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By a disordered chain we mean a chain of one-dimensional harmonic oscillators, each coupled to its
nearest neighbors by harmonic forces, the inertia of. each oscillator and the strength of each coupling being
a random variable with a known statistical distribution law. A method is presented for calculating exactly
the distribution-function of the frequencies of normal modes of vibration of such a chain, in the limit when
the chain becomes infinitely long. For some special examples, in which the distribution law of the oscillator
parameters is assumed to be of exponential form, the frequency spectra are calculated analytically. The
theory applies equally well to a chain of masses connected by elastic springs and making mechanical vibra-
tions, or to an electrical transmission line composed of alternating inductances and capacitances with random
characteristics,

I. INTRODUCTION

CONSIDER a chain of 1V masses, each coupled to~ its nearest neighbors by elastic springs obeying
Hooke's law. We shall study the longitudinal vibrations
of the chain, all motions being supposed to take place
in one dimension so that each mass is described by a
single coordinate. Since the coupling forces are linear in
the displacements, the most general vibration is a
superposition of (Ã—1) normal modes, each having a
characteristic frequency. The object of this paper is to
present a method for determining accurately the spec-
trum or distribution function of the characteristic fre-
quencies of the chain, in the limit as the number of
masses E becomes very large. As is well known, the
knowledge of this distribution function enables all the
thermodynamical properties of the chain to be deduced
immediately.

In the case when the masses and the strengths of the
springs are all equal, the calculation of the frequency
spectrum is elementary. In Sec. IV of this paper we
give explicit formulas for the frequency spectrum in the
most general case when the masses and spring-constants
are arbitrary. The case of equal masses and springs
here serves as a check.

In Secs. V—VI we consider the physically interesting
case in which the masses and springs are unequal but
are distributed along the chain in a random way. This

* Supported in part by the U. S. OQice of Naval Research.

means that we know the probability that a given mass
or spring-coristant has a particular value, and that this
probability is the same at every point in the chain.
There are several diGerent ways of de6ning precisely
how the randomization of the masses and, springs is to
be understood; for example, the masses may be inde-
pendent random variables with a known probability
distribution, while the springs are all equal; or each
mass may be correlated with the strengths of the two
neighboring springs, and so on. In every case, given the
probability distribution for masses and springs, our
method leads to an exact determination of the spectrum
of normal frequencies. To illustrate the method, one
particular class of probability distributions is worked
out in detail, and the corresponding frequency spectra
are obtained explicitly.

These calculations were begun in response to a ques-
tion of C. Kittel, who was concerned with the thermal

properties of glass. Glass may be considered roughly to
be a disordered array of coupled harmonic oscillators in

3 dimensions. The systems considered in this paper are
models of a "one-dimensional glass, "a disordered array
of atoms in one dimension. It is not, of course, to be
expected that the results of this paper have any
immediate application to the 3-dimensional problem.
But it seems to us remarkable that the 1-dimensional

problem can be solved exactly, and we publish this
analysis in the hope that the methods will be useful in
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discussing other disordered systems of a less idealized
character.

y, =nsPxj

and new constants Xl, X2, ~ ~, X2~ 2 given by

~2 i—i=+j/mj & ~2i =+j/mj+i ~

Then, the equations of motion take the form

(2)

(3)

i' = (~2j 1~2j)—'yj+1+ (~2j A2j —2) gj—i—
—(~~ -i+&2 -2)y;, (4)

and the coeKcient-matrix is now symmetric. Next we
define variables zl, s2, ~, s& 1, by

II. DEFINITIONS

Let particle number j in the chain have mass mj,
and let its displacement from its equilibrium position
be xj. Let the elastic modulus of the spring between
particles j and (j+1) be E;, Then the equations of
motion of the system are

m, x;=E;(x, +i—x;)+E; i(x, i—x;).

