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pression can be shown to reduce to the form

py
2 p2

Finally, recalling that we are dealing with a medium
of low density for which e—1 is small, we can write

stant given by the Kramers-Heisenberg dispersion
formula. '~
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This is precisely the expression for the dielectric con- p. 362.
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' The periodic deviations in the Schottky effect are recalculated in this paper. The same basic model is
taken as in the work of Guth and Mullin, and of Juenker, Colladay, and Coomes. The difference between
this work and the previous treatments is that WEB-type approximations are used. It is felt that these
remove some of the uncertainties in the derivation. The results are essentially the same as those of Juenker,
Colladay, and Coomes, except that the amplitude of the deviations found is about twice as large and has
a slightly diferent dependence. on the 6eld.

I. INTRODUCTION

HEN the logarithm of the current emitted from
a metal is plotted against the square root of the

electric field applied, the resulting curve is very nearly
a straight line over a large range of the applied field.
This dependence of the current on the field is known as
the Schottky' eftect. Experimentally in the Schottky
region the curve has small deviations from straightness
which are roughly periodic. A summary of the experi-
mental data has been given by Juenker, Colladay, and
Coomes. ' The period of the deviations depends pri-
marily on the field; the amplitude depends on both the
field and the temperature. The theory of Guth and
Mullin, ' based on the one-dimensional potential shown
in Fig. 1 and modified by Juenker, Colladay, and
Coomes, ' predicts the correct period and it also agrees
closely with the observed variation of amplitude with
field and temperature. However, the amplitude itself
and the phase predicted by the theory disagree with the
experimental results. As one possible origin of the
disagreement, Brock, Houde, and Coomes4 have sug-
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' W. Schottky, Physik. Z. 15, 872 (1914).' Juenker, Colladay, and Coomes, Phys. Rev. 90, 772 (1953).
~ E. Guth and C. J. Mullin, Phys. Rev. 59, 575 (2941).
4 Brock, Houde, and Coomes, Phys. Rev. 89, 852 (1953).

gested that the shape of the assumed potential may be
incorrect in Region II (Fig. 1). The reason for making
this suggestion is that the only effect of the potential in
this region is to introduce a constant factor into the
amplitude and a constant term into the phase of the
theoretical results. Another possible origin of the dis-

agreement, as emphasized by Juenker, Colladay, and

Coomes, ' is that some of the approximations used in

developing the theory may not bc applicable.
In this paper the periodic deviations in the Schottky

effect are recalculated. In accordance with the sug-
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Fzo. 1.The potential V(x) assumed for an electron at the surface
of a metal. The solid curve represents the function —epx —em(4x) '.
The dashed curve represents the same function for x&x, and
the function =8', for x(x,. The Roman numerals indicate
special regions discussed.
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gestion of Brock, Houde, and Coomes, the results are
expressed in terms of a parameter p which gives the
effect of the potential in Region II; p, itself is found
separately for the potential of Fig. 1. A %KB-type
approximation recently proposed' has been used
throughout; in some respects it gives improved results
and it is felt that it removes some of the uncertainties
in the derivation. The results obtained are essentially
the same as those of Juenker, Colladay, and Coomes,
except that the amplitude is about twice as large and
depends in a slightly different way on the field. The
details of the calculations are given in Secs. II to V;
Sec. VI contains a discussion, including an estimate of
the nonperiodic deviations from the Schottky eGect.

near and above the peak are of importance in evaluating
the integral. With these formulas the problem reduces
to the calculation of [1—r„(W)]. Because of its de-
pendence on the potential V, this term gives also the
final inhuence of the field F on the current j.

Assuming that the conventional %KB approximation
applies in Regions I, III, and V (Fig. 1), Herring and
Nichols' have shown that the transmission coeKcient
[1—r„(W)] can be expressed in terms of a parameter X

which depends only on the potential in Region IV and
a parameter p, which depends only. on the potential in
Region II. The following connections between the
WKB approximations to the wave functions of the
electron define the parameters 'A and p,.

