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Calculating of the Cohesive Energy of Diamond*
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It is well known that a satisfactory value for the binding energy of the hydrogen molecule may be calcu-
lated using a wave function which has the form of a Heitler-London (HL) function built on non-orthogonal
orbitals. However, Slater has shown .that a HL function built on orthogonal orbitals fails to yield any
binding for the hydrogen molecule, but binding may be achieved by mixing with the HL function an ionized-
molecule function which assigns two electrons to one atom and none to the other. Satisfactory results may
also be achieved using a Hund-Mulliken (HM) function which may be built on either orthogonal or non-
orthogonal orbitals, since the wave functions resulting in these two cases may be shown to be identical.

The present calculation shows that the situation for diamond is entirely analogous to that for the hydrogen
molecule in that the usual formul'ation of the Slater-Pauling (SP) directional theory of valence, which is a
generalization of the HL method using orthogonal orbitals, fails to yield any binding, but satisfactory
results are achieved when this theory is reformulated to allow ionization to be introduced into the bonds.
It is also shown that for the observed value of the lattice parameter, which is the only value for which the
calculations have been performed, satisfactory results are also achieved using a wave function which is built
on orthogonal HM orbitals, each of v hich, like its counterpart in the hydrogen molecule case, is spread out
over a pair of bonded atoms.

As a by-product of the main calculation, the total exchange energy of Bloch-type functions belonging to
the valence bands of diamond is calculated and found to be essentially equal to the value obtained using
free-electron functions.

INTRODUCTION whole molecule or crystal is also objectionable from
the conceptual point of view in that it fails to give
expression (or does so only in a very indirect manner)
to the fact that the valence bond is a local affair
involving only an atom and its immediate neighbors.
It will now be shown that the Sp theory may be cast
into a form which emphasizes the local nature of the
valence bond and which allows a generalization that
permits the necessary con6guration interaction between
bonded orbitals to be carried out locally, rather than
requiring the mixing of states of the entire molecule or
crystal. This will be called the "ionized-bond" for-
mulation of the theory.

HE Slater-Pauling (SP) directional theory of va-
lence is essentially a generalization of the Heitler-

London (HL) method to the case of an arbitrary
molecule or crystal. However, while the HL method as
applied to the problem of the hydrogen molecule
employs a wave function built on one-electron functions
whose space parts are not orthogonal to each other„the
wave function used in the general case is built on one-
electron functions whose space parts are mutually
orthogonal; Until Slater' recently applied the general
form of the theory based on orthogonal orbitals to the
hydrogen molecule, . it had never been subjected to a
decisive analytical test because all prior applications
of it, while using the energy expression appropriate to
orthogonal orbitals, in one way or another made unwar-
ranted use of the results of the HL calculation for the
hydrogen molecule based on non-orthogonal orbitals.
Slater's calculation shows that in the case of hydrogen,
the general theory is inadequate in that it not only fails
to give any binding, but also indicates that the triplet
state has lower energy than the singlet state. This
situation may be corrected, in the case of hydrogen, by
means of a configuration interaction between a HL
function which assigns one electron to each atom and
an ionized-molecule wave function which assigns two
electrons to one atom and none to the other. But, while
the method of configuration interaction is very con-
venient in the case of the hydrogen molecule, it is
unworkable in the case of a large molecule or crystal.
A configuration interaction which mixes states of the

*Part of a dissertation presented to the faculty of Princeton
University in partial fulfillment of the requirements for the degre
of Doctor of Philosophy.

f Now at Michigan State College, East Lansing, Michigan.
' J. C. Slater, J. Chem. Phys. 19, 220 (1951).

l. IONIZED-BOND FORMULATION OF THE
SLATER-PAULING THEORY

While the following discussion is in terms of the
diamond lattice, it will be apparent that the methods
and results may be adapted to the case of any molecule
or crystal in which it is valid to assume that the bonds
are localized, i.e., no resonance between different bond
eigenfunctions occurs. In such a case there is a unique

. pairing of all the valence orbitals into bonded pairs, the
two orbitals of any given pair having opposite spin. In
accordance with the intuitive ideas of the SP theory
which assert that the bond strength of two bonded
orbitals is greater the more they overlap, we regard the
orbitals as lobes which point toward their bonded
partners. In the case of diamond there are four valence
orbitals per atom and every atom has four nearest
neighbors located at the vertices of a regular tetrahedron
circumscribed about the atom. Since the diamond lattice'