It is convenient to introduce new variables

YVe study the function

D(x)= lim (2$—1) 'g log(1+x~~)

log(1+x')D(p)dp,
JO

D (p) dIJ, = 1—M (1/s),
~ 1]z

D(1/s) = —s' Re[(kr) ' limD'( —s+ie) j,
&~0

(12)

D'(x) = (dD/dx) = t p(1+x@) 'D(IJ)dp, . —
(14)

as a function of the complex variable x. The logarithm
is defined as the branch of the function which is real
for real positive x. Then the integral (11) is convergent
and defines an analytic function of x over the whole x
plane, the negative real axis from 0 to (—~) being
excluded. As x tends from above onto a point (—s) on
the negative real axis, the imaginary part of log(1+x@)
tends to zero if sp&1 and to i'- if sp)1. Therefore,
(11) gives

ReL(kr) —' limD( —s+ie)je~0

&j=~».'r~+1-~»-1''y~

so that (4) becomes

Let variables ul, u2, . ~, N2~ 1 be delned by

(6)

According to (12) or (13), the spectrum of characteristic
frequencies is determined by the limiting values of D(x)
on the negative real axis. We call D(x) the characteristic
function of the chain.

III. CALCULATION OF THE CHARACTERISTIC
FUNCTION'

Q2j 1=/A'~ Q2j=Sj.

Then Eqs. (5) and (6) together may be written

I;+1—A; 1'Q; 1.

' (7)
Consider a chain for which all the +j2 are less than a

fixed bound 8, and let 8
~
x~ (1; these restrictions will

be removed later. Then the logarithm in (11) may be
(g) expanded in powers of x, giving

The characteristic frequencies coj of the chain are,
therefore, the characteristic roots of the (21lt' —1)
&( (21'—1) matrix A whose elements are given by

D(x) = lim (21V—1) '5(x)

g(x) —Q ( 1)n 1(xn/~)Q—. ~ 2n

n~l

D(p) = (dM/dp). (10)

Our erst task is to determine the'3f(p) and D(p)
corresponding to given Xj.

all other elements being zero. There is one zero root
corresponding to the degenerate mode in which all the
x; are equal; the remaining roots occur in (X—1) pairs,
the members of a pair being +co; and —cu;.

The spectrum of characteristic frequencies is given
by the function M (p) which is defined as the proportion
of the roots coj for which coj'&p. As X—&~ we expect
that 3f (p) will become a smooth difFerentiable function,
and then a density of characteristic frequencies can be
de6ned by

= g (—1)" '(x"/I) Spur(cV").
n=l

(16)

0

JOy J1) g2p
' ' 'p J2e—ly J2rt JO (17)

lying between 1 and 2E—1 and satisfying for each m

pm+1 pm~ ~ ~

'The analysis of this section might have been shortened by
using known results in the theory of Jacobi matrices. See A.
Wintner, Spektrattheorie der Unendlichen Matrisen (Leipzig, 1929),
pp. 69—73. For this remark the author is indebted to Professor Kac.

According to (9), the spur of A'" is a sum of terms Q(0.),
one corresponding to each cycle o-, a cycle consisting of
2e integers
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The term Q(0) is equal to the product we And

(19) Q S(a, j)=Sb,(a, a),

where q(j) is the number of tinies that the step
(j +j+—1) occurs in the cycle 0. ; the step (j+1bj)
must also occur q(j) times in 0. Hence, we may write

Spur(A'") =re &(q)III(~ )"", (20)

where Sb, (a, a) is S(a, a) with A, replaced by the
continued fraction

P(a, b) =xX./(1+x».„/[ (1+»b,/
(1+xi%,b)) .]). (29)

Now from (24),
where the summation is over all possible sets of integers

q(j) whose sum is e, and E(q) is the number of cycles
0 which exist corresponding to a given set of q(j). The
evaluation of E(q) is carried out in Appendix I. The
result is as follows. Let q(a) be the first nonvanishing

q(j), and let q(b) be the last. Then

S(, )= —2Z . [q( )] '(—l-)"'
= 2 log(1+xii, ).