II. BASIC EQUATIONS

Some of the fundamental equations needed for the
study of electron emission are given in this section. '
A model often used (in particular by Guth and Mulhn,
and by Juenker, Colladay, and Coomes) is that the
electrons move in the one-dimensional potential, shown
in Fig. 1,

V(x) = eFx e'(4—x)— when g) x„
(1)

elix, e'(—4x )
—'=——W., when x(x„

where —e'(4x) ' is the image potential at position x
normal to the metal for an electron of charge —e, and
—eFx is the potential due to the applied field F. The
value of 8', is a property of the metal. Ordinarily W,
is large compared to the amount e'F' that the peak of
the potential V(x) is below zero. This is the model used
below, except that in most of the calculations the shape
of the potential in the neighborhood of the point x,
(the dashed part of the curve in Fig. 1) is left unspeci-
fied.

The current emitted per unit area is

j =41rmh'eh '(1 r)T' exp[(p ——V) (kT) i]) (2)

where T is the temperature, k is Boltzmann's constant,
and p is the electrochemical potential. The factor
(1—r„) is the average transmission coefficient through
the surface of the metal,

p l expl ih '
~ p($)df I

in Region III~~
)

Xci*p '* expl sh ' ~ p($)d$ I

f

(
c2P & expl —ih ' p(f)dP I

in Region I+~

pp
'

expl ih ' p($)d$ I

+p l expl i' ' p—(P)d$ I
in Region III, (&)

where c~ and c~ are complex constants and

p(x)= (2m[W —V(X)])I (6)

is the momentum of the electron. %ith these definitiolis
the transmission coe%cient, defined as the ratio of the
current transmitted into Region I to the current
incident in Region V, can be written as

[1—r„(W)]=1—
I (X+@)(1+X*p) 'I'. (7)

In terms of the abbreviation

8(W) =arg (X*@)

)(exp[ (W V) (hT)
—l]dW (3) the transmission coefficient becomes'

where [1—r„(W)] is the transmission through the
surface at energy W. In Eqs. (2) and (3), V is the
potential at some point far outside the surface of the
metal. Because of the thickness of the barrier, when
the applied field is in the Schottky region, only energies

5 S. C. Miller, Jr. , and R. H. Good, Jr., Phys. Rev. 91, 174
(1953).

C. Herring and M. . H. Nichols, Revs. Modern Phys. 21, 185
(1949).' Reference 6, p. 192.

L1—r. (W)]= (1—
I
~ I') (1—

I ~ I')

&& (1+2I»Icos~+ I»l') '

= (1- I&l')(I- l~l')(I —I»l') '

X[1+2Q (—I» I)"cosmic]. (9)
n=l

' Reference 6, p. 252.
'This expansion is given by, for example, R. Courant and D.

Iiilbert, Methods der Mathematischee I'hysik (Julius Springer,
Berlin, 1937), Vol. II, p. 246.



PERIODIC DEVIATIONS IN SCHOTTKY EFFECT j.369

It will be shown that the constant term in the series
leads to the normal Sehottky eGect and that each of
the terms m & i gives a deviation oscillatory in the field
Ii. The frequencies of these deviations are roughly
proportional to e; because of this qualitative difference,
one expects to be able to separate the contributions of
the various terms. Also the amplitudes decrease with
increasing e because of the additional ~Xp~ factors. In
this paper only the normal Schottky e8ect and the
first oscillatory deviation will be discussed so the series
only needs to be carried as far as the e= 1 term.

