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The Magnetic Properties of an Electronic Einstein Model Solid
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Following Einstein's proposal for a thermodynamic description of the ions in a solid, we propose a
model for the electrons in a solid where the electrons are confined to parabolic wells and, within each well,
obey Fermi statistics. The parameters of the model are F00, the classical frequency; m, the mass; n„ the
number of particles per well; and n„, the number of wells per unit volume. In terms of these parameters
the magnetic and caloric properties of the model can be unambiguously evaluated. This gives a satisfactory
and consistent description of the thermodynamic properties of superconductors and of paramagnetic salts
when appropriate values of the above parameters are determined.

I. INTRODUCTION with decreasing temperature for T & 0, the Debye
temperature.

The model which we propose, therefore, for the
"electrons" in a solid is as follows. We imagine that
there are e„parabolic wells of potential i28(x'+y'+s')
per unit volume in the solid. In each well we put e,
particles. The particles are of mass m, charge e (taken
as the electronic charge), and obey Fermi statistics.
Thus, e„,e„8,and m are the parameters of the model
which we shall adjust by physical consideration to 6t
approximately real materials, just as in Einstein's
original work. Since e, determines Eo, the I'ermi energy
up to which we fill the levels (at T=O), we may alter-
natively use Eo instead of e, as a parameter of the model.
We will 6nd that for some considerations only the clas-
sical frequency in the well coo

——(8/m) & is the significant
parameter so that 8 and m may not have to be deter-
mined separately (a similar situation exists for the
Einstein lattice model, of the three parameters E, m,
and 8 only S and coo are needed to determine the
specific heat curve). rs,e„=e is the total number of
"electrons" per unit volume for the model. We shaH

see that fitting the model to the physical properties of
a real material will either determine the above four
parameters or at least give some rather interesting
inequalities upon them.

We defer for the moment a justification for this model
as well as an estimate on physical grounds of the values
of the above parameters. Specifically, the well is not
necessarily to be identified with atomic potentials. It
will become apparent that the parabolic well has special
properties of degeneracy not possessed by an arbi-
trarily chosen potential, and it is just this degeneracy
which is responsible for the properties we derive. The
parabolic well has, in addition, the virtue, especially
valuable for the problem at hand, that the energy
levels can be determined exactly for all values of the
magnetic field, so that vexatious perturbation problems in
the presence of degeneracy do not have to be considered.

' 'T is the purpose of the present paper to devise a
~- model of the electrons in a solid whose magnetic
properties give a rough description of real materials,
and by rough we mean to the same degree ef approxi-
mation that an Einstein model of the lattice can be
made to describe the lattice specific heat. The Einstein'
model of the lattice consists of E identical harmonic
oscillators and has the property that its speci6c heat
approaches the Dulong-Petit value at high tempera-
tures, whereas below some characteristic temperature
it falls rapidly. The parameters of the model are fitted
approximately to a real material from physical con-
siderations (elastic constants, atomic masses, volumes,
melting point) and represents roughly the behavior of
the specific heat in a fairly consistent manner.

The model which we wish to propose for the electrons
may therefore be expected, by analogy, to have the
following properties. At large 6elds and high tem-
peratures, we expect the magnetic permeability to
approach 1, and the electronic specific heat to be linear,
while as field and temperature diminish we would
expect the permeability, p, to approach either 0 (super-
conducting) or some value greater than 1 (ferromag-
netic or paramagnetic). We would expect the electronic
specific heat in this region to deviate considerably from
a linear law. The parameters of the model would then
be adjusted to 6t particular real materials as well as
possible (just as the Einstein model for the lattice
specific heat) so that the transition fields and tem-
peratures from p 1 to p((1, or p& 1, would be approxi-
mately as observed.

It should be emphasized that this model as treated
in this paper is essentially a thermodynamic one so
that such properties as frozen-in moment, remanance,
and conductivity cannot be discussed without further
assumptions. However, the model itself will suggest
how this might be done, just as the Einstein model of
a lattice can be used to develop a theory of electrical
conductivity' and leads to the prediction that the
resistivity falls rapidly (but not like T' as observed

II. SPECIFIC HEAT

' A. Einstein, Ann. Physik 22, 180 and 800 (1907).' N. F. Mott and H. Jones, Theory of the ProPerties of 3fetals
and A/loys (Oxford University Press, I.ondon, 1936),p. 247.

A. Case for No Magnetic Field

Let us compute the electronic specific heat of one
gram atom (volume A) of material on the basis of this
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FIG. j.. Constant energy surface in quantum number
space for the isotropic oscillator.

model. We shall emphasize certain aspects of this

problem and go into considerable detail.
For one well we need, following the development of

Seitz, ' erst to compute the number of states less than
some arbitrary energy E. This is then combined with

the Fermi-Dirac distribution function to compute the
relation between Eo, T (temperature), and n,

For an isotropic oscillator whose eigenvalues are
expressed in the form

E= hG)p(( l (+2n+n, +3/2),

where 1=0, +1, ; n=0, 1, 2, e,=0, 1, 2,
the surface of constant energy in quantum number
space is shown in Fig. 1. We wish to compute N(E),

'

the number of points inside or on this surface. For sub-

sequent generality we shaH replace the dimensions of
Fig. 1 by ED= a, EB= b, EA = c, EC= c'. With this
notation we have for the isotropic oscillator in the
absence of a field )Eq. (1)$

Carrying out the integration gives

(—1)'+"
a, ,= Le'n'" {1/(q —rb/a) (r+ sc'/b)

( 2m')' s

—1/(q rb/a—) (r sc—/b) )

+e' "&{1/(q+sc'/a) (r qa/—b)

—1/(q —sc/a) (r—qa/b) )

+e' '"{1/(q—sc/a) (r sc/b)—/
—e "'"'{1/(q+sc'/a) (r+sc'/b) }3 (3)

The origin of energy has been chosen at n= —1/2,
n, = —1/2.

From geometrical arguments given previously4 it is
evident that for the isotropic oscillator the principal
contributions of the periodic part will be from those
terms, uq„, , whose indices, q, r, s, are proportional to
the direction cosines of the normals to the faces ADB
and DCB. This means that the four sets of principal
terms will be of the form,

~4 j i~ ~2j j,—i~ ~ 4'. —j,—j, and a &j,—j +jy

since these directions correspond to cate'hing or missing
an entire plane of lattice points on the faces of Fig. 1
as E increases. Substituting the four sets of indices
above for q, r, s into Eq. (5) results in an indeterminacy
for the isotropic oscillator. This may be resolved by a
limiting process or more simply by returning to the
defining Eq. (4). The latter procedure gives integrals
which are quite straightforward. The resulting ex-
pression for X(E) in the case of the isotropic oscillator
ls

&(E)=l(Elh o)'+Z.(-1)'(E/h )'
XsinL2~ j(E/h(oo) $/2n. j

+periodic terms of O(E/huo). (6)

This expression is plotted in Fig. 2. The volume term
(first term of Eqs. (3) or (6)) is given by the dotted line
while the steps represent the contribution of the

b= c=c'= /Eu)hp, a= E/2h(op. (2)

The number of points inside such a pyramid is

N(E) = ,'ab(c+c')+ -P e—'«+"&a „, (3)

where the erst term is the volume of Fig. 1 and aq„, are
the periodic terms given by

N tE)

E /5, (uo

/
/I

p I

I

t
l

l
I I

P+~ P+~

e2ni(nq+rn&ni)clndn if)
Fig. 1

3F. Seitz, The Modern Theory of SoL&s (McGraw-Hill Book
Company, Inc., New York, 1940), p. 150.

Fro. 2. Number of states within a given energy surface E for
the isotropic oscillator in the absence of a Geld. p is an integer.

4 M. F. M. Osborne, Phys. Rev. 88, 438 (1952); M. C. Steele,
Phys. Rev. 88, 45I (1952).



ELECTRONI C EI NSTEI N MODEL SOLI D 1405

FIG. 3. Constant energy surfaces in quantum-number space for diferent potentials. (a) Cubical box, (b)
Spherical box. ACB is a concave ruled surface and OD—DC—20B. (c) Coulomb potential OB BD CA/—2. —

in quantum number space), i.e., with the Coulomb or
parabolic wells. When kT is less than the spacing of the
levels, we may expect departures from the linear
specific heat law of a Fermi gas. Furthermore, these
departures will be more pronounced as the faces get
Batter or the degeneracy increases.

Returning to the computation of the specific heat,
we proceed with the condition which determines the
Fermi energy, Ep, of one well as a function of T and n„

periodic terms. The height of each riser is the number
of points in the two Rat faces ADCB of Fig. 1, and the
width of the tread is hGDp.