Therefore,

ZS(~, j)=2»g(1+$(~, b)).
j=a

(30)

(31)

b

~(q)=2~Lq(~)] ' ll I(i),
g =a+1

We may now write b= 2E 1and m—ake 1V~~ in (29)
and (31).This gives

I-U) =(q(j)+qV 1) 1) '/— —
L(q(j))!(q(j—1)—1)!]. (22) g S(a, j)=2 log(1+$(a)),

j=a
(32)

If we substitute from (20) and (21) into (16), we find where ((a) is the infinite continued fraction

S(x)=P., b S(a, b), (23) ((a)=xP„/(1+xii pi/(1+xi+2/( (33)

S(~, b) = —2 ZLq(~)] '(—» )"'

X g L(j)(—»,)"' (24)

U we sum over all a and use (15) and (23),

2N—1

Q(.)= h X- g»gL1+~(.)].
N—boo a~I

(34)

In Eq. (23) the summation is over all integers u, b

satisfying 1 &a & b & 21V—1.In Eq. (24) the summation
is over all sets of integers q(j) which are nonzero for
a&j &b That is. to say, each q(j) for a&j &b is
summed over all positive integral values.

The summation over q(b) in Eq. (24) can immediately
be performed, because by Eq. (22) the sum is an ele-
mentary binomial expansion with exponent ( q(b 1))—. —
Therefore,

S(~, b)= —2 Z.' (q(~)) '(—».)"'

Equations (33) aiid (34) give the explicit represen-
tation of Q(x) for an arbitrary chain with given coeK-
cients X;. The result was proved only under the assump-
tions that all the ~,' were less than a fixed bound 8
and that B

~
x

~
& 1. However, the integral (11) defining

Q(x), and the continued fractions (33), are convergent
for all real positive x and for any set of positive coeK-
cients X;. Since these expressions are analytic functions
of x, it is easy to prove by an analytic continuation
argument that Eq. (34) holds for all real positive x
and without restriction on the ~,

b-1
X g I-(j)(—&,)"' L(1+» ) " '& —1], (25)

g =a+1

where the summation is now over all sets of integers

q(j) which are nonzero on u& j&b—1..That is to say,

S(a, b)+S(a, b 1)=Si(u, b 1), — (26)—
where Si(a, b 1) is the su—in S(a, b 1) with the va—ri-
able @lib i replaced by [xhb &/(1+xXb)). If we apply
the same reduction to Si(a, b 1), we obtain—

S(a, b)+S(a, b —1)+S(a, b —2) =Sg(a, b 2), (27)—
where S2(a, b —2) is S(a, b 2) with xi%.b——2 replaced by
L»b 2/(I+»b &/(1+»b))]. Continuing in this way, g=xX/(I+xl/( ". (35)

IV. THE FREQUENCY SPECTRUM FOR AN
ARBITRARY CHAIN

To determine the frequency spectrum for a chain
with given li;, it is only necessary to calculate Q(x) from
Eqs. (33) and (34), and then to use (13) or (14) to find
the spectrum. The second step, however, requires the
analytic continuation of Q(x) from positive to negative
real values. If Q(x) can be obtained in closed analytic
form for positive x, the continuation process is usually
easy. For example, consider the case of an infinite chain
of equal masses nz linked by springs of equal modulus E.
In this case all 'A, are equal to X=- (E/nz), and all $(a)
are equal to the infinite continued fraction
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Since $ satisfies
p= xX/(1y g)

and is small for small x, we 6nd

In this case each of the quantities $(a) de6ned by
(36) Eq. (33) will have a probability distribution F($), the

same for all a. Now

g=-,'[(1+4')~—1j, (37)
$(a) =»./(1+ 5(a+ 1)) (43)

and by (34),
Q(x) =2 log(-', [(1+4xX)&+1]}.

If we differentiate (38) we obtain

and the variables X, and g(a+1) are uncorrelated, since
(38) P(a+1) depends only on A~i, X~&, . If we equate

the probability distributions of the left and right sides
of Eq. (43), we find an integral equation for F($),

Q'(x) =*-i[1—(1+4x»)--:7. (39)

This function is analytic and real for x) —(4X) '.
It can be continued analytically through the upper half
plane to values x& —(4X) ', where it becomes

Q'(*)=*-[1+i(—1—4')-:-l. (4O)

Hence, Eq. (13) gives the spectrum of characteristic
frequencies

D(ti) = (1/ir) (4lwti —ti') —', ti&4X,

D(.) =0, ti) 4X, (41)

a result which in this case can easily be checked by an
elementary calculation.