III. CALCULATION OF THE PARAMETER 2,

The expression for argX is more involved,

argX= -', Z ——',r ln(-', ~

E ~)+argr (-', + -,'oz)

pz1
——',~—2 Re I P($)dg. (15)

The integrals in Eqs. . (12) and (15) are elliptic; for
5'(0 they are

p
+2

P(i)d&= lo I
WI'F '(1+~)'{E[(2~)'(1+~)-']

—(1—a)K[(2~)'(1+~) ']}, (16)
The parameter X, defined by Eq. (4), is to be found

from a discussion of the Schrodinger equation, "
. (d'f/d x)+2[W V(x)—]/=0,

~$1

p(()dl .IWI:F- (1+~);(E[(1 a)'(1P,);]
(10) " o

in the region near the peak of the potential barrier
where V(x) = Fx (4x) —'. A —WKB-type approxima-
tion for this type of potential barrier problem has been
given in reference 5. From Eq. (36) of that paper one
finds easily that

P
'
*exp~ —',mE+i Re ~~ p($)d$ ~

in Region III~

—aK[(1—u) l(1+a)-&]}, (17)

where K and E ~e the complete elliptic integrals of
the first and second kinds,

m'/2

K[k]= t (1—k' sin'g) ~dP

p--: exp~ ——;~o+'Re p(q)dg ~

(

+[(2/~) '(I &
I
/2e)

—*"~r(-', +-',oZ) cosh(-', ~Z)]
and a is defined by

a= (1—FW ')'

m/2

E[k]= I (1—k.' sin'P) 'd&f& (19)

(20)

Xp '*exp~ ~i' —i Re p($)d$ ~
in Region V, (11)

)

where xi and xo are the locations of the zeros of P'(x)
= 2[W+Fx+ (4x) '], chosen so that xi & x& when they
are real and so that x~ has positive imaginary part arid

x2 negative imaginary part when they are complex.
A branch of p(x) such that argp(x) is either 0 or oix

when x is real is to be used, and E is given by

E=2x 'z
x2

p(~)«. (12)

)&exp~ ~i~F. ', ~o 2i Re ~ p($)d$ ~.—(13)J, )
Using, the connection between the gamma and the
trigonometric functions, one 6nds

(X(=(1+e- )—:. (14)

"Hartree units (m, e, 5= 1) are used in the rest of the paper.

A comparison of Connections (4) and (11) gives the
parameter X:

) = [(2/m)~(~E ~/2e)'*'~1'( —' ——oF) cosh( —~E)] '

(the argument of u is either 0 or ——',m and the arguments
of (1+@)&and (1—k' sin'g)& are in the neighborhood
of zero). A table for the evaluation of the integral in

Eq. (16) when W& Fl has been give—n by Burgess,
Kroemer, and Houston" since the same integral arose
in Nordheim's discussion of field emiss&on. "

IV. CALCULATION OF THE PARAMETER p

The parameter p, , defined by Eq. (5), is to be found
from a discussion of the Schrodinger equation, Kq.
(10), in Regions I, II, III using the potential with the
break at x, as given in Eq. (1) and as shown in Fig. 1.
Here the wave functions on the two sides of x, are to
be found separately and then are to be matched at the
break. If the usual WEB method is used to approximate
the wave function on the right of the break, the results
obtained for

~
p~' are somewhat inaccurate, especially

as W becomes large. This is illustrated in I'ig. 27 of
the review article by Herring and Nichols. " As 8'
increases, x, decreases and in the region just to the
right of the break the (2x) ' term in p'(x) becomes
dominant. Accordingly, one is led to use a WEB-type
approximation having as basic functions the solutions

"Burgess, Kroemer, and Houston, Phys. Rev. 90, 515 (1953).
'2 L. W. Nordheim, Proc. Roy. Soc. (London) A121, 626 (1928).
"Reference 6, p. 250.
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Fro. 2. The re&lection coeflicient
~

p, P as a function of the
energy 8' for zero electric field. The dashed lines for W&0 are
from the exact calculations of Nordheim and MacColl. The solid
lines were found using Eq. (24).

p(S)dS I
&.