At this point we wish to comment on the difference
between the expression for 1V(E) for the parabolic well
and other types of potential. For the parabolic well the
average fluctuation from a smooth curve (the volume
term) is of the order of X(E)&, or the area of a face. For
a cubical box of dimension I., the average fluctuation
is of order'

df(E)
n, = — ' X(E) dE,

p dE
p (2nsE) ~/Al $(E)l,

where p is the radius of curvature in quantum number
space (Fig. 3a). For a spherical container, i.e., the

h f(E) th F f t F E (6)potential
gives

V=O, r &E, V= ~, r&E.,

the constant energy surface is determined by

P(R) =R Vq~fL(2nsE/k') fR)e+'~&P~ (cose) =0. (7)

If e denotes the zeros of the Bessel function, the
surface of constant energy' in the quantum number
space l, m, n is given in Fig. 3b. The average Quctuation
of 1V (E) around a smooth curve is of order 1V(E)'. For
the Coulomb potential, Fig. 3c, the Ructuation around
a smooth curve is of order X(E)& just as for the para-
bolic well. It will be seen that the figures for the highest
degeneracy, i.e., the parabolic well and the Coulomb
well, correspond to energy surfaces with Rat faces
whereas the cubical box with a spherical energy surface
has the lowest degeneracy. The spherical box has ruled
faces instead of Rat faces for its constant energy surface
and, therefore, falls in an intermediate degeneracy posi-
tion between these two. The fluctuations for the
spherical box are similarly intermediate. Since our
previous work has shown that all the magnetic proper-
ties must be derivable from these Quctuations, we may
expect larger and more interesting magnetic properties
to arise from those wells which have the largest de-
generacy (flat faces in their surfaces of constant energy

5 E. Jahnke and F. Emde, Tables of Functions (Dover Publica-
tions, New York, 1945), p. 143.

n~= s'(Eo/&~o) +s (kT) Eo/6(&s&o)

+Im p (—1)& (Eo/h&uo)'(exp (2vrs jEo/A~o)/2s. j)
j=l

X (2s'jkT/A(uo)/(sinh2s-'jkT/oooo)+0(Eo/$~o) (8)

in which the first two terms are just those obtained
by the conventional method with 1V(E)=o(E/oooo)s-
whereas the remaining terms represent the number
theory corrections.

Evidently if kT)&~p, these number theory correc-
tions become negligibly small since they are not only
damped exponentially but alternate in sign. In this case
the speci6c heat takes on the conventional expression
given by Seitz. For one gram atom of volume A this is

C„=An„(s'/6) k'TEo'/(ha)o)'.

However, with diminishing temperature there must
come a point where the e8ect of the number theory
terms can no longer be neglected. In determining the
dependence of Ep on the temperature, however, it has
been found impossible, to date, to assess the eGect of
these corrections Las they appear in Eq. (8)] on Eo
because of the great sensitivity of their contribution to
how close Eo/hero is to an integer. From Fig. 2, which
may be considered as the limit of Eq. (8) as T-+0,
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Eo is, within the same limits, an indeterrainate function
of N (or conversely). This is a consequence of degener-
acy with the result that fixing Eo and fixing the number
of particles are here (at low temperatures) two different
problems (see introduction).

For this reason we have chosen to abandon Eq. (8)
at low temperatures (k T&4)o) and approach the problem
with an approximation which succeeds best at T=O
and fails for larger T. This approximation fails at tem-
peratures where the specific heat approximately agrees
with the linear law, Eq. (9), so that we can compute
the specific heat approximately for all T. Thus, we
shall see that except at T=—0, this indeterminacy men-
tioned above can, in fact, be resolved.

We, therefore, first compute by an approximation the
specific heat for kT«k~o, where the number theory
correction. terms in Eq. (8) obviously dominate. Let us
write the expression determining the Fermi en'ergy, Eo,
as a function of temperature in its most fundamental
form. We denote by 6„ the number of points in both
faces of Fig. 1, and the energy corresponding to any
point in either face by E(p) = kcdo(p+3/2). Here p is
zero or a positive integer. The expression determining
+o is

c (po 1+exp{ [Itcdo (p+ 3/2) —Eo]/kT}

n, =Ns(p+1). So we may write

n, = Vs(Po)+idio+i= Q 6„+Q
p =50

X -——1
1+exp{[Itccdo (p+ 3/2) —Eo]/k T}

+2
y & po 1+exp {[Itcd o (p+ 3/2) —Eo]/k T}

or, using the definition of Ns(p),

l&to+i= —Q
i &i o 1+exp{[Eo—kcdo(1+3/2)]/kT}

+2 (11)»i o 1+exp{[Acdo(p+3/2) —Eo]/kT}

We observe that in this form all of the terms on the
right become exponentially small except for perhaps the
two or three terms where p is closest to po, under the
condition that hcdo/kT»1. Therefore, for sufficiently
small temperatures we take into account only the
larger terms which are given by those p's closest to po.
Let us define a function of the temperature 0&ti(T) &1
by (Eo/kcdo) —3/2 —po

——t)(T). Then Eq. (11) may be
written approximately as

1
(10)

p& po 1/exp{ picdo (p+3/2) —Eo]/kT}
l Apo+i= —Ago —i (a)

exp [lcd o (1+ti)/k T]+1

where po is by definition the nearest integer smaller
than or equal to (Eo/kcdo) —3/2. In this form for Eo we
see that e, is expressed as the sum of terms representing
the contribution of states which are full or nearly full

(p & po) plus the contribution of those states which are
nearly all empty (p) po). One or two layers in the
immediate neighborhood of the Fermi energy (p-po)
have a probability of occupancy near 1/2. We shall
need to take explicit account of these.

Now consider in detail the number of particles n,
in one well. This can always be expressed in the form
n, =Nx(p)+{A~i. Here

N-(p) =2 ~,
j=o

is the number of states up to and including the pth
layer' and { is the fraction to which the. next face could
be ulled with particles given the available number e,.
If &=0, we speak of a filled face. t =1/2 means that
1/2 of the next face could be filled, while l =1 would

imply that the next face, at T= 0, would be completely
filled. Thus, for the case l = 1 we could write

—~s o-
exp (Scdoil/k T)+ 1

+~io+i-
exp[h~o (1—g)/kT]+1

(b)

(c)

(12)

+~» o+s (d)
exp[Acdo(2 —ti)/kT]+ 1

Equation (12) shows that at a sufficiently low tempera-
ture, where the Fermi function is suKciently close to
either 0 or 1, only terms (we have taken four) in the
immediate neighborhood of the Fermi energy con-
tribute to the temperature dependence of the Fermi
energy. Let us now evaluate the specific heat for two
limiting assumptions: that the face is either half filled
(|=1/2) or completely filled ({=0).

Evidently for the case /=0, if ti is near 1/2 (Fermi
energy Eo falling halfway between lattice planes 2, 1, 1),
terms (b) and (c) nearly cancel each other whereas (a)
and (d) are negligible for kT sufficiently less than hcdo.

For the case (=0, therefore, we have approximately,
where ti(T) =1/2+e(T), e(T)«1/2,

o=—auo/(exp[(k~o/kT) (-,'+e)]+1)
+&i o+i/(exp[(@coo/kT) (s e)j+1), (13)

' It can easily be shown by direct summation that X(p) = (p'/6)
+Ps+(11P/6)+1 whence it follows that A„=N(P) —N(P 1)—
= (1/2) p'+ (S/2) p+ i.
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from which we find

k'1 1
Eo= (po+ 2)

kazoo

— —Li+ exp (—
kazoo/2kT)

7. (14)
Aroo po

The total energy is

U= p„(p+3/2)koooh„
exp {L (p+ 3/2) h~oo —Eo7/k T)+1

(15)

This can be evaluated in a manner similar to the above
derivation for Eo, using only terms corresponding to
the layers po and po+1 closest to the Fermi energy.
Ultimately one obtains for the atomic heat for the case
)=0 (611ed face), using Eqs. (14) and (15),

(=., r=o= (~ fl/~T)r=o
= AN„(k/2) (Aroo/kT)'6 po exp[ ——', (Aroo/kT) 7

X (1—2 expL r'(hroo/kT) 7) (16)

In a similar fashion it can be shown that for the half
filled face, f= 1/2, the Fermi energy lies almost directly
on a lattice plane 2, 1, 1 (probability of occupancy 1/2 at
T=O). The principal terms in Eq. (12) which have to
be taken into account are (b), (c), and (d), and the
atomic heat is

Ayp170
C„r,——Ae„k(hroo/kT)' exp( Aoio/—kT) (17.)

81

For any other value of i' (except f=0) it can be shown
that the Fermi energy for T—+0 moves closer and closer
to a lattice plane in such a way as to just give a prob-
ability of occupancy (the Fermi function) equal to the
fraction 1 to which that face is filled, given the available
number of particles n, .

The three expressions for the specific heat, Eqs. (9),
(16), and (17), with po ——Eo/oooo, are plotted in dimen-
sionless form against the dimensionless temperature
variable 2or'kT/tuoo in Fig. 4. It will be seen that the
two low-temperature approximations agree roughly with
the linear law at 2m'kT/hooo~3 6, or roughly —at a
temperature where one expects them to begin to fail.
Thus, together with the linear law they give a descrip-
tion of the specihc heat for all temperatures. At very
low temperatures the specific heat is vanishingly smaller
than the linear law. The filled face case (t =0) may rise
above the linear law at intermediate temperatures.

