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Magnetic Scattering of Neutrons from Rare Earth Ions
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(Received June 1, 1953l

The differential cross section for the magnetic scattering of thermal neutrons by paramagnetic rare earth.
ions is derived theoretically assuming that the ions have Russell Saunders coupling and are in the Hund
ground state. Satisfactory agreement with the measured cross sections of Er203 and Nd203 is obtained
using hydrogenic radial wave function with Z —5=23 and 20 for Er+++ and Nd+++, respectively.

HEORETICAL treatments of the magnetic scat-
tering of slow neutrons by atomic electrons have

been given by Bloch, ' Schwinger, ' and Halpern and
Johnson. '

The very thorough-going paper of Halpern and
Johnson was primarily concerned with scattering from
the iron group atoms for which susceptibility measure-
ments' and slow neutron scattering data' indicate that
the orbital currents are nearly completely quenched by
the crystalline fields.

The magnetic properties of the solid salts and oxides
of the rare earths, on the other hand, clearly indicate
that for these ions there is little quenching by the
crystalline fields; in the preceding paper Koehler and
Wollan obtain a magnetic contribution to the forward
scattering from Kr~O3 and Nd203 which is, within a
few percent, equal to that which one would expect to
obtain from the free rare earth ions in their ground
state.

Our main purposes here are to derive a theoretical ex-
pression for the magnetic scattering of paramagnetic
rare earth ions and to analyze the experimental data
for Er203 and Nd203 presented in the preceding paper
on this basis. In Sec. I general formulas analogous to
those of Halpern and Johnson, ' but including the
eGects of orbital currents, are obtained. In Sec. II the
techniques for doing the integrals and sums over angular
and spin variables which are involved in these calcula-
tions are discussed, the assumption being made that
the magnetic electron shell is coupled according to the
Russell-Saunders scheme with the Hund value for
ground state. Finally, in Sec. III the results of Secs. I
and II are applied to the experiments of Koehler and
Wollan with Er203 and Nd203, and satisfactory agree-
ment is obtained.

SECTION I. GENERAL FORMULAS

The term in the Hamiltonian which describes the
interaction of the neutron with the atomic electrons is
taken to be

H;„,,= —(e/c)P, n; A~(r; —r~),

where e; is the Dirac velocity operator for the ith elec-
tron and AN(r) =g~S~Xrr ', and S~ and gN are, re-

-spectively, the spin operator and the Lande g factor
for the neutron (gN

———1.9e/M~c).
If a neutron of momentum Apo is incident on an atom,

then the scattered wave will be (in the Born approxi-
mation):

2$Mg~8
+s=Z (xfgfI —Sx k& 'XZ n'e'" "Ixoko)

f A'c
giyfrN

XxA~ —, (2)

where P is an energy eigenfunction of the atom; x is
the spin state of the neutron, k=. pp

—pf ', M is the mass
of the neutron; and subscripts 0 and f serve to dis-
tinguish the quantities before and after the collision.
The sum is over all possible states of the atom con-
sistent with energy conservation. ' Energy conservation
is given by 5'(2M) '(ye' —p~') =E~ Ee, where E—is
the energy of the atom.

Schwinger, ' using a method similar to that used be-
low, has shown that for very small k (forward direction,
elastic scattering),

i(e/c) QgI k—'kXQ n;e'" "Igp)
='(&/2~c)(AI& 'kXP;(L;+2S~) Ifp)

=k 4XM,

where M is the atomic magnetic moment.
Upon making the Pauli non-relativistic approxima-

tion, one obtains:

i Jf&(k) =i(e/c) (Px—I E,n,e'~'*I P&)

i(e/c)P '~d'r; f (h/2im)g~VQ& (Vfg)fe)—
—(1/m)VX&rs, gp)e'""

=' (ie/2mc) (ff I Q;p,e'" "+e'~'~p;

+2ikX S,e'~ "Igp). (4)
' F. Bloch, Phys. Rev. 50, 259 (1936).' J. Schwinger, Phys. Rev. 51;544 (1937).' O. Halpern and M. Johnson, Phys. Rev. 55, 898 (1939).
J.H. Van Vleck, Electric and Magnetic Susceptibi7ities (Oxford

University Press, London, 1932), Chap. IX,' Shull, Strauser, and Wollan, Phys. Rev. 83, 333 (1951).