I p(~)d~ I,) (22)

where Z& indicates any Sessel function of the first
order. It is convenient to take a specific wave function
which has the asymptotic form appearing in Connection
(5). This is

Jr=I s~p ' p(()dk I
ue'"Hr"'I p(&)d& I

(, I* l' ... ( t"
) i&, )

, + --'-H &'&I p(r)« I-f'

)

)f p 'expl r pk)d( I

+p '*expl i ~ p(t)d$ I
in Regi—on III, (23)

)
where the asymptotic forms of the Hankel functions
Ht&'&(s), Hr&@(s) for large s have been used. '4 The
logarithmic derivative of the wave function must be
continuous across the break x,. Furthermore, the po-
tential is constant to the left of the break so that the
left-going wave given in Connection (5) for Region I
is an exact solution of the Schrodinger equation up to
the point x,. Therefore the logarithmic derivative has
the constant value ip= —i[2(W+—W,)$'* to the left
of x, and the condition

der/de = i[2 (W+—W,)$'&t r, when x= x., (24)

'4 E. Jahnke and F. Emde, Tables of Functions (Dover Publi-
cations, New York, 1945), fourth edition, p. 138.

of the Schrodinger equation,

(d'p/dS')+S '&=0. (21)

This gives the following approximate wave functions
to the right of the break:

may be applied to determine p. As a matter of con-
venience p may be calculated in the form of an expan-
sion on 5'8' ' and FR, ', with the result that

He&" (s)+iHr &'& (s)
p=

H] (s)+sHs (s) s =(2w„)—r

X(1+O(WW ')+O(FW ')}. (25)

The value of lpl' for zero electric Geld as found from
Eq. (24) is compared with the exact results of Nord-
heim" and MacColl" in Fig: 2. In order that other
models for calculating p may be used conveniently, the
value of p is left unspecified in the next section. For
many of these models the type of approximation used
above will be applicable.

V. THE PERIODIC DEVIATIONS

As a erst step in 6nding the average transmission
coeKcient, Eq. (14) and Eq. (9) to order r&, =1 may be
substituted into Eq. (3) yielding

00 ~xE
(1- .)=(PT) '

l (1-I I')
V 1—lf I'+e ~

2e ~lylcose

(1 I p I
'+ e s) (1+e s) &

Xexp( —(W—V) (kT) ')dW. (26—)

An exact discussion of this integral would be difficult.
A series of approximations will be applied in order to
express the results in a simpler form. As a first approxi-
mation, it will be assumed that

I p I' can be neglected
compared to 1 in .the range of energy 8' which con-
tributes to this integral. Accordingly, 1—

I
pl' will be

replaced simply by 1 in the integrand.
For E&—1" the quantity in the square brackets in

Eq. (26) is effectively zero (it is assumed that e s is
dominant over exp[—W(kT) 'j for E(—1) and for
E&2 it is electively one. Consequently, only the
functional dependence of E on 5' in the range —1&E
&2 is of importance in the evaluation of the integral.
From Eq. (12) one sees that E varies monotonically
with 8' and that E=O when O'= t/', = —Il:. There-
fore one is led to expand E as given by Eqs. (12) and
(16) for small e, where

e:{I V~~ I ) (W V~@X)= 1+WE (27)

When e is small, a is small and, using the expansions
of the elliptic functions'7 for small moduli, one finds that

E=F 'c+O(e')

In the Schottky region the field ranges roughly from

'~ L. A. MacColl, Phys. Rev. 56, 699 (1939)."In what follows, x= —m will be used uniformly as the cut-off
point for e .

"Reference 14, p. 73.
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10' to 10' volts/cm; therefore F ranges roughly from
2)(10 ~ to 2&10 4 and F—

& from 50 to 10. Conse-
quently, e is at most 0.2 in the region —1&8&2 and,
for the purposes of evaluating the integral, only the
linear term in p need be retained in Eq. (28). Then,
combining Eqs; (27) and. (28), one has

E=F l(1+WF &), (29)

and the integration variable in Eq. (26) can. conveni-
ently be changed from B' to E. Furthermore, the lower
limit can be taken to be —~.

