the experimental observation that the photo-
conductivity in germanium shows the effect of traps
only at low temperatures but not at room temperature.?
On the other hand, with decreasing temperature, p;
will become so small that very low intensity, for
example, background radiation, will saturate the traps.
The effect of trapping will again not be observed. Thus
the effect of any set of traps should be observable only
in a limited temperature range. However, the term
remo/7y, if not negligible, may extend the range of
trapping effect to lower temperatures.

(B) Transient Condition

Let photoexcitation of hole-electron pairs begin at
¢=0 with constant rate L per unit volume. We shall
assume that each excess hole has a definite rate 1/7, of
recombination with a conduction electron; 7. may be
called recombination lifetime. Furthermore, the holes
also become trapped at a rate equal to the rate of
decrease of electrons on the traps. The net rate of
increase in hole concentration is then

dp/dt=L—Ap/7,~+dn./dL. (18)
For the electrons on traps we find, by using (6),
dﬂt
_—= (Rlc_Rct)_*— (Rtv_th)
di
=— (rent+r,p )N
+re(tn1)+7,(potp1) Inct-romdp. - (19)

There is also an equation for the rate of change of
conduction electrons. Thus we have a set of three
simultaneous equations. However, for An<<no, # can be
approximately replaced by #7,. Then we get in view of
(10) and (11):

d (— A’I’Lt)
- - ’7N+»3”z+ 7vntAP = ,BA’ﬂrl‘ antAP

=—(1/77) (= An)+1/ra0)nAp, (20)

where we have introduced
1/ Tf =18:

Since (—An,) is the concentration of trapped holes, we
see that 7, is the time required to release a trapped hole
and 7, is the time required to trap an excess free hole if
there is normal concentration #4 of electrons in the
traps. Now we have only to deal with Eqgs. (18) and
(20) with two variables Ap and An,. Still (20) has
a nonlinear term, involving 7,Ap, which makes the
solution difficult.

We shall first limit ourselves to low intensities of
light: L<KB/rs7,. According to (15), we have in this

1/7';:'— Yo7 40.
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case —An,<LKny. Putting #n,/n,0~1 in (20), we get by
combining (18) and (20)

&An/de+ 1/ r+1/74+1/7,)dAn/dt

A+ /rr)AnA-L/7=0. (21)
For the boundary conditions at (=0,
Any=0, d(An,)/di=0,
the solution is
Api=—Any=L(r,7/7)[1— (1/o1—az)e™e
, : — (as/ar—az)e1t]  (22)
for trapped holes, and
Ap=Lr,{1—[as/ay—as(1—70) 02 _
—ag/al—ag(l—ffal)e_“"]} <23)
for free holes, where
a1,2= (1/2) (1/7’,—!— 1/Tf+ 1/T;)
+[ /DA 4+1 r4+1/ 12— 1/ 77 B (24)

In the decay process after the light is cut -off we get,
of course, only the transient terms.

Experimentally, when the trapping effect is observed,
the decay of the photoconductivity lasts much longer
than 7,, the recombination lifetime.??® Since a;>1/7,,
this means

w<Kay, or 1/7,7,<K{/4)(/ri4+1/741/7)2

Therefore, 1/7,<1/7, and/or 1/7,;<1/r, Expanding
the square root in (24), we get

a=1/r+1/r;+1/r~1/74+1/7,,
as= (1/7,77)/ (/7 1/ 751/ 7)=or /74 (15t 7).

The equation for the decay of free holes given by the
transient part of (23) can be written

Ap=Lr7;/r (@/ar—ag)Ters/ s (et 7,) e
+ (ae/a1— o) Tt 70/ 6" 0],

and the decay of trapped holes is given by the transient
part of (22). We see that the photoconductivity,

Ag= el: (ﬂe+ﬂh)AP+“9APJ7

has a much larger slow component, with decay constant
az, as compared to the faster component with a;. The
slow component is mainly the result of trapped holes. On
the other hand, the free holes give the larger contri-
bution to the fast component.

Consider now the case of high intensity of light:
L>p/r,7.. According to (15) the steady state value of
Ap, in this case approaches the saturation value 7.
Whereas the final value of Ap, has a saturation limit,
the rate of rise increases with increasing light in-
tensity. Thus the trapped holes will be saturated
faster with higher intensity. When the trapped holes
are saturated, further build-up of free holes will proceed
with time constant 7,. On the other hand in the decay
process the release of the trapped holes always ends

(25)
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with the time constant 1/a;> 7,. Therefore, with high
intensities of light the rise and decay of photoconduc-
tivity will become asymmetrical. This deduction is also
in agreement with experimental observation.?