' For figures illustrating the diamond lattice see, for example,
C. Herring, J. Franklin Inst. 233, 525 (1942), Fig. 3 on p. 538;
or A. F. Wells, Structural Inorganic Chemistry (Oxford University
Press, London, 1950), second edition, Fig. 166 on p. 511.
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consists of two interpenetrating face-centered cubic
lattices such that the four nearest neighbors of an atom
belonging to one of the two interpenetrating lattices
all belong to the other lattice, the lobe-like valence
orbitals of atoms belonging to one lattice point toward
the v'ertices of a tetrahedron fixed in space, while the
or'bitals of atoms belonging to the other lattice point in
the opposite directions, i.e., toward the faces of the
tetrahedron. Let the space part of a valence orbital of
an atom belonging to one lattice be designated I; and
let e; be the space part of its bonded partner which

belongs to an atom of the other lattice and which points
in the direction opposite to that in which I; points so
that the overlap of the two lobes is a maximum.

Instead of using these one-electron functions to con-
struct the Slater determinants from which the electronic
wave function for the crystal is formed in the usual
formulation of the SP theory, ' we shall use them to
construct two-electron functions which will in turn be
used to build the wave function for the crystal. f Let us
assume that the space parts of the valence orbitals are
normalized and are mutually orthogonal. Let p;, be
the normalized two-electron function constructed from
the two bonded lobes whose space parts are I; and v;.
Since Slater' found that, in the case of the hydrogen
molecule, satisfactory results could be obtained using
a wave function built on orbitals with orthogonal space
parts only if the wave function was taken to be a
mixture of the ordinary HL function and the ionized-
molecule function, we shall assume q;; to have the
following form:

q,;(k, l) = (t I'(k)& (l)+'6'(k)N'(~) j
P2 (1+2') g'*

+ALN, (k)N, (l)+i;(k)i', (i)])

(k)PP) —P(k) (i)
X (1-1)

where n and p are spin functions, and the arguments k

and l designate the kth and /th sets of electron coor-
dinates, respectively. The quantity in the first square
brackets inside the curly brackets corresponds to the
HL function while that in the second square brackets
may be called an "ionized-bond" function and corre-
sponds to having two valence electrons on one bonded
atom and none on the other. The adjustable parameter
A which determines the relative proportions of these
two functions in y;; will ultimately be adjusted so as to
minimize the energy. This amounts to carrying out a

'See, for example, Eyring, Walter, and Kimball, Quantum
Chemistry (John Wiley and Sons, New York, 1944), Chap. XIII.

f Note added in proof: The author's attention has been called
to the brief discussion of the possibility of formulating the wave
function of a crystal in terms of two-electron functions which has
been given by L. Pauling, Proc. Roy. Soc. (London) 196, 343
(1949).See p. 361 of this article.

configuration interaction between the two bonded
orbitals having space parts I; and v;.

For the sake of simplicity, let us regard the two 1s
orbitals belonging to any atom of the diamond lattice
as constituting a bonded pair. The diGerence between
a bonded pair of is orbitals and a bonded pair of valence
orbitals is that, while the space parts of the bonded
valence orbitals are orthogonal, the space parts of the
bonded 1s orbitals are identical. If we designate the
space parts of two bonded is orbitals by n;0 and I,',
then I; =I; and the corresponding q;; is

qv(k, f)=~/(k)Nio(l)La(k)P(l) —P(k)(x(l)3/V2. (1-2)

We note that the q's defined by (1-1) and (1-2) are
antisymmetric with respect to interchange of their
electr'on coordinates, that is

(1-3)

They also constitute an orthonormal system since

(q;, (k, l) t q;; (k, l))I,, i=1; (q;;(k, l) i
q;.p(k, m))I, ——0;

pair i,, jApairi, ', j', l/k, and mWk; (1-4)

where the subscripts k and I appended to the erst inner
product indicate that the integration is over the kth
and /th sets of electron coordinates and the subscript k
on the second inner product means that the integration
extends only over the kth set of coordinates.