B. Case with a Magnetic Field

Now let us consider the eGect of a finite magnetic
6eld H on the Fermi surface and its corresponding
effect on the specific heat. The energy levels in this
case are given' by

E= broil+ d
l
l

l +d (2'+ 1)7+A(oni o,+1/2),

u= eH/2mc, d= (1+oooo/oos) l,

7 C. G. Darwin, Proc. Cambridge Phil. Soc. 27; 86 (193k).

O

2

2

)(=2m 24.Tl+0

FIG. 4. Specific heat vs temperature, both in dimensionIess
form. (1) Equation (9), linear law, for fields such that y&1.
(2) Equation (16), no field, filled face (f'=0, y=0). (3) Equation
(17), no field, half-filled face (f 1/2, =y= 0).

which for small fields, or«coo, takes the form

E= haioL(l 1
I
y2ri+1+ri +1/2)+ (ro/ooo)l

+ ', (ro/roo)'l -l l+ (2m+1) (ro'/2roo')+O(oo/coo)'7. (19)

We see that as the magnetic field (~ro) increases, the
dimensions of Fig. 1 are modified as follows. The l+
axis decreases linearly with II, the l axis increases
linearly, and the n axis decreases quadratically (con-
stant to the first order of (co/coo)) in just such a way as
to keep the total volume and also the area in the 3—e
plane a constant. We also note (1) for all fields the
Fermi surface is Rat, since the energy is linear in the
quantum numbers, and (2) that when (E/kroo)((o/coo)
(1/2, the Fermi surface can be placed in such a way
as never to cross a lattice plane whereas if (E/hroo) (co/ooo)

)1/2, it must do so. That is, if (E/hroo)(co/roo)=1/2,
the Fermi surface has moved by 1/2 unit in quantum
number space, inward 1/2 at the end of the l+ axis,
outward 1/2 at the L axis (see Fig. 6).

From this we can immediately draw a conclusion
about the behavior of the specific heat in a magnetic
field large enough that (E/koio) (co/coo)) 1, in contrast
with its behavior in the absence of a magnetic field
(ro=0). The departure from the linear law displayed in
Fig. 4 is primarily a consequence of the discrete intervals
Lro at which the Fermi function is evaluated. Now as
soon as (E/oooo)(ro/roo))1, these intervals are made
smaller, being instead ken where co&&coo. In that case we
have a return to the linear law where the specific heat
is primarily determined by the volume term in X(E),
-', (E/koio)', and only when hro/kT&)1 (instead of
kazoo/kT&)1) can we expect appreciable departures from
the linear law, i.e., at much lower temperatures. This
is indicated by the straight line (1) of Fig. 4. Thus, the
eGect of a magnetic field appreciably greater than a
certain critical value Li.e., when (E/kcoo) (~o/ooo) = 17 is
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valid if 1& (Ep/»p) (pp/(c)p) &1/2

kT«L(Eo/»p) (co/cop) ——,') (Ep/»o)».

(22)

'
~

Eo
~ 4~o o

k (Eo )~

N =2w2laTltcuo

FIG. 5. Speci6c heat es temperature, in dimensionless form, for
diferent values of the dimensionless magnetic-field variable y.
Full curve, linear law for high temperatures and y&1. Dashed
line, Glled face (f=o). Crosses, half-filled face (&= j./2)'. Dotted
lines indicate estimated behavior beyond the validity range of the
formulas.

to make the speci6c heat linear to much lower tem-
peratures.

The way in which curves (2) and (3) of Fig. 4 distort
into (1) as the field increases, up to (E/»o) (op/~o) =1,
can be evaluated approximately as follows. From Eq.
(19) the energy levels within the pth layer may be
written )neglecting (a&/pop)') as

E(p) = (p+3/2)»o+l» . (20)

One then evaluates the speci6c heat by using only the
contribution of the layers nearest to the Fermi energy,
exactly as in the development which led to Eq. (12),
where instead of 6„, A~~, etc., 'we now have a sum-
mation (which can be replaced by an integral if kT/»
&1), over each layer. Since the correction l» LEq.
(20)) to the energy of a state within a given layer does
not depend on n or e„ this means that we can replace
the integration over a layer by its projection on the l, e,
plane. This gives for the case of a half-filled face

(2mokT/»o)e & (k/6) (Eo/»o)
&& (1/2) (~o/&) (»o/Eo)

(21)
valid if kT/»o(&(Eo/»o) ((o/cvo),

»«kT&(»o, (Eo/»o) (~/~o) &1.—

For the filled face case we find

C„,r p m'(k'T/3)n„——A (1/»)
(Epq ~~y 1

X ] /]
—

[
—(Eo/», ),

K»o) (a)o) 2

These formulas essentially use the conventional ex-
pression for the specific heat, (m'/3)/O'Tg(Eo)), where
the density of states g(E) is that "seen" by the Fermi
energy (Ep) as it crosses a lattice plane, and T is so
small that neither the extreme values of energy at the
ends A, C of the lattice planes of Fig. I nor adjacent.
lattice planes have any contribution.

' For higher temperatures both of these specific heats
must approach the high-temperature linear law. How-
ever, for very weak fields there is a limited range in T
over which C„,r, falls like 1/T', corresponding to the
narrow-band approximation of Mott and Jones. ' This
condition is realized when kT is much greater than
(2Ep/»p)», the energy width of a single face of Fig. 1,
but much less than keno, the spacing of lattice planes.
Thus, the specific heat for the case of a half-filled face
develops a thin spine near T=0 which for increasing B
broadens and Qattens into the high-temperature linear
law. The entropy given by the integral of dS= C,dT/T
over this spine (see Sec. VI, 3) is essentially constant
and represents the zero-point entropy of the half-filled
face case since at the absolute zero the well, considered
as a single system, has a degeneracy given by the
number of ways the face may be half 6lled.

For the filled-face case the speci6c heat near T=O
rises steadily to the linear law as the 6eld is increased.
The bump on curve (2) of Fig. 4 probably moves to
lower temperatures with increasing 6eld, although we
have not been able to verify this. Figure 5 shows a
dimensionless plot of Eqs. (21) and (22).

III. EVALUATION OF THE MOMENT AT T=O'K

Let us 6rst consider the behavior of the Fermi energy
at temperatures so small that the criterion»/kT&)1
is observed. This is the condition for the Fermi function
to drop from one to zero in the interval between ad-
jacent energy levels t see Eq. (20)). This will not be
essentially diferent from the behavior as T~O. For
the case of a filled face we saw that for H=0 the Fermi
energy huddled up to the plane bisecting the space
between two lattice planes whereas for a partly 6lled
face, in particular for )=1/2, it has to huddle up to a
lattice plane in just such a way as to preserve (give a
probability of occupancy of) the appropriate fraction
of that face.

So we can see that for (E/»p)((u/&up)(1/2, if we
order the states in terms of increasing energy, they fall
in the order indicated in Fig. 6. Each layer starts at —l
and increases in energy to +/. After a layer is filled,
one starts to fill the next layer at —l. We now ask how
the Fermi energy behaves as H increases. Evidently if
at some 6eld H the Fermi surface passes between say
the points 8, 9 of Fig. 6 (face more than half full), as
II increases further, Eo must increase just enough to
make the Fermi surface always pass between these
same two points so that in summing the Fermi function
in n, =P~f(E;, Ep), one counts essentially all the
points inside and none outside in order to preserve n, .
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For a face less than half full (if Ep passes between 5 and
6 of Fig. 6), Ep must decrease with increasing H.
Ultimately, (for (E/kppp) (pp/o~p) )1) since the Fermi
vollnse does not change with II, Eo must oscillate

( kpp) with H just enough to enclose always exactly
the same number of points (having the lowest energy).
Precisely and only for the cases t'=0 and t'=1/2, Ep
need not change [neglecting (oi/ppp)'] with II at all
even in the range (E/h(up) (pi/pop) &1/2, since for these
two values of the face 611ing the Fermi surface, for
fixed Eo and changing H, either does not cut lattice
planes at all ({=0), cuts them always at the same point
(1=0 if {=1/2), or loses and gains lattice points in

equal amounts (starting at the ends of the 1 axis) as
the 6eld varies.

With this understanding, arid at extremely low tem-
peratures (kT«hoi), we can, therefore, evaluate the
magnetic moment from

g 0

—(BP/BH) zp

(B/BH)zp P; kT in{1+exp[(Ep—E;)/kT])
(BE /BII)+ kT(B/BH)

Es( Eo

X P exp[—(Ep—E;)/kT]
Es& Eo

+kT (B/BH) g exp[(Ep —E~)/kT]
Es &Eo

+ 0 exp[~2 (Ep—E~)/kT],
Eo Es

(23)

where we understand that Eo is so adjusted with II
that the Fermi surface always encompasses exactly the
same number and set of points so long as (Ep/heep) (oi/pip)

&1/2. For still larger fields Ep can be considered as
approximately constant (independent of H) since for
every point lost on the +1 face, another will be gained
on the —1 face.

If the temperature is sufficiently low (kT«happ), we
can drop all but the first term of Eq. (23) and then
evaluate the summation of the first term (for some
purposes an integral will here suffice). For a half-611ed

face we sum for finite B over the interior volume and
the —l face, DCB, Fig. 2, whereas for the filled face
we sum over the interior volume and both faces. This
procedure is valid provided we satisfy the inequality
(E/kppp) (tp/pip) & 1/2 if {=0, or (E/hppp) (oi/pip) & 1 for
g= 1/2. This results in the following expressions for the
moment per unit volume (N„wells per cc). It should be
noted that for the filled face ()=0) summing (but not
integrating) cancels exactly the lhpp terms in Eq. (19)
so that we must carry terms in o~'/cop'. These may be
integrated. Also, for t =1/2, we must sum the —l face
(or integrate it as a projected area DEC) and not
integrate it as a thin three-dimensional wedge since a
point in this face, when counted, is counted at full
weight.