The same ideas will be used for argA. , given by Eqs.
(15) and (17). Using the expansions of the elliptic
integrals'7 about unit modulus, one finds that

+ ((5/4) ln2 ——,') p+O(p'1nI pI)]. (30)

b= ',~+argp+-(4/3)F **,

c=~ '(—2+-',y+3 ln2 ——', lnF).

Kith the further abbreviation

d= (prkT) 'F',

Eq. (26) in the small Ip, I' approximation becomes.

te -
e
—mEd

(1—r„)=d expL(V+Fl)(kT) —'] "
„1ye~z

(33)

(34)

(35)

I
Re(e cEd+cb+w~ec)—

e~~gdE, (36)
(1+e~E) —',

where the integration variable has been changed from
W to E and Eq. (32) has been used for 0. Next it will

be assumed that p does not vary appreciably with the
energy 8" in the range of 5" which is important so that
I p I

and b are constants for the integration. The symbol
p, „will be used for this value of p. Then, on changing
the integration variable from E to e ~ it is seen that

Also the gamma function may be expanded about E=0,

argi'(p+2iE) = —(ipy+in2)E+O(E'), (31)

where y=0.577 is Euler's constant. As a consequence
of the arguments about the important range of E, the
higher-order terms in Eq. (30) will be disregarded.
The terms of order E' and higher in Eq. (31) will be
neglected-also, although this is a coarser approximation

I numerical calculations indicate that, as a consequence,
the amplitude of the periodic deviations in Eq. (41) is
low by about 10 percent and that the phase is o6 by
less than 3'j. Collecting Eqs. (8), (15), (30), (31),
one finds

(32)

where, as abbreviations,

the integrals are simply beta functions, so that

(1—r„)=d expL(V+F~) (kT) '](I'(I—d)I'(d)
—4~-l

I p„I ReLe"'I'(1 —d+ic)I'(-,'+d —ic)j). (37)

Here d is small; at 1500'K, d ranges from 6&(10 4 to
10 ' as the Geld varies from 10' to 10' volts/cm. Only
a first approximation for small d to each of the terms
will be calculated. The dependence on d then disappears
from the second term in the braces, and the connection
between the gamma and, trigonometric functions can
be used to express the absolute values of the gamma
functions simply in terms of hyperbolic functions.
Then, using Eq. (2), one finds for the emitted current,

'(kT)' pL(p+F') (kT) '3
X (1—4(2vrc) '(sinh2nc) &d

I p„I
XcosI b+argF (1+ic)+argl'(-', —ic)]). (38)

It is seen from Eq. (34) that 2~c is greater than 3 in
the Schottky region, so 2 'e ' can be written instead of
(sinh2~c) l. Also the Stirling approximation,

I'(s)—(2~)le *s' *' (39)

can be used to obtain simple expressions for the argu-
ments of the gamma functions. Finally, the common
logarithm of the current is needed for comparison with
the experimental results; in taking the logarithm of
the quantity in braces, the approximation in(1+s)—s
may be used since the second term is small compared
to one. %hen these three operations are performed,
the result is

logip 2'= log„L—',~—'(kT)'j
+ (log oe) (kT)—'(p+F-**)+Fp, (40)

where the first terms give the normal Schottky eAect
and the primary contribution to the periodic deviations
is given by

F,= (log, pe)vr-*e' —l&(kT)-'cd"'I p, I

Xsin((4/3)F ~+argii~+2i arctanc

+ pic inl(4+4c') (1+4c') 'j) (41)

In these expressions b and d have been written out
explicitly to show the dependence on F and p„. The
parameter c, given by Eq. (34), still depends on the
field F but varies slowly compared to the dependences
explicitly shown.

This result applies for arbitrary shapes of the po-
tential curve in Regions I and II (Fig. 1) provided
that, in agreement with the assumption made following
Eq. (26), Ip, I' is small compared to one in the range—F&(1+F&)&W&wkT and provided that, in agree-
ment with the assumption made following Eq. (36),
p does not vary appreciably in the range —F&(1+F&)
&W& —F*'(1—2F'). The F-dependent limits here are
found by translating the important range of E into
terms of W according to Eq. (29).