The electronic wave function of the crystal, g, may
be written in terms of the p's as follows:

0=2 ""E (-1) &q. (1, 2)q. (3, 4)".
X+N leap 1y+)y (1 3)

.where 1V is the total number of electrons (including 1s)
in the crystal. The permutation operator I' acts only
on the electron coordinates and not on the subscripts
of the p's. Because of the antisymmetry of the p's set
forth in (1-3), if the factor 2 N~' did not multiply the
summation over all permutations, every independent
term in f would be repeated 2~~' times. By multiplying
by 2 +~', we obtain/ in the form of the sum of 2 +~'Q!
independent terms. Using the orthonormality condi-
tions (1-4), we see that the norm of f is 2—~1'Q!.

If (1-5) is to be a valid wave function for the diamond
lattice, it must be an eigenfunction of total spin (as-
suming a spin-independent Hamiltonian for the crystal)
belonging to the eigenvalue S'=0, because diamond is
diagmagnetic. This is obviously the case since each of
the q's as defined by (1-1) and (1-2) belongs to the
eigenvalue 5'=0. f must also belong to an irreducible
representation of the space group O~~ which describes
the symmetry of the diamond lattice. f does, in fact,
belong to the identity representation. This may easily
be seen from the following argument: Any symmetry
operation will result in a relabelling of the orbitals of



COHESIVE ENERGY OF DIAMOND 1375

the lattice, but a bonded pair of orbitals before the
symmetry operation will be a bonded pair afterward,
so the net effect on f will be a reordering of the factors
in the terms of (1-5). But since the order of the factors
in any term is completely irrelevant, P is unchanged.
Hence it belongs to the identity representation.

It can be shown' that P as defined by (1-5) reduces
for the case A =0 to the wave function employed in the
usual formulation of the SP theory. ' It can also be
shown' that for the case AND, (1-5) is equal to a linear
combination of the -usual SP wave functions corre-
sponding to all possible configurations which may be
generated in the diamond lattice by shifting electrons
into the orbitals of their bonded partners, that is by
ionizing the bonds. Thus, if we evaluate the energy of
the diamond lattice using P as defined in (1-5) for the
case of arbitrary A, and then adjust A to minimize the
energy, we are, from the point of view of the usual form
of the SP theory, carrying out an immensely compli-
cated configuration interaction, but doing it in a way
which is not only computationally much more tractable,
but is also intuitively more appealing because it stresses
the local nature of the valence bond.

Finally, we note that for A = 1, (1-1) may be written
in the form

v;;(k, i) =k[N'(k)+~ (k)3[I'(i)+~ (i)3
&[ (k)&(i)—P(k) (i)j/~ (1 6)

which has the form of the simple Hund-Mulliken wave
function for the two bonded orbitals of the hydrogen
molecule. Writing all the p s in (1-5) in this way and ex-

panding all the products of spin functions, we obtain a
sum of products of one-electron orbitals which is anti-
symmetric for the interchange of any pair of electron
coordinates. The number of terms in this sum is

2 ~'2 ~'2 "S!=X!,where E/6 and X/3 are the
number of pairs of 1s orbitals and valence orbitals,
respectively, and 2 I'Et is the number of terms in

(1-5). A typical one-electron function in this expression
would have the form

2-'~4[I;(k)+ s;(k)jn (k) .
Thus, for A=1, (1-5) is identical, except for nor-

maliza. tion, to a single Slater determinant constructed
from Hund-Mulliken type orbitals, each of which is the
sum of two bonded localized orbitals. This could be
called a "semi-generalization. " of the Hund-Mulliken
method to distinguish it from the "complete generaliza-
tion" represented by a'wave function which is a Slater
determinant of Bloch waves, which are spread out over
all the atoms of the lattice, instead of just the two atoms
of a bonded pair. However, it should be noted that the
determinant of the semi-generalization diGers only by a

4L. A. Schmid, Thesis, Princeton University, 1953 (unpub-.
lished).

unitary transformation from a determinant of Bloch-
type functions which are similar to Bloch waves in that
they are spread out over all atoms of the lattice, but
are more restricted than Bloch waves because they are
prescribed linear combinations of atomic orbitals.