~(T= (), {'=0) = —m„(1/12) (eh/2mc) (pp/pip) (Ep/hs) p)',

valid if (Ep/hoip) (oi/a~p) & 1/2; (24)

FIG. 6. Constant energy contour in n, l plane for small, finite
field H. ABC corresponds to case of half-filled face, which neither
loses nor gains points as long as y=(E/%up)(co/&up) &1. DEF
corresponds to filled-face case which neither loses nor gains points
for y&1/2.

M(T =0, {= 1/2) =+ (e„/12) (Ep/hoip)'(eh/2mc)

—(I„/12) (eh/2mc) (~ c/op) (Ep/hoop)',

valid if (Ep/4&p) (pp/ppp) & 1. (25)

These are plotted in Fig. I.
We may carry the analysis for the case of a filled face

outside the range (Ep/hoip) (~/o~p) & 1/2, still taking into
account that the temperature is so small that the Fermi
function drops from one to zero in the range (ha|)'
between points in a face and just include the con-
tributions of the 6rst term in Eq. (23) appropriately.
We thus obtain the segment AB of Fig. 7, where the
change in slope at A indicates that the Fermi surface
is just catching or missing one of the lattice planes 2j,
j, +j.The range over which BE;/BH is summed is the
interior and surface of Fig. 1, minus a triangular patch
(points lost) AFH (projected to AGH), plus a patch
PH'C (projected to H'G'C) of points gained in the
next outer lattice plane. The dimension AG=G'C is
(E/hppp) —(ppp/2') This gives for th. e moment per unit
volume for the case of a 6lled face in the range
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The above developments for the moment, shown in

Fig. 7(a), are essentially given by evaluating M=
—P BE;/BH, where the sum is over a constant number
of states which are chosen to be the lowest ones for any
given H, not necessarily the same states for all fields, as
the break in OAR at A indicated. It is a calculation for
an atomic Fermi-Dirac system when the central poten-
tial for all particles is given as parabolic. The results
agree quite satisfactorily with what is known from
atomic problems, i.e., for a filled shell (=face) the
system is diamagnetic with cV —(e'H/6oorc')P(r')o„
which is essentially what Eq. (24) represents. For an
unfilled shell the system starts oil paramagnetic
(unquenched orbital paramagnetism), to which is added
Eq. (24), the above diamagnetic term. Since we have
exact eigenvalues for the parabolic well, we know pre-
cisely what we have neglected and can, if we wish,
estimate the validity thereof and at what point per-
turbation theory concepts fail.

We can extend our results to higher fields and tem-
peratures. This we can do as follows and at the same
time verify the above results in an independent manner.

The moment at T=O is given by4

-0.2

-0.4

-0.6—

~gp

Mr=p ——(B/BH) 1V (E)dE.
J0

(27)

FxG. 7. Dimensionless magnetization as a function of dimen-
sionless field at T=O. 3Eo=n~p(Eo/Aa&o)o/12. (a) Number of
particles, oo„ fixed. Full curves, exact LEqs. (24), (25) (26)j;
-—- one term approxiination LEq. (31)j; xxxx, moment for fillings
intermediate between filled and half filled. (b) Fermi energy
fixed. (1) and (4) are identical with the flied and half-filled full
curves of (a) and correspond to Eo/iricoo=p and Eo/foooo=p+(1/2)
(where p is an integer), respectively; (2) E oh/oo=o+p(1 /)4;

(3) Eo/ioooo ——p+ (3/8).

We recall that 1V(E) is given by Eq. (3) with the
numerical coefficients given by Eq. (4). Now in Eq. (4)
we may substitute the dimensions which Fig. 2 takes
on in the presence of a magnetic Geld. These are given

l.0

0.8

1/2 ((Eo/oooo) (oi/oio) (1
'i

M(T=O, f=0)= —I L(1/12) (ek/2mc) (oi/oio) (Eo/hoio)'

+ (1/8) (e)r/2rlc) (Ep/l)pop) (pip/oo) s

—(1/6) (Eo/Aoio) P (eA/2oorc)

—(1/24) (eh/2oosc) (too/oo) s$. (26) 0

0, 6

0,4

0. 2

The case for face filling intermediate between half
and full is indicated by the crosses in Fig. '7(a). Note
that this is for 6xed e„E0 having been adjusted as
above to preserve e,. All of the moments shown in
Fig. 7(a) reverse the sign of the moment with the sign
of B so that with the exception of the filled-face case,
all have a discontinuity in the moment at H=O. As
will be shown (Fig. 8), this discontinuity is present
only ut T=O. For all finite T this discontinuity is
removel, and the moment vanishes continuously at
H=

-0.2

-0.4

-0.6
'

FIG. 8, Dimensionless magnetization at finite temperatures as
a function of dimensionless field. The dimensionless temperature
parameter for the different curves is x=2~2kT//Scop. The positive
values of moment are for the half-filled face whereas the negative
moments are for' the filled face.
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exactly by Eq. (18) as

a= E/2hM,

h =E/hcop,

c=E/hcp (1+d),
c'= E/hco(1 d),—
d = (1+coop/cp') l.

(28)

rttg) r E )o rcpp)2 ~ (—1)~
N(E) =

I
—

II I
+2~-I —

I 2( 6 ) (hcpo & ( cp J i=i (2irij)'

XI —exp(2irijE/dhcp)+ ip (1+3cp/2cpp)

XexpI 2prijE/(d+1)h jco+ ', (1 -3cp—/2 cp)p

Xexp(2prijE/(d —1)hcp)+0(cp'/cpp')], (29)

8 ) rcop) ~ 1
2&„h~I

c BH) zp & cp & i=i (2irj)'

E&0

X —d cos2irj ——+-,' (d+ 1)
Dko 2

Eo 1
X (1+3(o/2(op) cosI 2~j

(d+1)h~ 2 )

+-', (d—1)(1—3cp/2cpp)

r 1
X.osI 2~j

. (d—1)hcp 2

+0(cp'/coop) . (30)

Now this formula, Eq. (30), for the moment can be
summed exactly by use of the Hurwitz formula, ' which

expresses the generalized Zeta function as a trigono-
metric series; and the Zeta function in turn can then be
expressed as a polynomial. Slightly diferent formulas
are required for the range 0&(Eo/hcpo)(cp/coo) &1/2,
1/2 to 1, 1 to 3/2, etc. Different forms are also required
depending on whether Ep/hcpp is an integer (filled face)
or halfway between integers (half-filled face). In this

way we have been able to verify exactly the expressions
for the moment given in Eqs. (24), (25), (26), and have

This gives the following expressions for N(E) and the
moment, per unit volume (e„wells), when one sums

only the a„, corresponding to the normals (or near
normals) to the principle faces of Fig. 1, i.e., only
~2j, j, jq ~2j, j,—jq ~—2j, —j,—jq ~—2j, —j,+j-

even carried them to still higher values of the field, i.e.,
(Ep/hcpo) (cp/coo) )1.The general behavior of the moment
is oscillatory, of decreasing amplitude and periodic in
(Eo/hcpo) (cp/coo), as is indeed to be expected from the
way in which the Fermi surface of constant energy
catches and loses points in the lattice planes. Figure 7 (b)
gives the moment computed from Eq. (30), using the
Hurwitz formula, for the somewhat artificial case for
which Eo (instead of n,) is held fixed, so that here the
"number of particles" is rot preserved. It will be seen
that oddly if Ep/hcpp=an integer (filled face), or Ep/hcop
= integer+ 1/2 (half-filled face), is 6xing Ep equivalent
to fixing e„as previously mentioned.

By using only the largest term (j= 1) of Eq. (30) to
evaluate the moment, one can obtain a single analytic
expression for the moment for all values of (Ep/hcpp)

X (co/cop)(cp/cop still «1) which is a quite satisfactory
approximation. This approximation for the moment per
unit volume is

iaaf = (4N /(2ir)c) (eh/2mc) cos(2irEp/hcpp)

r Ep cp

X —( o/cp)'I 1—cos 2 ——
hcpp cop )

r Ep cp)
/ir(Ep/hcpp) (cpp/cp) slilI 27r —

I
. (31)

hcpp cop )

In Eq. (31), Ep/hcpp is an integer for a filled face [see
Eq. (14), T~O], and an integer +1/2 for a half-filled
face. Equation (31) is also plotted in Fig. 7(a).