The p discussed in 'Sec. IV satisles both these
conditions, as is seen from the following argument. A
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FiG. 3. The periodic deviation from the Schottky effect Ii2 as a
function of y= (4/3)F &, based on the potential shovrn in Fig. I
and for 8' =10 electron volts and T=1500'K. The solid line
represents the results of the present calculations; the dotted line
is a plot of the results of Juenker, Colladay, and Coomes.

representative value of the temperature T is 1SOO'K,
of W, is 10 electron volts, and the 6elds are ordinarily
less than 10' volts/cm. Therefore FW, '(0.001 and
also, since IWI (0.015 within the ranges discussed in
the above paragraph, I

WW, 'I &0.04. Accordingly the
higher order terms in Eq. (25) may be disregarded.
The value of

I p I' thus never departs appreciably from
its value when W=O and F=O; from Fig. 2 it is seen
that this is much less than one as required. Further-
more, p is slowly varying with TV in the. required region
and evidently

Hpt') (s)+sHt"' (s)
pp= —Hit (s)+$Hp (s) s=(2w) ')

differ from the experimental phase by about 90' for
all metals and for all values of the field studied so far
and that the difference may be due to a wrong choice
of the model for calculating p. The amplitude found
here appears to be in better agreement with the experi-
mental amplitudes. However, this improvement may
not be significant because if a different model should
correct the phase through the argp, „term, it might also
affect the amplitude through the Ip„l factor. Also,
Brock, Houde, and Coomes4 have pointed out that,
because of patch effects, measurements of the amplitude
are less certain than measurements of the phase,

An estimate of the nonperiodic deviation from the
Schottky effect may be obtained from a more detailed
discussion of the 6rst term in the square brackets in
Eq. (26). If, as indicated by the discussion preceding
Eq. (42), it may be assumed that

I
pls may be taken

constant in the range Fl(1+F—l) &W&~kT, then the
nonperiodic part of the average transmission coefFicient
is

(1 re) Np

1—ly, l'
I

" '
p( —(W—V) (kT)—')

dW. (43)
kT ~ v 1=

I
p„I'+e

This integral may be evaluated by the same methods
as used in Sec. V; using Eq. (29) to change the inte-
gration variable from lV to E, extending the lower
limit to —eo, and integrating on (1—Ip„l') 'e ~, one
finds

VI. DISCUSSION

On the basis of the model in Fig. 1, the periodic
deviation predicted is given in Eqs. (41) and (42). The
phase prediction agrees with that of Juenker, Colladay,
and Coomes as is seen from Pig. 3, in which the periodic
deviations are plotted for a particular case. The only
temperature dependence is the T ' factor in the ampli-
tude, and the primary 6eld dependence of the phase is
the (4/3)F & term; these features agree with the results
of Juenker, Colladay, and Coomes as well as with the
original work of Guth and Mullin. ' The field dependence
of the amplitude is contained in the factor c&F'~', where
c is defined by Eq. (34). This differs slightly from the
previous calculations which gave an Ii & dependence.

Thus, except for the difference in the amplitude, the
present results are the same as those of .Juenker,
Colladay, and Coomes and their analysis of the agree-
ment with experiment still applies. Especially they
have re-emphasized that the predicted phase seems to

(V+Fl~
(1—r~) ~p = exp

I

(1—lf. l')" sin~d E kT )
—=I

1—
I) .I'(1—d)+ p~'d'l

Xexp((V+F'*) (kT) '). (44)

In the last step an expansion for small
I p„l' and d has

been made and enough terms have been retained to
show the primary dependence on the field regardless of
whether Ip„ls is large or small compared to d. The
final result is that the expression for log» j in Eq. (40)
is to be increased by the term

Fi= —(log»e) IN~I'I:1 —(~kT) 'F'1
+—'(log oe) (kT) sFf, (45)

I

if the nonperiodic deviation also is required. This is
smaller than the 6rst periodic deviation and is ordi-
narily not observed.