Halpern and Johnson' have used the relations (2) and

(4) to discuss the scattering from atoms for which the
term in (4) which represents the orbital currents,
(frI+~p;e'""+e'""'p,

I fo), is zero.
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It is convenient to transform the orbital current
term in (4) as follows:

(Iz/mz)[p(k r) "+(k r) "yj=2[H, r(k r) "]
—(lz/i) (n/m)[(p k) (k r)"—'r+ (k.r)"—'r(p. k)j
=2(n+1) '[H, r(k r) "$—(I/zim)(n/n+1)k

X[L(k r)s '+(k r)" 'Lj, (5)

[pe'"'+e'"'yj= (2mz/h)[H, r(ik r) '(e'"' —1)j
—ik&&{ -', Lf(k r)+f(k r)-,'Lj, (6)

where
(zk r)" 2

f(k r)=2 Q =,I xe*da,
(n+2)n! (zk r)' ~p

m is the electron mass, and B is the Hamiltonian for the
atomic electrons. Substituting (6) into (4), one now
obtains

i Jrs(k) = (e/2mc) /~I kXP, (~sL;f(k. r,)
+f(k r,)-,'L;+2S;e'~ ")

—2m(Er —Ep)k ' Q,r;( zk r,) '(e'""'—1) lgp). (7)

The second sum is zero if E~——Ep and indeed is always
negligible for slow neutron (E=0.1 ev) scattering. '
With the neglection of the small term, (7) becomesr

z J~s (k) = +k &( ( e/'2mc) (P~ I P;—,
' L f(k r;)

+f(k r~)-', L;+2S;e'"."Igs). (7')

Substituting (7') into (2), one obtains

IrMegiv)
IZ her I S~+&

&2mcks) r
ezyf rN

where

P=g, [s(L f(k r~)+f(k r,)L,)+2S;e'" "~],

and I'~, S~~ are defined with respect to the direction
of k=ps —pr, namely, if k is taken to define the Z
direction, A~=A, &iA„, where A is any vector. (2')
expresses the fact that the component of Siv+pf(L,
+S;) in the k direction is a collision invariant. If one
writes Sire.I' +Sir P+ in the form 2Srr [P—k 'k

. ' A rough estimation of its relative magnitude may be made as
follows: kXL~fz ' Aps [[p, [r„where [Api'v[ is the change in
the magnitude of the neutron's momentum as the result of the
scattering process, [p, [ is the average momentum of the electron,
r, is the electron's radius;

2mb '(Er —E,)r,~m(AM) '[apiv['r,
Therefore,

[ 2m@ ' (Er E.)r. [
—:

[
k XL—[

(m/3I) ([&Par[/[Pi[) 10 4 or 10 4,

since [AP~[ Prr and (h/Prr) 1A and (fi/[P, [) is O(1A).' In the appendix it is shown that

(e/2mc) fipr*s~[Lf(k r)+f(k r)Lji4dt= JMr, ce'4 ~dz

where Mr;c(r) is the "equivalent magnetic dipole density" of
the orbital currents.

&((P k)] in (2'), then (2') becomes identical with Eq.
(4.1) of Halpern and Johnson except for the inclusion
in P of the orbital currents.

From (2') one has for the differential scattering cross
section (if one assumes unpolarized incident neutrons)

du (3/leg„q s
pr

Ll (+/I&-IA) I'+ I(iI~1&+I+o) I'3
dQ &2m') f 2ps

(8)

Equation (8) refers to the scattering from a single
ion initially in a state its, but in substances in which the
effect of exchange forces acting between the magnetic
shells of adjacent ions are negligible, there will be no cor-
relation in the sense of the currents in adjacent ions and
hence no net coherence in the magnetic scattering from
such a substance. Now whereas gadolinium is known to
become ferromagnetic at T=16'C and there'is an in-
dication of the possible onset of long-range magnetic
order in metallic erbium at T=70 K, the susceptibili-
ties4 and neutron scattering cross sections of the rare
earth salts and oxides are well accounted for on the
assumption of little or no ordering of neighboring mag-
netic moments except possibly at very low tempera-
tures. Thus Koehler and Wollan detected no magnetic
coherent scattering from Er203 and Nd203 down to
T=20'K. The assumption is then made that for these
substances the inAuence of its neighbors on a given ion
is representable by an effective electrostatic "crystalline
Geld. " The magnetic scattering from such a substance
is then given by summing (8) over the statistically de-
termined initial states Ps of its magnetic ions.