Equation (31) is a better approximation for the
moment for the filled face than for the half-ulled face
since the former has no discontinuity at V=0. For the
61led face its chief deficiency is that it has twice too
large a slope in the range (Ep/hcpo) (co/cop) &1/2, but
otherwise it represents the amplitude and frequency
quite satisfactorily. The one term (j=1) approximation
for N(E) which led to Eq. (31) is especially useful for
evaluating the moment at higher temperatures and
becomes there better and better since the terms with
larger j are more heavily damped with temperature.

cV= (8/BH)) N(E) f(E)dE,
0

(32)

IV. THE MOMENT FOR FINITE TEMPERATURES

The case of a finite temperature can'be handled in
either of two ways. For (hcpo/kT)))1 one may include
those exponential terms, previously dropped in Kq.
(23), which correspond to lattice planes closest to the
Fermi energy, just as in the case of the speci6c heat.
For (hcpp/kT)&(1 one may compute the moment from

See, for example, C. T. Whittaker and G. N; Watson, A
Course oj 3foderw Analysis (Cambridge University Press, London,
1935), pp. 267—269.' Reference 8, p. 127.

and for N(E) use the largest term (j= 1) of Eq. (29),
a procedure analogous to that which led to Eq. (31).
These procedures give the following expressions for the
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moment per unit volume:

M(i = o) = (I„/12) (Eo/Apso)'(eh/2mc) —(g„/12) (Ep/heep) (eh/2mc) (pp/cap)

exp[ —(hpio/kT)] (Eo»pio y '( ' Eo & h~o q
+e„(Eo/hp~p)'(eh/2mc)

I
1—cosh

4 ~ hpio pio 2kT~ ~ -hpdo ~o kT

exp[—(hpio/kT)] (Eo pi Apso q
' (Eo ~ ho~op

4 (hpio pip 2kT j (hp~p pop kT)

1 (Ep pp hoop ) ( Ep cd hcop ) 1 ( Ep co Acdo ) ( Ep pi hoop

I
1+exp — — I+-I —

I I
1—exp—

8 5 hppp p)p 2kT) & hppp pip kT ] 8 &Argo odp 2kT) ( heep pop kT

valid if (hp~p/kT))&1 and (Ep/hp~p) (pi/pip) &1,

M (i = pi) [(6e,)4I'/24] (I„/k T) (eh/2mc)'H

provided also (Ep/hppp) (p~/pop)&&1, and

~(i =0) = —(e /12) (eh/2mc) (p~/p~p) (Ep/h pip)
'

Apso ) (Eo pi hppo) (Eo ~ ~o )
-+~~-(Eo/h~o)'(eh/2mc) expI—

2kT) E AMo (oo kT ) k h(dp Qlp 2kT)

(33a)

(Ep Gl ,AMp i ( Ep M hpip )—sinh'I —
I I

—
I (34)

(hppo pip 2kT) E hpdp odp 2kT)

valid if (h(op/kT)»1 and (Eo/AMo) (p~/pio) &1/2. If (hp~p/kT)&&1, we have

4n„( eh q 2F kT/hpdp
M=

I I
cos(2m.Ep/hpdp)

(2m)4 k 2mc) sinh(2or'kT/h p)p

(~ol'( Eo» (Eol (~o)' ( Eo ~l ]I+~I II
—1»nl 2~ —

I J' (35)
I 4M 3 ( hpip pop) (A(op) (op) 0 AMo cop)

In Eq. (35) Ep/hpip is an integer for a filled face (f=0)
and an integer +1/2 for a half-filled face (t = 1/2) .

Equations (33), (34), and (35) are plotted in Fig. 8,
using interpolated values in the range of H and T
where they begin to fail. Thus, Figs. 7 and 8 give a fair
picture of the behavior of the moment for all values of
temperature and field (providing still pi/pip«1). In
general we see that as the 6elds and temperatures get
larger, one may safely use Eq. (35), which indicates
that the moment is heavily damped with increasing
temperature; &he amplitude of oscillation drops oG,
initially at least, like 1/H'. It can be shown that as the
field gets still larger (pi/p~p)1), the oscillations in
moment ultimately become periodic in 1/H [instead of
periodic in H, as in Eq. (35)] while the amplitude
increases as H'. This behavior is suggestive
only of the de Haas-van Alphen effect. These conclu-
sions are most easily reached using the general expres-
sions for 1V(E), Eq. (3), and the eigenvalues obtained
from Eq. (18), where pi/cu p))1. Since the eigenvalues are
always linear in the quantum numbers, Fig. 1 is still
qualitatively applicable, and no difhculty attaches to
this procedure. The principle direction is now (j, 0, 0)

instead of (2j, j, +j).One can also obtain the Landau
diamagnetism throughout this development, but in the
range of variables in which we are interested it is smaller
than the moments we have derived by O(ficoo/Eo) so
that it can be safely neglected.

V. DISCUSSION

The above derivations give a fairly complete picture
of the magnetic and caloric properties of our model,
consisting of n„parabolic wells per unit volume, under
the assumption that the Larmor frequency, co, is some-
what less than the natural frequency, ~0, of the well.
Further, no great difFiculty attaches to deriving the '

properties for or&~0, mentioned above. Since all of our
results have been presented in dimensionless form in
the 6gures, they could be fitted approximately to real
materials by adjusting the parameters m, n„, e, (or Ep),
coo, about whose numerical values nothing has as yet
been said. Evidently both diamagnetic and paramag-
netic materials could be described, depending on
whether the face closest to the Fermi surface is 6lled or
not and also on whether we choose (perhaps somewhat
unrealistically) to keep Ep (as opposed to I,) fixed for
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Ele-
ment

Ho
gauss

m/m,
A {lower
cc limit)

Number of
particles
per atom

(lower
limit)

10 g Xnumber
of particles

per well
(lower
limit)

Cd 28
' Zn 53
Tl 170
In 275
Sn 310
Hg 420
Pb 800
Ru 46
Os 65
Al 106
Ta 980
V 1200
Nb 2600

0.56
0.90
2.4
3.4
3.72
4.17
7.2
0.47
0.71
1.20
44
5.13
8.0

13.0 1.5
9.2 1.6

17.2 1.6
15.7 1.7
16.3 1.8
13.9 2.2
18.3 2.2
8.3 3.7

,8.4 3.1
10.0 2.6
10.9 5.9
8.4 6;1

11.0 8.2

0.023
0.033
0.20
0.32
0.39
0.55
1.38
0.061
0.073
0.12
2.71
2.64
9.16

8.9
6.8
3.7
3.0
3.3
3.4
2.5

17.8
12.6
8.4
6.2
5.9
5.3

' M. F.M. Osborne and M. C. Steele, Phys. Rev. 86, 247 (1952)."R.B. Dingle, Proc. Roy. Soc. (London) A216, 118 (1953).
12 W. Band, Phys. Rev. 91, 249 (1953).

weak 6elds. Our model is quite impartial in that it has
no preference for either diamagnetic or paramagnetic
behavior. For I, fixed (Fig. 7(a)) the initial behavior
with H is paramagnetic for all fillings of a face except
the unique case of one exactly full, which is diamagnetic.
For Eo fixed(Fig. 7(b)) the initial behavior is in general
diamagnetic, with the exception that for an exactly
half-6lled face it is initially paramagnetic. Thus for|=0 and /=1/2, Es fixed and n, fixed agree, and for
these cases only.

The model has considerably more versatility than one
might expect would be provided by the addition of
only one more parameter to the three initially needed
for an Einstein lattice model. It should be noted that
this versatility depends quite intrinsically on the dis-
creteness and degeneracy of the levels, as well as on the
numbers of particles used to fill them. All this is quite
in keeping with our conclusions in previous studies'
about the significance of discreteness in energy levels
for magnetic properties. The versatility of this simple
and computable model also may throw some light on
the diverse results'~" of previous calculations on the
cylindrical box, especially in weak fields, since evidently
by changing the numbers of particles by a relatively
small amount, fixing e„or Ep, we get totally diferent
results for the problem at hand.

For the purpose of clarity we would like to give one
more 6gure which will render the comparison with real
materials more illuminating.

For the 6lled-face case we have plotted in Fig. 9
contours of constant ii (permeability) in a dimensionless

H, T plane. This 6gure should be studied in conjunction
with the 6lled-face speci6c-heat curves of Figs. 4 and 5.
drawn to the same temperature scale. Since the mag-
netic induction 8=AH =H+4n M, then ii = 1+4rrM/H;
and since we have M as a function of H and T $Eqs.
(34) and (35), or Fig. 87, we may evaluate ii for a
network of dimensionless H, T values and then by inter-
polation draw contours of constant p, . This is done in

TABLE I. Model parameters for superconductors.

0.8

o 304 (=0

0.2

0

0 3 4 5

X=2~ AT/g~o2

Fxo. 9. Contours of constant permeability p, in a dimensionless
H, T plane for the diamagnetic (filled-facel case. The parameters
are adjusted so that when @=0, p, =0 for the dimensionless field
ranging from 0 to 1/2.

Fig. 9, where we have chosen p=O as our origin at
T=O. This corresponds to adjusting the slope OA of
Fig. 7(a) (Eq. (24)7 so that the material can just drive
out the applied field at T=O. LCf. Eq. (37).7

The similarity between the contours of constant p
and the critical field curves of superconductors is most
striking. If we fit the H and T intercepts of the ii= 1/2
contour (inside this contour our model is strongly
diamagnetic, outside essentially normal, ii 1) to the
parameters Hp and T, of a real superconductor, we can
evaluate some of the parameters m, e„n„,8 of our
model. Note also that this contour, ii 1/2, has a
temperature intercept (x= 2ir-'kT/ho&s 3.5) at approxi-
mately the same point where the corresponding specific-
heat curve has an anomalous bump. If either the field
or temperature is increased outside the ii= 1/2 contour,
the diamagnetism disappears and the speci6c heat
becomes linear, all quite in agreement with the behavior
of a superconductor. If we fit the observed linear speci6c
heat to that of our model, we obtain an additional con-
dition on our parameters. This fitting process is carried
out in the next section (Table I).

The comparison of our model to a real paramagnetic
or ferromagnetic material is not so happy as is the case
with superconductors. Indeed, this is not surprising,
since we have nowhere introduced electron spin, con-
ventionally regarded as essential to a description of
such materials. (For superconductors on the other
hand, the experiments of Kikoin and Goobar" on the
gyromagnetic ratio- of superconductors are indicative
that the diamagnetism of superconductivity is not
connected in any direct way with electron spin. ) A

description of ferro- or paramagnetic materials is none-

theless interesting, if we focus attention on certain gross
properties and ignore others.