H =Q Oi (k)+Q Q 02 (k, i), (2-1)

where, in atomic units,

(2-2)

where rI, and Rl, are the vectors specifying the kth set
of electron coordinates and the I.th lattice point, respec-
tively. , and V'I,' is the Laplacian operating on the kth set
of electro@, coordinates.

02(k, l) =1/ri, i ——1/~ ra —ri~. (2-3)

(The subscripts on the operators Oi and 02 indicate
that they involve coordinates of one and two electrons,
respectively. ) The derivation of an expression for
(P!B!P)/(P~P) in terms of matrix elements between
the one-electron orbitals is a strightforward matter and
has been given elsewhere, ' so it will be omitted here.
The expression itself is made somewhat more manage-
able by a condensation of notation. .Since the integral
(m,m;

~
02

~
u&u&) may be thought of as the Coulomb inter-

action between the "charge densities" N,mI, and N, gg

we shall denote it by C(ik; jl). This notation does not
indicate whether the orbitals involved are I's or v's,

but no ambiguity results since the I's and ~'s always
have different subscripts. In the expression (2-4) given
below the indices i and j, when they appear in the same
summation, will designate a bonded pair, and similarly
for the indices k and l. If an index j appears in the
summand of a summation over i this means that j is
not a fixed index but is always the bonded partner of
the index i which is being summed. The symbol (ij) .

under a summation sign means the orbitals i and j
are bonded. i/k means the orbitals i and k are not
bonded. An upper limit of E for a summation means
that the summation is taken over all orbitals of the
crystal, including the is orbitals, even if the summand
is written in terms of only n, and not both I; and v;, as
in the first summation. An upper limit of 2X/3 means
that the summation is taken over all valence orbitals
(but not 1s orbitals), and a limit of E/3 means that
it is taken over all bonded pairs of valence orbitals.

2. ENERGY EXPRESSION FOR DIAMOND LATTICE

We must next find an expression for Q ~
H (f)/(P~f)

where P is given by (1-5) and the spin-independent
Hamiltonian IJ for the diamond lattice has the form
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(01&14)/(014)

Q2 N/3 Q3

=P(N;1011N;)+P P C(ii; kk)+ P C(ij;ij)
i=1 kgi

Q4 4A N/3 Q3—-', g Q C(3k; ik)+ —p (23;10 1v;)
1+A'

i/k (ij)

4A N/3 N Qs

P [P C(ij; kk)
1+A2 z 3=1

(ij)

', C(.~ —)—',C('j;j—j)-j
2N/3

+— 2 LC("; ') —C(';j~') j
2(1+A') z

N/3 N/3 QS

+ Q Q C(ij; kl)
(1+A')' z s(z

(ij) (k~)

N/3 N QQ

P P C(ik; jk)
1+A

(ij)

4A2 N/3 N/3 Q10

Q [C(ik;j l)+C(il;jk) j (2-4).
(1+A2)'

It will be noted that the first four terms give the
energy for the case A=O. This constitutes a slight
generalization of the energy expression for the case of
localized bonds usually cited' as resulting from the SP
theory in that the is orbitals, as well as the valence
orbitals, have been taken into account.

In the case of the terms involving A, we take the
point of view that when A assumes a non-zero value,
that is when ionization is introduced into the bonds, a
new charge density

NI3
p&= Z pijz

'l

(ij)

where p;;=[4A/(1+A2)]23, vj, is superimposed on the
charge density for A =0, and the terms in (2-4) involv-
ing A give the energy associated with this new charge
density. Since ui and v; are orthogonal, the net charge
of p;, , and consequently of pz, is zero.

The origin of this charge density is most easily seen
for the case A = 1. In this case we are effectively dealing
with Hund-Mulliken type orbitals having space parts
(1/K2) (23;+v;). Squaring these orbitals gives rise to the
sum of the squares of the localized orbitals plus cross-
product terms. These cross-product terms constitute
the new charge density.