SECTION IL .THE EVALUATION OF (Qr[P~[itis) FOR
THE GROUND STATES OF THE RARE EARTHS,

IN PARTICULAR FOR Er+++ AND Nd+++

Russell-Saunders coupling with Hund's rule is sup-
posed to apply to the ground state of the rare earths.
The wave function for n electrons in the 4f shell is
taken to be of the form

AM $4f, (rl ' ' ' re) OlI, s, J,sr,
where P is a symmetrical function of the radial co-
ordinates of the n electrons, 0 a function of the angle
and spin variables. of the electrons which is an eigen-
function of L' with eigenvalues L'=/(3+1)A'=12iP
L'= (PL,)', S'= (P S,)', J'= (gL,+S,)', and some
component of J with eigenvalue M. S has its maximum
value possible, I. its. maximum consistent with this 5,
and J=

I ILI —ISI I, if the shell is less than half filled,
J=

I ILI+ISI I, if the shell is more than half filled.
We shall assume that the crystalline Geld may lift the
3E degeneracy and possibly mix states of diQ'erent M's
but does not cause an appreciable admixture of diferent
J states. In dealing with atoms containing more than
half-Glled shells we shall perform calculations for the

Since the next J state lies some 2000—3000'K above the ground
state for Er or Nd, this assumption should be valid.
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magnetically equivalent model consisting of the closed-
shell de6ciency number of electrons. Thus Er ' ' ', which
has a deficiency of three electrons from a closed 4f
shell, is replaced by an atom containing three 4f elec-
trons with, of course, the same I., 5, J as Kr' ' '.

The elements (P rIP+Ilt )swhere the P's are of the
form (9) may now be brought to a form containing
known coefficients and radial integrals only by straight-
forward application of the Wigner-Eckart' theorem
and the concept of tensor operators as developed by
Wigner' and Racah. "According to Racah the irreduc-
ible tensor of rank k, T, '~' transforms under rotations
the same as the spherical harmonics Tk, ,=Pk'(fi)e'«,
and so satisfies

One further result which is needed is

J+tJ'k(J*)+ tPk(J.)J+=~k, k i(J)'Jjk-i, pi(J)
+crk, k+i(J)'gkyi, yi(J) ~ (1ti)

Taking account of Eqs. (10) and (13), we have

(Pk(M)+ (Pk(M+1) = [k(k—1)] '
X~k, k i[&s i(M) —tPk i(M+1)]+[(k+1)(k+2)] **

Xtrk, k+i[tPk+i(M) —tPk+i(M+1)]. (17)

From (15) one may deduce

[Jg, T,']= [k (k+1)—q(q&1) ]'*T,gik,
(10)

where

tP„(M+ 1)= tP„(M)+P C„,~P„(M), (18)

The Wigner-Kckart theorem states C„„(J)= (P„(J+1)tP, (J)+ (—1)"+"+'(P„(J)(P,.(J+1),

( 'J'M'IT, kI JM) and (P„(M) is the polynomial of order rt in M given by
= (—1)~G(ot'J'; Tk; uJ)(JJ'M' —MI JJ'kq), (11) the right side of (13). Substituting (18) in (17) one

obtains
where 6 does not depend on M, M', or g, and a general
expression from which the vector addition coefficient
(jijsrttintsI jijsjm) may be determined is given by
Wigner' and Racah. "For our purposes it is convenient
to introduce the special tensor T,k='gk, ,(J) such that

(J'M'I pk, , I
JM) = ( 1)~3» (JJ—'M' MI JJkq). —(12)

[(k+1)(k+ 2)] '*Ckyt, ,uk, t+i+ [k (k+ 1)] '*Ck

+Ck, .+2&k.=0. (19)