"I.K. Kikoin aild S. V. Goobar, J. Phys. (U.S.S.R.) 3, 333
(1940).
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I et us first point out where the diamagnetic and para-
magnetic contributions to our various expressions for
the moment arise. Terms in pp' in the energy, Eq. (19)
from a/I the states within the Fermi surface contribute
to the diamagnetism. Paramagnetic terms arise from
an unbalance in the ember of states with negative as
opposed to positive values of f t term in lkar in Eq.
(19) or (20)].We have seen that for the filled face these
balanced exactly so long as (Zp/hoop) (p~/(op) & 1/2,
whereas for the half-filled face there was, for finite
Hf(Ep/hs)p) ((u/p&p) & 1], an unbalance of one (—l) face
(DBC of Fig. 1), and as H increased )beyond (8/bp&p)
X (p~/p~p) = 1], the number of /stat—es increased while
the number of +l states decreased. The net effect of
the sum of pure para- and diamagnetic terms gives an
oscillating moment arising from the inclusion and ex-
clusion of states within the Fermi surface as it cuts an
increasing number of lattice planes.

Now note that the paramagnetic contribution of any
given state to the moment is independent of H [i.e.,
(cj/BH)/ha&] so that any changes in paramagnetic con-
tribution must come from charges in the occupancy of
states. Hence, in the abseece of any small interaction
(usually assumed present to permit an approach to
thermodynamic equilibrium) which will allow particles
to move from one state to another, the paramagnetic
contribution to the moment will remain a constant.

This aspect of our model possibly gives a clue to the
explanation of frozen-in moments in superconductors
(for case /=0) and to the existence of remanence on
reduction of JI after saturation for a paramagnetic salt
which becomes ferromagnetic at T=0 (described on the
basis of the /= 1/2 case). It can easily be seen that the
unbalance of + and —1 present in our model for large
HL(E/kp&p) (ip/pip) )1/2 or 1 for f=0 or f= 1/2], if
preserved at H=O (not the state of thermodynamic
equilibrium), will always give a residual moment in the
absence of a 6eld. This would correspond to moments
paralleling the xxx curves of Fig. 7(a) as the field H
is removed.

%ith this understanding of the eGect of the absence
of interactions which would allow states to change their
occupancy, our model can have, at II=0, T)0, a
remanent moment of either sign depending on the sign
of the field "last seen. "This is not a property of thermo-
dynamic equilibrium.

We may also 6t our model (with of course a different
set of parameter values) at least roughly to the proper-
ties of a paramagnetic salt with zero Curie temperature.

1

We observe that in the low temperature, low 6eld
regions of Fig. 8, or Eq. (33a), the moment for the case
of a half-6lled face is given by an expression of the
form M CH/T and approaches a "saturation" value,
whereas the specific heat (Fig. 3) has a thin spine which
broadens with increasing 6eld. At T=O our model may
develop a remanent moment, &M,.i (Fig. 7). This is
approximately the behavior of a paramagnetic salt with
a zero Curie temperature. Thus, the parameters of our
model can be evaluated by 6tting'the zero-point entropy,
the saturation moment, and the Curie constant to a
real material. Evidently the model will fail at suKciently
high fields and temperatures as the model then has a
linear in T speci6c heat and a moment which vanishes
for sufliciently large fields [Eq. (58)] in disagreement
with available experiment.

Table II gives a set of values of parameters 6tting
this aspect of the model to a paramagnetic salt. In all
of this 6tting process the significant combination of
parameters includes those which give the size of the
well, the number of particles per well, and the numbers
of particles per atom of material, rather than the
parameters (B, m, e, e,) with which the model was
set up.

VI. EVALUATION OF THE PARAMETERS
OF THE MODEL

Let us now consider the numerical problem of fitting
the parameters of our model to real materials. Instead
of the set B, m, ii, (or Ep), I we shall use equivalent
sets which will perhaps provide slightly more physical
insight. Superconductivity is believed to be an example
of cooperative phenomena between many electrons (or
atoms). Hence, the radius of the well, E= (2Ep/B) &, or
the distance from the center which corresponds to Ep,
is a measure of the distance over which this cooperation
is effective. The number of particles per atom, e,e„A/
S~ „,~„, is in some sense a measure of the extent to
which each atom contributes to the cooperation, whereas
e, is a measure of the effective number of cooperating
particles. That elusive parameter, the ratio of the mass
to the electronic mass m/m„ is in some sense an indica-
tion of the extent to which the electrons are not free,
and keep is a measure of the cooperative interaction
energy. We shall, as far as we can, express the above in
terms of observable quantities (Hp, T„p„the electronic
specific heat, 3f„t, Curie constant C, T~„„.„A, the
atomic volume)

'
and tabulate values for specific

materials.

TABLE II. Model parameters for paramagnetic salts.

Salt

KCr (SO4) 2- 12820
A =273 cc

Gd2(SO4) 3.8H20
2=248 cc

Curie
constant C

(molar)

1.86

7.83

M sat.
(molar)

3NAvP

7&AvP

So
(molar)

(ergs/mol deg)

1.1X10'

1.7X10'

SpC

0.75

0.89

2.1X101

0.90X10"

6.7

38.9

Upper limit
on X-well
size (cm)

5.0X10—8

6.4X10-'

H(M =0)
Lower limit

(gauss)

9.6X10'

5.5X 107



ELECTRONIC EINSTEIN MODEL SOLI D

A. Superconductor 1= (m/12) (h/p&p) (e'/m'c') (6e,)'"m„, (42b)

Consider erst the case of a 6lled face, fitted to a
superconductor. The condition .for equality of the
speci6c heats when linear is

(36)

(27r') kT,/fuup ——3.5,

(6n.) &

(e Hp/2mc) =0.67,
Mp

2 (6e,) l
Xp' —— A. ,

(42c)

(42d)

(42e)
where y,T is the linear term in the electron speci6c
heat of one g atom in ergs/mol ('K). A second condition
is that the permeability ti be 0 at T=0. From Eq. (24),
setting H+4~M=D, we find

1 = (~/12) (1/pio) (he'/m'c') (Eo/h pop)'imam. (37)

(4ply

(4n/3) (2h/pipm) &(6',) ln &1. (42 f)

p&p is determined by Eq. (42c). Equations (42b, c, and d)
give

Two more conditions are obtained by identifying the
ti= 1/2 contour, Fig. 9, with the critical field curve and
equating its intercepts at H =0 and T=0 to the experi-
mental observed values for these parameters. This gives

e,nz'= (12/~) (3.5h/2pr'kT„, )'

(d) and (c) give

e'Hp4

(43)
hc'24 (0.67)4

(2m'kT. ./h pop) 3.5, (38)
(ii,3/nz') = (0.67/6&) (c/eH p) (4m'kT, /h 3 5)' (44)

(Ep/hypo') (eHo/2mc) 0.67. whereas (a) and (b) give

Two additional conditions are given by the following
considerations. We would like to identify the size of the
well, (2Ep/B) l with the penetration depth, Xp at T=O.
Evidently if we take a "physical sample" of our model
so small that it cannot contain even one full-sized well,
its diamagnetic properties will certainly be diminished
if not entirely destroyed. This is also the case with a
real superconductor. So we have, plausibly, at least,

Xp
——(2Eo/B) '*. (4o)

' Finally, for the "physical consistency" of our model,
since we have treated each well as not in interaction
with any other well, we must have the condition that
the volume occupied by each well is less than the space
available (1/n„) to each well. This requires

(4/3)m(2Ep/B) ' & 1/ip . (41)

The equalities (36)—(40) are cot sufhcient to deter-
mine all the parameters of our model but instead only
three different combinations of them, cop, e„m', and
ii,/m . This situation is similar to that for the Einstein
lattice model. Combined with the inequality Eq. (41),
we can get separate inequalities on all of them. Elimina-
tion of all parameters between (36)—(40) will give con-
ditions on the experimental observables alone, which
are, pleasantly enough, in agreement with observation
so that our model is a consistent one. 1 was a "bonus
parameter" consequent to number theory since as n,
varies over a small range (Ep/h~p from p to p+1), t
takes any value we please between 0 and 1.

Choosing as model parameters, pip
——(B/m) '*, n,

= o(Ep/heep)', nz, m„, we can write Eqs. (36) to (41) as

(6N,)'—k' e„A =y„
6 (hpop)

Xp
——(1.6) (hc/eHp) &. (47)

This relation is plotted in Fig. 10 as the solid curve
with experimental points from the sources indicated.
The trend with IIp, as well as the absolute values, is
surprisingly well represented in consideration of the
simplicity of the model. Evidently the theoretical coef-
ficient in Eq. (47) is uncertain to at least a factor of 2.
A relation equivalent to Eq. (47) can also be derived

"See, for example, D. Shoenberg, SNPercondlctivity (Cambridge
University Press, London, 1952), p. 64, for a derivation of the
functional relation (to a numerical constant) given by Eq. (46)
in the present paper.