In general we will not be able to calculate Q'(x) in
closed analytic form, and so we require an explicit
formula for D(ti) in terms of the values of Q'(x) for

. positive x. This formula will enable D(ti) to be calcu-
lated if Q'(x) is only given numerically or approximately,
so that a direct use of analytic continuation is im-
possible. The formula is

F(r) = F(Y)GB(1+&')/*l((1+8)/ )dr' (44)

F($)d$=1, (43)

the characteristic function of the chain is given by
Eq. (34) and is

Q(x) =2 F(k)»g(1+()e (46)

The solution of (44) for given G(X) can in some cases
be obtained in closed form (see Sec. VI). In all cases
the solution can be obtained numerically by inserting
an arbitrary trial function F($') on the right of (44)
and iterating the equation repeatedly. The series of

. successive iterates will converge rapidly to the true
F(P), in consequence of the good convergence of the
continued fractions (33). When we have found the
solution F($) of (44)., and have normalized it by

D(ti) = (2m'ti) ') (cosh'.n)da

(xti) & cos[n log(xti)]Q'(x)dx. (42)

Its derivation is given in Appendix II. The x integration
is to be carried out 6rst and the n integration second.
Taken in this order, the double integration will always
be convergent for values of ti at which D(p) exists and
is continuous. With Eqs. (33), (34), and (42), we have
in principle an exact determination of the frequency
spectrum of an arbitrary chain.

V. DISORDERED CHAINS

We now apply the preceding theory to the case of a
disordered chain, i.e., an in6nite chain whose elements
are distributed in a random way according to some
known probability law. We consider two types of
disordered chain, diGering in the way in which the
randomization of the elements is de6ned. Type I is
mathematically the simpler, whereas Type II provides
the closer approximation to a real chain of randomly
arranged atoms.

Type I Each of the para. meters X; defined by Eq. (3)
is an independent random variable with the probability
distribution function G(X)

(4&)

We introduce the, variables.;-[~(»)j-'
Then, from Eq. (33) we derive the recurrence formula

n; = (m~+i/x&)+Lni+il (1+a,+i)j (49)

From this the frequency spectrum may be found as de-
scribed in Sec. IV.

The frequency spectrum determined in this way is
strictly an average over a statistical ensemble of chains,
each chain in the ensemble having de6nite values of
the Xj. But by an argument familiar in the statistical
mechanics of systems containing many particles, the
same frequency spectrum will be found for an arbitrary
chain chosen out of the ensemble, except for an excep-
tional class of chains whose total probability tends to
zero as the number of atoms iV tends to in6nity.
Therefore, we may say that this frequency spectrum is
the correct spectrum for a single disordered chain of
in6nite length.

Type II. Each mass m; is an independent random
invariable with distribltion function G(m), the spring
constants E;being fixed and equal'

In this case the ) j are given by
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The variables g;+~, m;+~ now are uncorrelated. Hence,
Eq. (49) leads to an integral equation

F(q) =xE G[xE(it—(q'/(1+rl')))]F(g')dg', (50)
~o

defining the distribution function F (g) of each of the q;.
The characteristic function (34) is given now by

while the spring strength E, is a known function of the
two adjoining masses m; and m;+~. This would be a
model for a chain composed of di6erent kinds of atoms
arranged at random, the strength of the bond between
two atoms depending on the chemical nature of the
two atoms. The frequency spectrum of such a chain
can also be calculated by the methods of this paper,
only the formulas become rather more complicated.

Q(x) =bin+ i Q log[(1+((2j))(1+$(2j—1))] (51) VL A SPECIAL FAMILY OF DISORDERED CHAINS

Q(x) =
"o F(g)dry G(m)dm log[1+q '+xEm '] (53)

0

where F (ri) is defined as the solution of (50).
An interesting special case of a Type II chain is a

chain composed of two kinds of atoms with masses

m, M, distributed at random in the proportion P: (1—p).
This corresponds to the distribution function

G(m') =PS(m' —m)+(1—p)b(m' —M). (54)

The equation (50) for F(q) then reduces to a difference

equation,

F (&)=P[1—&+ (m/xE)]- F[(1—„+(m/xE))- —1]
+ (1—P) [1—q+ (M/xE) ]—'

XF[(1—g+ (M/xE)) ' 1], (55)—
which can be solved. very rapidly by iteration since no
integration is involved. The characteristic function
(53) becomes

&(x)= " F(g)dg[P log(1+q-'+xEm-')
J,

+ (1—P) log(1+g—'+xEM—')]. (56)

Only a moderate amount of numerical work would be
needed to calculate the frequency spectrum for any
given values of m, M and P.