Putting in (19) r=k and r =k 1successivel—y one ob-
tains

Defining (Pk(M&) by (J)= —2[(k+1)(&+2)]~/C, (J)

(JM
I

'JJk, o I
JM) = (JM

I
tPk(J*)

I
JM) = tP (M~) (13') ~k, k-i(J) = &[k(k+1)]'/Ck-, —(J))

[(2Ck+1, k s(J)/Ck+1, k(J))—Ck, k s].
we have'o»

(20)

(2k' (2J+1+ki
tPk(M~)=

I(k) l 2k+1 )
k+vl (2J—v& (J—M

XZ (—1) I II II I. (13)k)Ek —v)4v)
From (10) we have

Since according to (13) the polynomial

(k+vi (2J—v) (J M—
tPk(M)-2 (—1)"I

v=s ( k ) 4k v) ( v )

is zero if k&2J, IMI& J, care must be used in inter-
preting (20) for k=2J.

From (2') we have

and from (12),

P (JMI gk, +(J)
I
J'M')(J'M'I qk, ,(J) I

JM)
MMr

P (JM
I
gk. , (J)yk, (J) I

JM) =3kk, 3„.. (1S)

' K. Wigner, Grlppentheori e end ihre Anm ending alp die
Quantenmechanik der Atomspectren (J. W. Edwards, Ann Arbor,
1944).' G. Racah, Phys. Rev. 62, 438 (1942).

"The expression for the orthogonal-with-respect-to-summing
polynomials (Pk(M) is also given by C. Jordan, Calculus of Finite
Differences (Chelsea Publishing Company, New York, 1950).
Note that the polynomial PI, (M;) is defined for MJ)J although
of course it then hasn't the significance of a vector addition
coe%cient.

P+——P sL„~f(k r„)+-,'f(k r„)L„++25„+e'k'™
n

=2 2 s"(2 +1)(f.(kr-)l[L- P.(~-)+P.(il.)L. ]
n, v=o

+2g„(kr„)S„~P„(8„)), (21)

where

f (x) =2x ' M (X)4'

g.(x) = (sr/2) *'x—J,+.*, (x),

the subscript g refers to the eth electron, and 8 is
measured from the k direction. Now from Eqs. (10)—
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G(l =3) Yv(8. 4»' l 3)

0 2.645
1
2 —0.6105
3
4 2.127
5
6
7

—0.1869

G(I. =6, J; J„(L);6, J)

J=9/2

0.877
0.857
0.818
0.758
0.683
0.590
0.487
0.374

J=15/2

1.108
1.093
1.065
1.011
0.952
0.8805
0.794
0.688

G(l1 =l2 =le =3, & =6)
JJv(Lvv); 3, 3, 3, 6)

1.365
0.849
0.147—0.296—0.226
0.260
0.593

TABLE I. G(n'v J'; Tv; a, J) defined by Eq. (11) and evaluated for
special cases by use of Eqs. (26) and (27) and reference 8.

tabulated by Biedenharn;12 and in virtue of the simple
Hund's scheme for the coupling of the individual I. 's
to give L[L=t+ (t—1)+ +(t—n+1)],

G(ti t~, I; 'JJ„(L„);ti . .t„, L)
= [(P,(t)+(p. (t—1)+ + (p. (t—n+1)3/n(p (L) (27)

In the next section the b's are evaluated for Nd and
Kr.

In (22) the 'JJ„, ,'s are defined with respect to axes
whose s direction is along it=ps —pr. If we call this
axis So and an axis rotated by Euler angles (n, P, y)
with respect to S0, S, then we have

(21) we have x. ,(")= E ~„"(,tt, v)x„('), (28)

4f) o ~ l1 . ln)L 'S)J;M'& yy4fo n~lI ~ .ln)I. ;S)J;M~

l

= +(J~'I Z (—1)"V'.'(k)[8' .. .—'9 .—,+ (J)
V=O

/

+ b 2v, sv+1 $2)+1,+1(J)$+2F2v (k)[8 2v, 2v—1

X JJ2v—1,+1(J)+ b 2v, 2v+1J2v+1, +1(J)j}I ~~) (22)

where the X)"(41,P, y)'s are the irreducible representa-
tions of the three-dimensional rotation group.