The fifth term of (2-4) gives the change in kinetic
energy resulting from the ionization correction, and the
energy of Coulomb interaction between the nuclear
charges and the charge density p&. The sixth term gives
the energy of Coulomb interaction of p~ with the elec-

' See, for example, reference 3, p. 248.

tronic charge density of the crystal. This interaction
may be interpreted in the following way: The charge
density p;; interacts with the entire electronic charge
density of the crystal for the case A=O from which,
however, is subtracted half the charge density of the
orbitals ui and v;. Thus, if we combine the sixth term
with the Coulomb part of the fifth term, we may regard
t)ie charge density p;; as interacting with the neutral
atoms of the crystal, except that the two atoms ad-
joining p;; have holes cut into their electronic charge
densities through which pi; can "see" some of the
nuclear charge of these two atoms which would other-
wise be shielded. (Calculation3 shows that, as far
as its interaction with the nuclear charges of the
two adjoining atoms is concerned, pi; behaves like an
ordinary electronic charge density; that is, the inter-
action is attractive. ) In this way p;; tends to bind
together the two atoms adjoining it. The seventh term
of (2-4) is just the increase in Coulomb energy associated
with ionizing a bond, that is crowding two electrons
(with opposite spins) into a single orbital. The eighth
term involves the Coulomb interaction between two
different charge densities of the type p;;. Because each
of these has zero net charge, the Coulomb interaction
between them is negligible. The ninth and tenth terms
involve exchange-type integrals which are of the same
order of magnitude, or smaller than the exchange in-
tegrals between non-bonded orbitals belonging to neigh-
boring atoms which occur in the fourth term. The
approximate value of the latter integrals has been
evaluated' and found to be completely negligible. Thus
the ninth and tenth terms may also be neglected.

The expectation value of the energy of the diamond
lattice as given by (2-4) has been calculated for the
observed lattice parameter (1.542A) using orbitals
derived from the free atom orbitals for carbon given by
Torrance. ' The details of this calculation are given
elsewhere, ' but the essential results will be presented in
the following sections. First, the result given by only
the first four terms of (2-4) will be discussed. This cor-
responds to the application of the usual form of the SP
theory. ' The eGect of the ionization correction asso-
ciated with the terms of (2-4) which involve the
parameter A will then be discussed.

3. ENERGY OF LATTICE FOR A=O

For the case of infinite lattice parameter, the lobe-
like u's or v's of a particular atom may be expressed as
linear combinations of the single 2s orbital and the
three 2p orbitals occuring in the 3S state of the free
carbon atom. If we designate the space parts of the free
atom orbitals by f', f,&, f„&, and f,& then the 23's

belonging to some particular atom may be written
S 3G' P

»= 2[f'+f."+fr"+f."3,,)S— P— g P

u4 —— S— P P~ P

6 C. C. Torrance, Phys. Rev. 46, 388 (1934).
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The v orbitals which point in the opposite directions
from the u's would be defined in a similar way except
that the signs in front of f,", f„&, and f,i' would be
changed.

If the spins of the four lobes associated with an atom
were all aligned then, in the case of infinite lattice
parameter, the atoms of the lattice would all be in the
'S state because a Slater determinant written in terms
of the I's of (3-1) differs only by a unitary transforma-
tion from the Slater determinant written in terms of the
f's How. ever, for the wave function defined in (1-5),
there is no correlation whatever between the spins of
two lobes of an atom. For this reason the energy of the
wave function (1-5) for infinite lattice parameter is not
the same as the energy of an aggregate of non-interacting
carbon atoms in the 'S state. The energy diGerence of
these two situations has been calculated4 with the help
of the Coulomb and exchange integrals for carbon in the
'S state given by UGord~ and'is found to be 0.127 atomic
unit per atom where (1-5) is the higher energy state.
(1 atomic unit of energy equals 2 Rydbergs or 27.07 ev. )
Using the observed value ' for the energy diGerence
between the 'S state and the 'I' ground state of the free
carbon atom, which is 0.154 atomic unit, we, find. that
the wave function (1-5) for infinite lattice parameter
has an energy 0.281 atomic' unit per atom above the
ground state of the free carbon atom. Let us call (1-5)
for infinite lattice parameter the "reference level. "The
energy of (1-5) for the case of finite lattice parameter
must be at least 0.28' atomic unit per atom below the
reference level if binding is to be achieved.