DRIFT OF INJECTED CARRIER UNDER
APPLIED FIELD

We shall consider the one-dimensional problem.
Furthermore, to get a simple solution bringing out the
essential features of the problem, we shall neglect
diffusion. We have then a specimen with an applied
voltage giving a constant field E in the X direction.
At a certain point, x=0, carriers are injected into the
specimen. We are interested in the distribution of excess
carriers in the specimen as function of time. The
injection is assumed to be small so that Az and Ap are
small compared to the normal concentration of majority
carriers #,. The variation of E will then also be small,
and the continuity equation for holes gives

dAp/dt= —div(Eup)— Ap/ .+ 0n./dt
= —FEudAp/dx— Ap/t,~+0n,/dt. ~ (26)
Assuming that hole-trapping does not approach satu-
ration anywhere in the sample, we can use the same
approximation in the expression of d7z,/d¢ as in the

analysis of transient photoconductivity. The differential
equation for holes becomes

AP/ 3+ (1/ 141/ 7,4+1/7)0Ap/ 3+ End®Ap/ 0t
+Eu/7, 0Ap/dx+1/7,7,Ap=0. (27)
Let the carrier be injected at x=0, beginning at ¢=0,

keeping a constant hole concentration at this point.
The boundary conditions are

$1<0: Ap=0 for any «,

(28)
t20: Ap=Ap, at =x=0.
The solution is i )
A I 5
121, A;p=P,[1+f e Crilatmi_ da],
0 24/6 (29)
t<t;: Ap=0,
where
P,= Aj)o exp[_tz(l/Tr"I‘ 1/7’;)],
t,=x/Ep, (30)

A= 4t/ m)[(t—t2)/74],

and I, is the modified Bessel function. The time ¢, is
the transit time, the time required for the first injected
carriers to reach the point x. Because we have neglected
diffusion, the equation shows that at #, there is an
abrupt rise of excess holes from zero to P,. The first
holes arriving to give this abrupt rise decay during
the transit time with the combined rates of recombi-
nation and trapping. The holes arriving later will be
rdamped less and less as the accumulated trapped holes

CARRIER INJECTION 1427

approach equilibrium with the free holes. Equation (29)

gives
Ap= Apoexp (—1ts/7,) =P, exp(t/1s) @31

at 1= oo, the traps having come to an equilibrium with
the valence band. The holes decay on transit only by
recombination, as we would expect. If ¢,/7, is large,
the initial rise of Ap is negligible compared to the final
steady state value. For a given ¢,/7,, the time required
for Ap to approach the steady state value is directly
proportional to 7, and can be very long if 7, is large.
This is in contrast to the case without traps where Ap
rises immediately to the steady state value at ¢, except
for the smearing due to diffusion.

Consider now a pulse of injection which is often used
in experiments studying drift mobility. Instead of a
step function, Ap, at the point of injection lasts only
from ¢=0 to 7, the duration of the pulse. Since the
differential Eq. (27) is linear, the solution in this case
is simply a superposition of two solutions: one given by
(29) and the other having the same form, but with
(—APy) replacing Apy and (¢—7T) replacing £ Thus,

1<ity: Ap=0,
t,<t<t+T: Apisgiven by (4), )
’ 4 I,(/3)
12t+7T: Ap:sz o (THl4t)s @,
A 24/6
where

Ar= 4o/ 1) (1= tatT)/ 7]

When the injection pulse is very short, the time
variation of Ap at a given point x is very simple to
calculate, e.g., for

A—‘ A1= 4tzT/TtTg<<1,
we can use for {2 ({,+7), the approximation
Ap=[(A—A)P.I1(v/A)/24/AJexp[ — (ri/4t:)A]
= (4, T/7474) Pof (D). (34)

Figure 1 gives the calculated curves of the function

(33)
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Fic. 1. Curves of the function f(A) plotted against (7:/2t;)%A,
for two values of the parameter £,/7;.
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f(A) plotted against (7,/2¢,)?A for two values of t,/7..
Starting from f(0)=0.25 the curves go through a
maximum which rapidly increases with increasing
t+/7:. Differentiating f(A), we find that at the maximum