From the unitarity of the S matrix and the orthogo-
nality of the 'JJ's it may be deduced that

(&..."(~, f3, v)&.-,.- "*(~,f3, v))A.
=~- 82' t'2 '-/(»+ 1) (29)

where

F, (8)k=) rt)4g, rt)4r, „g„(kr;)ds x,

F,L(k) = )Irt4f, *rt)4J, f, (kr;)ds "x,

where in (29) the average is made over all possible
orientations of the rotated frame.

If the sample under consideration is a powdered

(23) crystal sample with perfectly randomly oriented micro-
-rystals, then in virtue of (29), (28), and (22), (8)
becomes

where r; is the radial coordinate of any of the e elec-
trons, and where from (11) and (16) we have

2P+1
8,, „yr —— G(t; J„(0,P); t)n, , vier(t)

2

XG(trr . 4) L; Q qJ,gr(L ); ti . t; L)

XG(L, S, J; 'JJ.~1(L); L,, S, J), (24)

b„,„~18=(2)+1)G(t; I'„((), 2)); t)
XG(t,".t„, I.; qJ„(L„);t, " t„,L).
X [nv, v~1(J)G(L, S, J; qJ, (L); L, S, J)

—n„, „+1(L)G(L,S, J; /v~1(L); L, S, J)j. (25)

Racah has shown that

(2t+1) n!
G(t; I'-(f), () t)=(—1)""

(2n+1) & (-', n!)'

do f'3legiv) ' ) Pr
I ZE —[g „,„.,F „(k)

&2)ncaa) =o 6r p.

g 2v+2, 2v+1F 2v+2 (k)+2 b 2v 2vyrF 2v (k)

—2b 2vg2, 2v+1F 2v+2(k)]'(4)+3)—'
2v+1

I 8'r I '92wr. IJ!'6) I' (30)
q (2 v+1)

where it is to be noted that in (30), k, for a given scat-
tering angle, satisfies

k'=ko'PJ/P +(PJ P)'—
EJ—E,) 2M(Ef E,) Er—E, —

=ko'I 1— I+
2E3r, ) 122 4E~,

If we assume that (Ef Eo)//Ergo is sufFiciently —small,

TABLE II. a@ )4.)(J) defined by Eq. (16) and evaluated
by use of Eqs. (18) and (20).

=0 (n= odd).
2 3.70 5.598 7.409
4 2.870 4.738 6 611
6 0 3831 5867

(t+—',n)! t' (2t—n)! ) & „„,( )

(t—-',n)! & (2t+n+1)!J
15/2

13.03
9.190
8.363
7.745

J=3
0—2,450—2.941—1.645

an, n 1(J)
9/2 6

0 0—3.590 —4.694—4.029 —5,407—3.620 .—5.258

15/2

0—5.810—6.744—6.830

G(L, S, J; qJ„(L);L, S, J) is (excePt for a multiPlying "L. C. Biedenharn, Oak Rid e National I.aborator Re ort
factor) the Racah function 8' whose values have been ORNL-1098 (unpublished).
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TABLE III. ti„,„+p s(l, L, J) defined by Eqs. (24) and (25) and evaluated for l=3, L=6, J=9/2 (Nd) by use of Tables I and II.

~L
2v, 2v+1(9/2)

16.3—3.81
12.6
0

~L
2v+2, 2y+1 (9/2)

8.3—18.9
0.92
0

~S
2 y, 2v+1 (9/2)

—70—0.465
2.87
0.473

~S
~ 2v+2, 2vy1(9/»

—0.488
5.83—1.93
0

TABzz IV. gv, vobis 0(/2 L, J) defined by Eqs. (24) and (25) and evaluated for l=3, L=6, J=15/2 (Er) by use of Tables I and II.