For finite lattice parameter the I'.s and e's may still
be written in the form (3-1) except that instead of the
f's which are free atom orbitals, we must use functions
which belong to certain irreducible representations of
thp point group T& which describes the symmetry of
the diamond lattice with respect to rotations and re-
Rections. Which of the representations of T~ are in-
volved is determined by the condition that the functions
belonging to the representations go over smoothly into
free atom functions as the lattice parameter is increased
to infinity. These functions may be regarded as dis-
torted versions of the free atom functions and as such
may be designated g', g,&, g„&, and g,&.

In deriving (2-4) it was assumed that the I's and n's

are all mutually orthogonal. The I's or e's belonging
to a given atom are mutually orthogonal because the
g's belong to different rows of irreducible representa-
tions and are consequently orthogonal. (It may be
seen from (3-1) that if the f's or g's constitute an ortho-
normal system, the u's do also. ) If the g's on neighboring
atoms are mutually orthogonal, then the I's and v's

on neighboring atoms are also orthogonal, thus fulfilling
the condition assumed in deriving (2-4). We may
construct a set of mutually orthogonal g's from the non-
orthogonal f's by applying the orthogonality correction

7 C. W. UR'ord, Phys. Rev. 53, 568 (1938).
s A. G. Shenstone, Phys. Rev. 72, 411 (1947l.

which was first given by LandshoG'and later generalized
by Lowdin. '0 In Lowdin's notation this is, for the case
of real orbitals I

where the p's are mutually orthogonal orbitals con-
structed from the P's which are not, and

(3-3)

If we neglect p's in (3-2) which are multiplied by factors
of order (S„„)'except for terms involving p„(the leading
orbital in the expansion), we obtain the form of the
orthogonality correction used by LandshoG.

Landshoff showed that the rp's are normalized (if the
P's are) to terms of order (S„„)' and are mutually
orthogonal to the extent that ss P S„S„and higher
order terms are negligible. In our case the q's are to be
identified with the g's and the P's with the f's

In applying (3-4), only first-nearest neighbors have
been taken into account. By concentrating on a g
function belonging to some particular atom, which may
be called the "central atom, " with the help of group
theory, the orbitals entering into the orthogonality cor-
rection which belong to atoms that are first-nearest
neighbors of the central atom may be expressed
as a sum of products of radial and angular functions
expressed in terms of coordinates centered on the central
atom. Using Torrance's free atom functions for carbon, '
the radial functions in these expansions may be plotted
graphically. Thus we obtain the g's in terms of such
expansions. The matrix elements of the first term of
(2-4) may be expressed in terms of matrix elements
involving the g's. Using the expansions for the g's, these
matrix elements may then be reduced to sums of one-
dimensional radial integrals which may be evaluated
graphically. The details of this calculation are given in
reference 4. The results show that because the orthogo-
nality correction makes the orbitals bumpier, the kinetic
energy is greatly increased. This works against binding.
In partial compensation for this increase in energy,
there is an increase in the magnitude of the negative
energy of the Coulomb interaction of the orbitals of an
atom with the nuclear charge of that atom. This comes
about because the eGect of the orthogonality correction
on an orbital is to increase its absolute value (and con-
sequently its charge density) in the neighborhood of the
nucleus of the atom to which it belongs and in the
vicinity of neighboring atoms, but to decrease it in the
region in between. Because of the weighting factor 1/r
where r is the distance from the nucleus, the net effect
as far as interaction of an orbital with the nuclear
charge of its own atom is concerned is that of a net shift
of charge toward the nucleus.

1' R. Landshoff, Z. Physik 102, 201 (1936)."P.O. Lowdin, J. Chem. Phys. 1S, 565 (1950l,
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The second, third, and fourth terms of (2-4) have
also been evaluated by graphical means. 4 Restricting
ourselves to only the most important energy contribu-
tions, we may give the following description of the
situation for the case A=O. The orthogonality cor-
rection causes a large increase in the kinetic energy.
This increase is only partially compensated for by an
increase in the magnitude of the negative energy of
Coulomb interaction of the orbitals with the nuclear
charges of the atoms to which they belong. The Coulomb
interaction between neighboring atoms contributes an
appreciable negative energy which, however, is not
large enough to overcome the e8ect of the increase in
kinetic energy. The exchange integrals between bonded
orbitals Lthird term in (2-4)j contribute a relatively
small positive energy and the exchange integrals
between non-bonded orbitals on neighboring atoms are
found to be completely negligible. The resulting energy
of the lattice for the case 2 =0 is +0.37&0.1 atomic
unit per atom with respect to the reference level or
+0.65&0.1 atomic unit per atom with respect to the
ground state of free carbon. The uncertainty in this
result arises both because of analytical approximations
made in the course of the calculations, as well as from
the fact that the calculations involve small differences
of large numbers, particularly in the case of the Coulomb
iriteraction between neighboring atoms.