(~ 3/yg2) (2/6a) (cpgprk2/hpe2~ )

This is as far as we can go without the useof Eq. (42f).
LEquation (42e) is also a function of n, '/m. ]However,
equating the last two expressions [Eqs. (44) and (45)7
for the combination e,'/m' gives

(T '/Ho') (y /A) = (3.5)'/(0 67)'8~'=1/9 1 (46)

All other parameters and physical constants cancel.
Equation (46) is simply the thermodynamic relation
derived with the aid of the parabolic Law, Rutger's
equation, and the absence of a linear term in the super-
conducting specific heat. " Evidently the correct nu-
merical coeKcient 2x instead of 9.1 could be obtained
by choosing a somewhat smaller permeability contour
(say ti= 0.3) as representative of the critical field curve.
Our model is evidently a consistent one thermody-
namically.

A second relation in which the parameters of the
model disappear can be obtained by eliminating e,~/m

between Eqs. (42d) and (e) )equivalent relations could
be obtained by using Eq. (42e) with Eq. (44) or (45)j.
This gives for the penetration depth
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I 0.'

IO

B. Paramagnetic Salt

In attempting to fit our model for f'= 1/2 to a para-
magnetic salt, we observe that in the range of validity
of Eq. (33a) [Fig. 8 for (Ep/hppp)(cp/a&p)((1], the sus-
ceptibility (per cc) is approximately

)f = C/T = r/n„(n, 4"/k) (eh/2mc) '/T, (50)

IO

where r/=6'/'/24. This determines the Curie constant C.
Equation (25) gives for M, , p the saturation moment
per cc at T=O,

M, , p ——n„n,eh/4mc (51)

I

IO

IO-6 I I

IO IO

HO, GAUSS

Fn. 10.Log) 0 vs logH0. The experimental points are taken from
the following sources: I, (Pb, Sn, In) J. M. Lock, Proc. Roy. Soc.
(London) A208, 391 (1951). ~, (Hg) E. Lanrmann and D. Shoen-
berg, Proc, Roy. Soc. (London) A198, 560 (1949). o, (Pb) M. C.
Steele, Phys. Rev. 78, 791 (1950). X, (Hg) Appleyard, Bristow,
London, and Misener, Proc. Roy. Soc. (London) A172, 540 (1939).
A, (Sn) N. E. Alekseevsky, J. Phys. (U.S.S.R.) 4, 401 (1941).
,', (Cd) M. C. Steele and R. A. Bein, Phys. Rev. 87, 908 (1952).
The dashed curve fitting the Cambridge data corresponds to a
constant of 0.41 instead of 1.6 in Eq. (47).

IO

(3 5)s/2 h2/4el/4H 5/4

m)
(0.67)'"zrs (2) l (kT,)'/'c'/'

(49)

' This in turn can be used to give lower limits on the
number of electrons per atom LEq. (48)] as well as a
lower limit on e„and an upper limit on e .

Values for some typical superconductors are given in

Table I.
In general it will be observed that the number of

particles per atom ranges from 1/50 to 10, with masses

slightly in excess of the electronic mass. Values of, or
limits on, the other parameters coo, 8, Eo, and e can
easily be computed, but it did not seem worthwhile
until their significance could be more clearly established.
The three given in Table I, together with o/p (which is
determined by T, alone) are suRicient to determine the
model completely.

"F. London, Revs. Modern Phys. 17, 310 (1945);M. C. Steele
and M. F. M. Osborne, Phys. Rev. 91, 1281 (1953).

from london's concept" of superficial currents whose

elemental charges each carried an angular momentum

of h. 4

An expression for the number of particles per atom
n.n„A/Ãa „,~„can be obtained from Eqs. (43) and

(44) or (45). This is

n„n.A/X/, (mA/iV——~~) (1/x 0.67) (cHp/eh). (48)

Finally Eq. (42f) with Eqs. (43) and either (44) or

(45) can be used to obtain the following inequality on

the mass,

Finally, if we define an experimental quantity So
=// (Cz//T)dT, the zero-point entropy per cc, in which
the range of integration is over the experimental
speci6c-heat peak of a paramagnetic salt, we have

Sp kn. 'n (ln2/2)6i. (52)

This is obtained from" So=e„k lnG, in which G is the
number of ways a face may be half-6lled according to
Fermi statistics. From Eqs. (50), (51), and the ine-
quality Eq. (41), we obtain the following expressions
for our model parameters in terms of experimental
quantities. P=eh/2nzc is the Bohr magneton if m=m, .

n = (M„p'P'/k'C') 24z/', (53)

n, =k'C'/M, psP'2'r/',

X( (3/4zr) &/n '= (3/4zr) &kC/M p"'p"p2"'r/ (55)

C and 3f, 0 are for 1 cc in these expressions. Moreover,
we have a relation which the model requires between
the observed quantities only, just as was the case for
superconductors, Eq. (46). This is obtained from Eqs.
(50), (51), and (52). If all experimental quantities are
on a molar or cc basis, this gives

SpC/M ps 2z/6* ln2= 2.1. (56)

A free spin theory' of paramagnetism of N& particles
of spin s, has for this numerical constant

SpC/M, , p = sos(s+1)/s'] ln(2s+1). (57)

This is a slowly varying function of s, which our crude
theory has approximated by the too large constant 2.1.
The disagreement is quite analogous to that found in
Eq. (46) for superconductors.

There is a field H(M=0) at which the moment
vanishes for our paramagnetic model. We can determine
a lower limit for this from the condition (Ep/heep')

&( [eH(M =0)/2mc] = 1 = $(6n, ) '*/cop]t eH(M =0)/2mc],
Eq. (55) and Eq. (42e) for X',

H (M= 0))16r/'(8zr/3)'/'(ch/e) (M, p)'/'p"'/k'C' (58).
Our model is good only at fields much less than this.

Evidently four independent parameter combinations

"R. C. Tolman, Prince/es oj Statistical 3IechfJnics (Clarendon
Press, Oxford, 1938), p. 370.

'7 Reference 3, p. 581.
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cannot be determined in this case either. A limit on the
combination &rom may be obtained from Eqs. (55), (54),
and (42e). m is taken as the electronic mass for com-
puting numerical values from Eqs. (52—58) in Table II,
lacking other criteria to determine it. These results are
tabulated below for two typical paramagnetic salts.

VII. CONCLUSION

It may appear as rather surprising that so simple a
model of spinless electrons iri a solid can be made to
develop so great a variety of properties as those mani-
fested by superconductors and paramagnetic salts. We
should like to comment on the physical reasons under-
lying this versatility of the model since these comments
may be suggestive of where to look for the explanation,
especially of superconduction, from a more funda-
mental standpoint. We would first like to point out
that if a system is obeying Fermi statistics and kT is
greater than the spacing of electron levels, then the
thermodynamic properties are essentially determined
by the average density of levels in the neighborhood
of the Fermi energy and are quite insensitive to the
properties of the levels for larger or smaller energies. If, ,

on the other hand, kT is less than the spacing, then the
thermodynamic properties are determined by the den-
sity and degree of degeneracy of levels closest to the
Fermi energy even though those levels may be more
remote in energy than kT. In summary, for Fermi
statistics, thermodynamic properties are determined by
those levels closest to the Fermi energy; if there are
levels closer than kT, specifying the properties of the
levels in a range of order kT is sufficient to determine
the thermodynamic properties.

Now our model has just the property that by ad-
justing its parameters one can vary the average density
of levels, their degeneracy, and their spacing in an
almost arbitrary manner. To show this we have plotted
schematically in Fig. 11 the density of levels per cc
=e g(E) as a function of energy Z and for different
values of the magnetic field. Any dimension in abscissa
of this figure can be made large or small compared to
kT by adjusting the parameters of the model ~0, m (or
their equivalent). The ordinate can be adjusted to any
size by varying, among other parameters, e and e..
The area of each triangle is e„ times the number of
points in the faces of Fig. 1. Their bases are in length
proportional to H. The triangles begin to overl. ap at
(E/5~0) (~/a&0) =1/2. We have seen that by half-filling
a face we place the Fermi energy at the vertex of a
triangle. When the face is 6lled, the Fermi energy falls
halfway between triangles, i.e., in a region of no-energy
levels if the field is weak. Hence, by adjusting the
parameters of the model, we may produce any effective
density, spacing, and degeneracy we please in the
neighborhood of the Fermi energy and then compute
unambiguously the e&ect of a magnetic 6eld since the
energy levels are always linear in the quantum numbers.
The triangles themselves are actually composed of 5

Pro. 11. Schematic density of levels per cm3 as a function of
energy, for different fields.

functions, spaced k+ apart. This property of the model
gives a Rexibility we have not utilized since it becomes
signi6cant only when kT(&co. We have called this
condition (Sec. III) effectively T=O.

For some of the cases we considered, not all of the
dimensions of Fig. 11 are signi6cant. This corresponds
either to the fact that we could not compute all our
parameters unambiguously or to the fact that our
model failed when H or T exceeded certain values.

We should now like, to discuss just how sensitive to
imperfection are the properties of our model, especially
when considered as a superconductor. We have assumed
m„ isotropic wells per unit volume, each containing just
the proper number of particles to 611 completely the
"faces" of its energy surface in quantum-number space.
We have already seen that a shift from 61led to half-
6lled face or a variation of the number of particles by
1 part in e,& is sufhcient to shift the properties from an
intense diamagnetisrn to an equally intense paramag-
netism. In other words, the number of particles in each
well has to be 6xed to better than 1 part in 10', judging
by the figures in Table I.