0
1
2
3

&L
& 2v, 2v+1(15/2)

20.9—5.08
18.8
0

8 2v+2, 2v+1(12/2)

10.4-
25.2
1.37
0

~S
u 2,,2,+1(15/2)

10.4
1.03—9.3
3.04

AS
2 v+2, 2v+1(15/2)

0.475—4.14
1.14
0

where

do (MegNq ' 1 B„2(ks)
+~,

dQ E 2mcb ) —0 2J+1
(31)

Bv (~) [g 2v, 2v+1F 2v (~) g 2v+2, 2v+1F 2v+2(~)

+2 / 2v, 2v+1F 2v(~)+2 / sv+2, 2v+1F 2v+2 (~)j v

and the crystalline eGects are contained in

Er—E. (' c)B„2)
I B.'(&0)+&0', ILg(Er) —g(E )j

I, fo 2Eivv'( elk

2M(Er E) BB'—
+ I g(E.)+g(E.))

Bk'

2 v+1

X l(6I qi2+1. .(J) I A) I' (32)
2 (4P+3) 2 (sv+1)

then (30) may be approximated by expanding the
expression in square brackets and (p,/p0) in powers of
(Er E0/E~0), n—eglecting powers higher than the first;
if at the same time we multiply by the statistical weight
g(E0) = (e E«s /QE0e B»" ) and sum over the initial
states F0, we obtain
I

cross section that the ground state is an eigenstate of
that the effect of neighboring ions on a given

ion can be approximated by an electrostatic 6eld, and
finally that the splitting energies due to the crystalline
fmld is small compared to the energy of the incident
neutron.

If we neglect the terms A. and substitute from Tables
III and IV into (31), then we have an expression for
the cross section involving the radial integrals F.(k) s.
If we assume that charge distribution may be approxi-
mated fairly well by hydrogen-like 4f wave functions,
r/i(r) r'e "", then the integrals defining the F.(k)'s
I Eq. (23)] may be done analytically and are functions
of ka.

In Table V we give values of Fv~ e(/ca) for a range
of parameters ka. In Tables VI and VII we give the
B'(ka) for Er ' ' ' and Nd+++. It is seen. from Tables VI
and VII that the differential cross section may be
approximated to within 5 percent accuracy by just the
erst term, 80', in the moment expansion given by Eq.
(31) for k (a0.4. Since for the measurements reported
on in the previous paper the values of ka for which
signiicant accuracy could be obtained were &ka
=82ra0 sin8/2(Z —S) 9, '=0.4, we may keep only the
term B02 in (31).

In the next section the possibility of (32) s explaining do /'~egAvq 2

the possible small decrease of cross section from the —='I
I (2J+1) 'LQ0, 1 F0 (~a)+ b2, 1 F2 (~a)

free ion value for Er' ' ' is discussed.

SECTION III. CROSS SECTIONS FOR Er+++ AND Nd+++

In Tables I and II we jive the G's" an6 0."s" for
Er(1,=3, 5=6, S=3/2, J=15/2) and Nd(1, =3, L=6,
S=3/2, J=9/2), and in Tables III and IU the values
of the g's'0 are given for these two cases. The figures
given in Tables III and IV are not all significant;
each entry should be taken to have a probable error
of about 1 percent or less. The assumption. has been
made in deriving Eq. (31) for the powdered crystal

"Equations (11), (26), and (27).
Kqllatlons (16)-{20).

"Equations (24) and (25).

FOL P2L PsL FOS P2S F4S p,S

0
0.01
0.05
0.10
0.15
0.25
0.35
0.5

1.00
0.928
0.696
0.496
0.362
0.208
0.132
0.0782

0
0.030
0.119
0.181
0.211
0.222
0.209
0.179

0
0

0.011
0.036
0.063
0.112
0,146
0.174

0
0

0.001
0.009
0.022
0.061
0.104
0.158

1.00
0.862
0.452
0.172
0,034—0.055—0.058—0.084

0
0.058
0.189
0.241
0.233
0.166
0.101
0,040

0
0

0.021
0.057
0.089
0.123
0.126
0.105

0
0

0.001
0.007
0.018
0.042
0.062
0.078

+81 0 ( )+821 2 ( )3'v ~ ( )

Substituting gA
———1.91e/Mc, e / 2222c22. 81 10 " cm,

TAar, E V. P ~ de6ned by Eq. (23} and evaluated for
the case vtv*vfv~r' exp (—r/a).
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k~a~

0
0.05
0.10
0.15
0.25
0.35
0.50

Bp2

978
319
103
31.7

1.92
0.03
0.35

BP

0
0
0.2
1.2
5.61

10.6
15.8

Bg'

0 0
0 0
0 0
0.1 0
0.7 0
1,9 0

- 4.0 0

ZB„~

978
319
103
32.9
8.2

12.5
20.2

TABI,E VI. B„defined by Eq. {31) and evaluated for Er with
assumptions given-in Sec. III by use of Tables IV and V.