The exact value of the observed cohesive energy with
which this result is to be compared is still an open
question. " In all, five values are defended by di6'erent
workers in the field. They are 73, 125, 136, 141, and
170 heal/mole or 0.117, 0.200, 0.218, 0.226, and 0.273
atomic unit per atom. The calculated result for A =0
is compared with the observed values in the energy
level diagram of Fig. 1, which also shows the calculated
result when allowance is made for the ionization cor-
rection (2=0.82).

It should be emphasized that the calculations have

"The experimental situation with regard to the cohesive energy
of diamond is reviewed very brieQy, with references to the litera-
ture, in Appendix 3 of reference 4. The work prior to 1947 has
also been reviewed by H. D. Hagstrum, Phys. Rev. 72, 947 (1947).

been carried out only for the observed lattice parameter
and that, while in principle the methods used allow for
a variation in the functional forms of the orbitals to
minimize the energy, no such variation has actually
been carried out. Rather the orthogonalized versions of
Torrance's free atom orbitals' have been used directly
in evaluating the matrix elements. However, varying
the functional forms of the orbitals would have only a
small effect and would do little to reduce the very large
positive value for the energy of the lattice. It will now
be shown, however, that the ionization correction
(AWO) decreases this energy by the right amount to
give agreement (within the accuracy of the calculation)
with experiment.

A =+0.82&0.06, (4-1)

and that the contribution to the lattice energy of the
kinetic energy part of the fifth term is —0.69 atomic
unit per atom while the contribution of the Coulomb
part of the fifth term together with the sixth term is
—0.25 and the contribution of the seventh term is
+0.15. The total contribution of the ionization cor-
rection is thus —0.79 atomic unit per atom yielding
for the energy of diamond —0.14 atomic unit per atom
with respect to the ground state of the free carbon
atom. Because it turns out that the calculations for the
ionization correction are more sensitive to errors in the
orthogonality correction than the calculations for the
case A =0, the uncertainty in the result is correspond-
ingly greater. However, because the various errors
involved arise from independent sources, they may be
combined in the manner for random errors which allows
for some cancellation. The estimated uncertainty in
the final result for the energy of diamond is &0.15
atomic unit per atom. The calculated energy of dia-
mond for the case A =+0.82, together with the uncer-
tainty, is shown in the energy level diagram of Fig. 1.

For A = 1 we find that the contribution of the ioniza-
tion correction is —0.77 atomic unit per atom which
divers by only a negligible amount from the minimum
value of —0.79. This means that a calculation of the
cohesive energy for the observed lattice parameter
using the single-determinant wave function of the
"semi-generalization" of the Hund-Mulliken (HM)
method yields substantially the same result as a cal-
culation based on the more general wave function (1-5).
While this is true for the observed lattice parameter and
probably also for smaller parameters, it is not true for

4. IONIZATION CORRECTION

In order to apply the ionization correction, we must
evaluate the matrix elements of the fifth, sixth, and
seventh terms of (2-4). It has been mentioned pre-
viously that the eighth, ninth, and tenth terms are
negligible. Once these matrix elements have been
evaluated, we may minimize the energy with respect
to A. The calculations show4 that the energy is minimum
for
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large lattice parameters. The reason for this is well
known. " It is simply that when we use orbitals which
are spread over several atoms, we are automatically
introducing into the wave function ionized states, i.e.,
states in which some atoms have too many, and others
too few electrons, but the crystal as a whole stays elec-
trically neutral. These ionized states remain in the wave
function even when the lattice parameter is increased to
in6nity with the result that we calculate too large an
energy for the case of in6nite lattice parameter. This
would not happen if we were to use the more general
wave function (1-5) because in this case we could remove
the ionized states by setting A =0.