Secondly, we observed that if the wells are slightly
anisotropic, this condition has the effect of tilting the
energy surfaces of Fig. 1 (for no field) out of parallelism
with the 2, 1, 1 and 2, 1, —1 planes. If sufhcient to tilt
the Fermi surface enough to cut a lattice plane, it will
destroy the degeneracy and spacing properties which
provided the diamagnetism, or paramagnetism, and

specific heat anomalies. An anisotropy (say in ~0) as
small as one part in I,', ( 0.1 percent by Table I).is
sufficient to destroy these properties. Such an anisotropy
would be equivalent to having triangles instead of 6

functions, for y=0 in Fig. 11.
Another condition to which our model is sensitive is

the degree of overlap of wave functions in one well with
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neighboring wells or the extent to which the inequality
(41) is obeyed. The effect .of nearest neighbor inter-
actions will be to broaden the degenerate levels in a
given face into bands. If these bands overlap (broaden-
ing )happ), the degeneracy essential to our magnetic
and specific heat behavior will be destroyed.

Evidently our model is rather sensitive to physical
imperfections; or, to express the idea in another way,
the model must be "well ordered" to the above degree
throughout the specimen.

One consequence of the above close specifications of
the parabolic well model is that the moment oscillates
with H and with decreasing amplitude (~1/H') for
fields greater than the critical field L(Ep/kpip) (pi/(pp) )1,
Sec. 111$. The specific heat anomaly and the perfect
diamagnetism were consequences of only the two
degenerate faces closest to the Fermi energy, whereas
the above oscillations require this high degeneracy for
additional inner and outer faces.

Berlincourt and Steele'~ have performed experiments
with tin to test the prediction of additional oscillations
in the magnetic moment of a superconductor at fields
above the critical 'field. Their results showed that at
fields above Hp. (the critical Geld) the moment of tin
was less than 10 3 times the maximum superconducting
moment, whereas the above theory indicates the possi-
bility of a paramagnetic moment 10 ' times the
maximum superconducting moment.

The negative experimental results require the addi-
tional postulate that our wells, or their filing, are
rendered imperfect by at least the small amounts
specified above for 6elds appreciably greater than the
critical field. This small modification of the mell structure
is quite analogous, but on a much less drastic scale, to
the modification by melting of an Einstein model for
a solid to a liquid.

The problem of the conductivity of our model is one
which remains to be investigated. However, a few
qualitative remarks as to what one should and should
not ask of the model are perhaps not out of place. One
could certainly compute a zone structure for e„wells
distributed in a "superlat tice" by Heitler-London
methods, construct progressive wave solutions from the
well-type wave functions and calculate the resistance
from a postulated interaction with the lattice, all along
conventional lines. The problem would not be to show

that the resistance —+0 as T—&0, since this would follow

for any perfectly periodic structure. Rather one should

show that in the absence of a magnetic 6eld the re-
sistance for the filled-face case approached zero much
faster than that for the half-flied face and that both
became "normal" when II and T exceeded certain
values.

The behavior of the density of levels for one well and
the specific heat indicate that this latter property should

' T. G. Berlincourt and M. C. Steele, Phys. Rev. 91, 215
(1953).

not be overly dificult to realize. To obtain the former
would require a knowledge of the scattering between a
large number of (number of points in a face of Fig. 1)
overlapping zones about which we would not care to
hazard a guess without further calculation.

Closely connected with the problem of resistance is
that of the conservation of Qux of a multiply connected
superconducting body. Since this conservation of Aux
is also not a thermodynamic property (i.e., depends on
path in H, T plane), we have not attempted to explain
it in this paper.

We can also emphasize certain characteristic features
which it has that should be sought from a more funda-
mental basis. This is its outstanding property, that the
degeneracy and filling of the wells is such that no shift
in population or distribution of the particles can occur
until the field reaches a critical value. The merit of the
model is that this 6eld can be computed without per-
turbation theory. The actual size of the well is physi-
cally unimportant except in so far as it can be identified
with the penetration depth. Hence, our model tells us
that we must find a computable situation where the
actual wave functions spread over many atoms and
the energy levels are sufFiciently degenerate so that
the spacing between diferent degenerate levels is

(2m'kT, /3.5). As we saw from Fig. 3, boxes of the
proper size" alone are not sufficient; the degeneracy
and filling must also be taken into account. Prom the
recent work of Slater" we know that certain types of
exact wave functions do indeed extend over many
atoms just, in the range of energy of the conduction
bands. Hence, the problem -resolves itself if it can be
shown that one can realize sufficiently extended wave
functions, and at the same time with a sufhcient degree
of degeneracy and spacing to provide a situation equiva-
lent to that provided by the e„parabolic wells. When
and if this is done (and in the presence of a magnetic
field), one will have a theory of the superconducting
state. One will rot have a theory of the superconducting
transition. The model can only tell when it (like
Einstein's lattice with large oscillations) will fail and
presumably be normal. Indeed the success of our model
suggests that one might use as starting wave functions
the wave functions of our e parabolic wells (certainly
as complete a set as any other) and endeavor to show
that these can be used with perturbation theory to
represent the electronic wave functions in a lattice of
atomic periodicity. whether it can be shown that the
perturbation of the electrons by the lattice, weakening
with diminishing temperature, is sufficient to permit
such a clumping of the electrons as our m„wells require
and Slater's exact calculations show can happen ideally,
remains to be determined.

Finally, we should like to give a justification or at

"Small boxes to provide a model for a superconductor have
been considered also by J. C. Slater, Phys. Rev, 52, 214 (1937)
and F. Hund, Ann. Physik 32, 102 (1938)."J.C. Slater, Phys. Rev. 87, 807 (1952).
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least a precedent for our model, not only as a super-
conductor but as an admittedly crude representation
of magnetic solids. We have replaced the multitudinous
interactions of the electrons both with each other and
the lattice, including spin, by an equivalent effective
potential. It is rather pleasant and encouraging that
just one model is su%.cient to describe approximately
a rather wide variety of properties. The parabolic
potential is admirably suited to the purpose although
at least one other, the Coulomb well, might serve as well.

Now this assumption of an equivalent potential to
replace a complex interaction has had ample precedent

in the past although the path to justification is often
tortuous and long delayed. The Einstein lattice model
is the one we have followed. As other examples we may
cite the Lennard-Jones potential for gas molecules and
Hooke (and other) forces between atoms in a solid,
both of which were proposed long before there was any
quantum mechanical theory of their origin. Similar
examples of more recent date are the Weiss internal
field and theories of the heavier nuclei, justification for
which is not yet complete. These examples, we hope,
give some precedent for our otherwise arbitrary as-
sumption of parabolic wells.
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Anelasticity of Quartz
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By means of the piezoelectric effect, measurements have been made of the variation with temperature
'of (1) the Q of quartz bars executing free acoustical oscillations in torsion, and (2) the equivalent series

electrical resistance of bars driven at their natural frequencies of longitudinal acoustical oscillations. For
each of the bars studied, it was found that the internal dissipation had a maximum value at a temperature
between room temperature and the quartz inversion temperature of 573'C. Measurements of resistance
were made on one bar at several different frequencies. These data showed that part of the dissipation was

due to a relaxation eAect, whose decay time varied with temperature according to an Arrhenius equation.
An activation energy of 22 kcal/mole and a relaxation-time constant of 2&&10 "sec were deduced from

the data, which showed also that the fraction of energy lost during each sinusoidal-cycle of strain was inde-

pendent of the frequency of vibration. Estimates of the activation energies and relaxation-time constants
were deduced for the other bars measured. In one case, the dissipation was due to the migration of gold
atoms from the electrodes into the quartz lattice.

I. INTRODUCTION

HEN a solid material is set into free vibration
in one of its normal modes, the amplitude of

the vibration decays exponentially with time. This
happens even in the absence of external losses through
either acoustic radiation into the air or other medium

in which the solid is immersed, or through transmission
of vibrational energy through the supports of the
solid. The conversion of the ordered vibrational motion
into disordered thermal motions of the molecules has
been called "internal friction" or "internal dissipation",
and more recently has been named "anelasticity". A

summary of measurements on anelastic effects in metals,
and a discussion of the mechanisms which give rise to
anelasticity, are given in Zener's book, ' where many
of the formal analogies to dielectric theory are pointed
out.

To the best of our knowledge, there have been no
previous reports on researches into anelastic effects in

quartz or other piezoelectric materials. Such effects in

quartz are technologically important wherever quartz

C. Zener, Elasticity and Anelasticity og Metals (University of
Chicago Press, Chicago, 1948).

crystals are used either for frequency control of oscil-
lators, or for electric-circuit filters. Measurements of
anelastic effects in quartz, and in other piezoelectric
materials, are readily made with electrical techniques.
This is because the mechanical motions of a piezoelec-
tric material cause electrical effects through the electro-
rnechanical coupling in the material. The most im-

portant information concerning the mechanism in any
particular piece of material can be obtained from a study
of the variation of anelastic effects with temperature
and frequency.

A convenient measure of the internal friction is the

Q of a freely vibrating system. Suppose the vibration
as a function of time f is representable by exp( —nf)

sin(2zft), where n= damping coefBcient of the damped
vibration and f=frequency. The Q is then given by

Q = rrf/n.
Another convenient measure of the internal me-

chanical friction for a piezoelectric material, such as

quartz, is the electrical resistance E& which appears in

the equivalent circuit of the crystal (see Fig. 1) when

it is driven electrically at frequencies near a mechanical

resonance frequency. It can be readily seen from I'"ig. 1