WAL/ D)/ T2 (/D) =2t/ 7.
The function on the left-hand side increases with A.
It approaches 4 as A—0. Therefore, f(A) has no
maximum for #;/7,<2. On the other hand, for large
¢,/ 7. the value of A corresponding to the maximum of
f(A) will be large and we have approximately

I (/B)~I1(v/A)~e”?/ (2my/ AR
'Therefore, the maximum of f(A) corresponds to
N A2 7. (35)

A being related to ¢ by (30), we find that the peak of
pulse of excess free holes at distance « from the injection
point occurs at

t=t, (1o 7))/ 7s (36)

PHYSICAL REVIEW VOLUME 92,

H. Y.

FAN

and that the magnitude of the peak is

Apmax=[Pa/ (4m)1(T/7,) (:/t) e (37)

For sufficiently large £,/7,, the initial step in Ap, equal
to P, will be negligible compared to the peak. Ap will
appear to rise gradually; and it will, therefore, be
impractical to determine ¢, from the first arrival of the
pulse. The time corresponding to the easily observable
maximum is given by (36). This result is easily under-
stood. As 7, is the average time required for releasing
a trapped hole and 7, is the average time required for
trapping a free hole, 7,/ (7,4 7,) is the fraction of time
during which the hole remains free. Therefore, the
time required for most of the holes to reach the collector
is (re+7,)/7¢ times longer than the transit time ¢, in
the absence of traps. The apparent drift mobility will
be 7¢/ (744 7,) times the true mobility. Small apparent
drift mobility has been reported for silicon® and for
germanium at low temperatures.®
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Generalized variational equations are derived for calculating the elastic and inelastic scattering amplitudes
associated with the scattering of electrons by hydrogen atoms. The derivation of these equations is such
that no unnecessary restrictions are imposed on possible trial wave functions. Two equivalent formulations
are given: one involving the use of symmetrized wave functions; the other involving wave functions of the
conventional (Mott and Massey) type. For trial wave functions consisting of only the incident wave (multi-
plied by a hydrogen eigenfunction), these variational equations yield the same results as are obtained by
the approximations of Born and Oppenheimer. Various calculation procedures are discussed.

In an appendix, it is shown that the Hulthén variational equation for the scattering phases is a special
case of the Kohn variational equation for the scattering amplitude. ) '

I. INTRODUCTION

THE first development of a variational procedure
for dealing with the scattering of electrons by
hydrogen atoms was carried out by Huang.! His method
is based on two assumptions: the wave function’s
asymptotic value contains only the incident and elasti-
cally scattered waves; only S-wave scattering takes
place. By an extension of Hulthén’s one-body scattering
variational procedure, Huang thereby obtains a vari-
ational equation for determining the .S-wave phase
shifts. The calculation procedure based on the Hulthén-
Huang variational equation was improved and extended

* A brief report of this work and that of reference 8 was pre-
sented at the 1952 Thanksgiving Meeting of the American
Physical Society [see Phys. Rev. 89, 913 (1953)].

1S. S. Huang, Phys. Rev. 76, 477 (1949). A variational pro-
cedure for the analogous nuclear problem, n-d scattering, was
developed by: W. Kohn, Phys. Rev. 74, 1763 (1948), and M.
Verde, Helv. Phys. Acta 22, 339 (1949)..

by Massey and Moiseiwitsch who carried out detailed
calculations for the S-wave phases.?2 Where a comparison
was possible, they found that the results of their vari-
ational methods, even for very simple trial functions,
are in very good agreement with the results obtained
previously by direct numerical integration of the wave
equation. Erskine and Massey extended this work still
further by calculating variationally the 1s—2s excita-
tion cross section at low energies.® Their method

_assumes that only S-wave scattering takes place and

that a ‘“distorted wave” approximation is valid.
Moiseiwitsch has improved the variational method for
dealing with the inelastic scattering processes.* His
procedure is based on two variational equations whose

2H. S. W. Massey and B. L. Moiseiwitsch, Proc. Roy. Soc.
(London) A205, 483 (1951).

3 G. A. Erskine and H. S. W. Massey, Proc. Roy. Soc. (LLondon)
A212, 521 (1952).

¢ B. L. Moiseiwitsch, Phys. Rev. 82, 753 (1951).