Noting that the term F~~ makes a negligibly small
contribution to (34) and (35) over the region considered
and that gp, P and bp, P are in fact L J[J(J+1)j '

X[—,J'(J+1)(2J+1)j& and 2S J[J(J+1)] '[—,'J'(J+1)
X(2J+1)]'*, respectively, Eqs. (34) and (35) may be
well approximated by

do 2 (L J)' 2S J—= 7.2X10 'o- Fox(ka)+ Fos(ka
dQ 3 J(J+1) L.J

10
cm'[16.3Fp~ (ka) —8.3Fo~ (ka)

7 OFos(ka)+0 49F,s(ka) j' (35

for the free ion cross section for ka&0.4 for Kr' ' ' and
Nd' ' ', respectively. We plot F02, I"0, 2 in Fig. 1.
According to Eq. (21)

go(x) = sins/x,

( 3 ) sinx 3 cosx
go(&)=

l

—1+—I*o) ~
(36)

2
fp (x)=—(1—cosx),

$2

2 (
fo(x)=—

i
2+cost-

s~ E

I

3 S111$)

x )
and so we get for the F's, assuming hydrogenic 4f wave
functions,

sin8 tan 'ka
Fos(ka) (8ka

(1+a'k') 4

F,s(ka) = (8ka) '—sin8 tan 'ka 1
+—(ka)—

(1+a'k') 4 14

sin6 tan 'ka 3 cos7 tan 'kc
X ——(ka) '

(1+a'k')' 7 (1+a'k')'"

1 & cos7 tan 'ka
Fo~(ka) = (ka) '1———

28 (1+aoko) 7/o

we get

do-g„7.2)&10 "
cm'[20. 9FP (ka) —10 4FP (.ka)

+10.45Fp (ka) —0.47Fo (ka)j' (34)

dtT~g 7.2y10 "

k2a2 Bpl B&2 BP

0.50F—P(ka) cm'

=1.96X10 "[Fp (ka)+-,'Fo (ka)

—0.50Fo~(ka)j'cm', for Kr' ' '

= 1.94X 10 '4[Fo~ (ka) —0.427Fos (ku)

—0.50FP(ka) j' cm' for Nd' ' '. (38)

In Fig. 2 a comparison of (38) with the experimental
cross section obtained by Koehler and Wollan is pre-
sented; the abscissa is sin(-', 8)/X= (8orap) '(Z —S)ka,
the best fits being obtained with Z—5=23 and 20 for
Er and Nd, respectively. As explained in the previous
paper, there is an uncertainty in the magnitude of the
nuclear incoherent scattering which causes an un-
certainty in the base line from which the magnetic
scattering is to be measured; Koehler and Wollan esti-
mate this to be of the order of +6 percent of the for-
ward magnetic scattering for Kr. This is indicated in
the figure by three curves derived from the experi-
mental points having a constant difFerence. Curve (a)
gives the free ion cross section in the forward direction
which is consistent with their estimated base-line un-
certainty; curve (c) is the reasonable lower bound, and
curve (b) is the median of (a) and (c). The magnetic
cross section for Nd as shown in Fig. 2 is small; the
base line was chosen so as to give the free ion cross
section in the forward direction, and it is seen that the
theoretical curve Gts quite well.