The negative sign of the kinetic energy contribution
of the fifth term of (2-4) may be understood. most
easily in terms of the HM-type orbitals. When we go
over from orbitals localized about single atoms to HM™
type orbitals spread over two atoms, the orbitals nec-
essarily become smoother with a resultant decrease in
kinetic energy. The signs of the two Coulomb contribu-
tions of the ionization correction are apparent from the
discussion in Sec. 2.

S. CONCLUSIONS

Since the energy for the case A=1 differs only by a
negligible amount from that for A=0.82 and since it
has been shown that the general wave function (1-5)
reduces in the case A = 1 to a single Slater determinant
of one-electron functions similar to those employed in
the HM approach to the hydrogen molecule in that
each of the functions is spread over the two orbitals of
a bonded pair, the following rough explanation of the
nature of the binding in diamond may be given: When
the free carbon atoms are brought together to form the
diamond lattice, the localized orbitals become distorted
in order that they might be orthogonal to orbitals on
neighboring atoms. This distortion causes an increase in
kinetic energy which outweighs the negative energy
associated with the Coulomb interaction between
neighboring atoms and the negative energy which
results because the orthogonality correction brings
about a net displacement of the charge of the orbitals
of an atom closer to the nuclear charge of that atom.
By going over from orbitals localized about single atoms
to HM-type orbitals spread over two atoms a decrease
in kinetic energy is brought about as well as a change
in the Coulomb energy which favors binding. The two
eRects are of just the right magnitude to achieve the
desired binding. The change in Coulomb energy may
be interpreted as resulting from the redistribution of
charge density associated with the transition". '.,to„=HM-

type orbitals. In the case of HM-type orbitals the
charge density tends to concentrate more:between

, bonded atoms and, by its interaction with the nuclear
charges of the atoms, hold them together. This ex-

's See, for example, J. C. Sister, Quarterly progress Report,
Solid State and Molecular Theory Group, Massachusetts Institute
of Technology, July 15, 1952 (unpublished), p. 27.

planation of the binding is very rough and omits many
smaller contributions to 'the energy which are of both,
signs and thus tend to cancel. These contributions,
however, have been taken into account in the calcu-
lations.

The most striking aspect of the calculation is its
direct analogy with the corresponding calculation' for
the hydrogen molecule which, for a HL wave function
built on orthogonal orbitals, shows that an energy per
atom greater than the energy of a free hydrogen atom
in its ground state results. The present calculation
shows that for a wave function which is the generaliza-
tion of the HI function using orthogonal orbitals
L(1-5) with A =0], the same thing happens in diamond.
The calculation for hydrogen shows that satisfactory
results can be obtained by mixing some of the ionized-
molecule state with the HL function built on orthogonal
orbitals, and it turns out that satisfactory results are
also achieved when the corresponding thing is done for
diamond. Finally, in the case of the hydrogen molecule, -

it is evident that a HM function built on orthogonal
orbitals gives satisfactory results because this wave
function may easily be shown to be identical with a HM
function built on non-orthogonal orbitals, and the
results obtained with such a function are about as satis-
factory as the results obtained using a HL function
built on non-orthogonal orbitals. The present calcu-
lation shows that a generalization of the HM function
for hydrogen built on orthogonal orbitals also gives
satis'factory results in the case of diamond.

As a by-product of the calculation, the total exchange
energy per atom of the valence orbitals has been calcu-
lated for a wave function of the form of a single Slater
determinant of localized HM-type orbitals. It may be
shown' that this' is equal to the exchange energy of
valence orbitals for a Slater determinant of Bloch-type
functions which are constructed from linear com-
binations of the localized HM orbitals, the valence
orbitals in this case being the Bloch-type functions in
the valence bands. It is found when this is compared
with the exchange energy for free electrons that, to
within the accuracy of the calculation, the two are
equal. The exchange energy per atom for the Bloch-
type functions is —1.43&0.1 atomic units as against
—1.39 atomic units for free electrons. Herring and Hill
have shown" that an approximate equality of the
exchange energy of Bloch waves with that of free-
electron functions is to be expected in the case of
monovalent metals. The present results indicate that
this approximate equality is valid in much more
general cases.
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