The free ion theoretical curve is seen to give a
reasonably good fit to curve (a) for Er. On the other
hand, if curve (b) represents more nearly the actual
magnetic scattering, then the difference of the theo-
retical curve and (b) may be attributed to crystalline
6eld splittings of the type envisaged in the last section.
Considering only the term v=0 in (31), the efFect of the
crystalline 6elds will then be to add to the cross section

TABLz VII. J3,~ defined by Eq. (31) and evaluated for Nd with
assumptions given in Sec. III by use of Tables III and V.

cos7 tan 'ka
FP(ka)= —(ka) ' 2+

28 (1+k'a') "'
sin6 tan 'ku—-'(ka) '
(1+aok2) o

0
0.05
0.10
0.15
0.25
0.35
0.50

87.2
53.6
30.4
16.4
4.1
0.6
0

0
0.2
0.2
0.06
0.2
1.4
3.9

0
0.04
0.4
1.1
3.2
5.0
6.3

0
0
0
0
0
0
0

87.2,
53.8
31.0
17.6
7.5
7.0

10.2
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a term
Ef E0 dao

~-(k)= Z -'-.(k)+k, Ig(E.)-g(E.)j
4'f 4'0 28~0 dk .

2M(Er E.)—dop
+ „, ,Lg(Er)+g(E.)j

21+1 i
x El(AIqji, , IA) I', (39)

6

where op(k') is given by Eq. (34) and k' refers to the
elastically scattered k at the given angle.

As 'may be seen from an inspection of the curve for
00, over most of the region with which we are concerned
k'(dop/dk') (o.p(k'); and, therefore, the expression (39)
for ha is negative definite. From (39) fiir/op= (Ef—'E )/
E&, , and, since crystalline 6eld splittings of the order
of 100 cm '' '7 are expected here, it is not at all im-
probable that the cross section in the forward direction
is actually as small as indicated by curve (b) or (c).

However, it should be pointed out that, if there is a
decrease in cross section from the free ion value result-
ing from the above mechanism, then because of the change
of the population factors g(E, T) a considerable change
would be generally expected in 8o(k') in going from
room temperature to 20'K; whereas, in fact, according
to Koehler and Wollan's experiment only a change of a
few percent which is attributed to the change in the
nuclear diGuse scattering is observed. Experiments
using higher energy neutrons are being considered to
obtain additional information concerning this point.

The author wishes to thank Drs. K. O. Wollan and
W. C. Koehler for suggesting this problem and for many
interesting discussions concerning it, Dr. T. A. Welton
for constructive criticisms, and Miss Nancy Givens of
the ORNL Mathematics Panel for computational aid.

APPENDIX

An alternative derivation of (7') from (4) which
brings out the physical interpretation of the form (7)
proceeds as follows:

),0

0.8

0.6

4.0

3.6

3.2

2.8

C
O

a 2.4

E 20

f.2

0.8

0.4

0
0

I
Nd+++

0,2

I

l

p4
s'e(e/2$),

0.6 0,8

Fn. 2. The solid curves represent the measured values and the '

dashed curves, the theoretical free ion values assuming hydrogenic
radial wave function with Z—S 23 and 20 for Er~+ and Nd+++,
respectively. The three curves (a), (b), and (c) for Kr+++ repre-
sent the experimental base line uncertainty as explained in the
text. The vertical dashed lines represent the regions outside of
which the experimental values are uncertain.

Therefore an M& may be defined so that

jr, = V'XMr;.

Therefore the term in (4)

d're"'s' "jr,———ikX Mr, e's "d'r'
We may take for MI.,

r"
Mr, ——r—'rX pjr, (r-'rp)dp;

Let fp, Pr refer to states with the same energy; then
for

jr.——(eh/2mci)gy (7gp (Vlf'—)lgpj,
we have

p4

0.2

o

-0.2

Fox —0 5F
then, integrating by parts,

Mle@'"d'r= srXjl f(k r)d'rf
J J

= (e/2mc) Pr*si LLf(k r)+f(k r) L)Pic,'r

-0.4
0 0.2 0.3 0.4 0.5 0,6 0.? 0.8

ku

: Fio. 1. F&, & defined by Eq (23) for cas.e p*p~r'exp( r/a)-
6 F. A. Spedding, J. Chem. Phys. 5, 316 (1937).

» B.Sleaney, Physica 17, &75 (19&&).

~ ' j haik rd3y

= —ikX (e/2mc)~ pr*s[Lf(k r)+ f(k r)L]ppd'r

in agreement with Eqs. (6) and (7').