A chain in which the masses are all equal while the
spring strengths are independent random variables can
be treated by exactly the same method as a Type II
chain. It is only necessary to interchange the roles of
$(2j) and $(2j—1). If we go beyond Types I and II,
we could consider a more general type of chain, in
which the masses m,. are independent random variables,

since $(2j) and P(2j—1) will have different distribution
functions. From Eq. (33) we find

(1+$(2j))(1+$(2j—1))= 1+$(2j)+ (xE/m, ), (52)

and here the variables $(2j) and m; are uncorrelated.
If we insert Eq. (52) into (51), the characteristic
function becomes

In this section we calculate explicitly the spectrum
of normal frequencies for a special family of disordered
chains. This will serve as an illustration, to show
quantitatively the effect which a given degree of dis-
order has upon the spectrum. We consider a chain C„
of Type I, in which each X, is an independent random
variable with the probability distribution

G (y) —[~m/(~ 1) l]yn —ie—mi

The integer m takes the values 1, 2, 3 . The distri-
bution G„has mean value 1 and standard deviation
e . Thus, C& is a highly disordered chain, C& is less
disordered, and in the limit as e—&~, C„becomes the
uniform chain with all X,= l. For large ri Eq. (57)
takes asymptotically the Gaussian form

G„(X)-(e/2') -*

exp[ —-', ii (X—1)']. (5g)

F ($) E —
lpga

—1(1+$) ne ns/z— —(59)

where E„is a function of x determined by the normal-
ization condition (45). Hence, Eq. (46) gives

0 (x)= 21.„(x)/E„(x),
'

(60)

I- (x)= &" '(1+5) "»g(1+$)e ""*dk, (61)

E„(x)= P '(1+() "e "P*df.
~jp

(62)

We next have to carry out the analytic continuation of
J.„and E„to negative x, This is done in Appendix III.
Hence, if we use Eq. (12), we find the following analytic
expression for the frequency spectrum of C„,

We choose these C„ for the illustration for reasons of
mathematical convenience only. They happen to have
frequency spectra which can be calculated to the end
analytically. And although they do not correspond
closely to any known physical situation, they illustrate
clearly enough the behavior of disordered chains in

general.
If we substitute Eq. (57) into Eq. (44), we frind an

integral equation for F(f) which has the exact solution

Gi' FDG e
—"'-+[F P2 —Fi'+ ((s—'/6) —t„ i)Fo']e '"*

[Gi+(Fi—(logns+ s i+y)FO)e "']2+7r'Fo'e '"' (63)
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FIG. 1. Integral spectrum of characteristic frequencies for a
uniform chain (curve UU) and for a random chain in which each
spring-parameter ) has the distribution-function exp( —X) (curve
RR). 3f (s) gives the proportion of frequencies co for which cu' &s.

Here, Po, Fj, and F2 are finite polynomials dined by

(64)

This rises very rapidly as s increases from zero, showing
that a disordered chain has a much greater proportion
of very low characteristic frequencies than a uniform
chain. The limiting behavior of 3f„for large s is found
from Eqs. (70) and (71) to be

3E„(s) 1—2 (logns —s„ i+y) e "'
Z (ns)» —i[(n—1)!]—& (73)

In Fig. 1 the numerical value of Mi(s) is plotted
together with the corresponding function for the
uniform chain which is by Eq. (41)

M„(s)=~ ' arccos[1 ——',s], s(4,
(74)

From Eq. (63) we can also calculate the form of the
frequency spectrum for large e, i.e., for a chain com-
posed of only slightly Ructuating elements. In this case
we represent the spectrum by a complex contour
integral which is evaluated by the method of steepest
descent; details are given in Appendix IV. The results
are the following. For any fixed z in the range 0&a(4,
we have for su%ciently large e,

1

IL(—») '/j. ]s,,j )
(65)

M„(s) m
' arccos[1 ——',s]+ (2') '[(4/s) —1]—'. (75)

For fixed s&4 and large n,

M„(s) 1—m 'n exp[—n —2n(sinhn —n)], (76)

with

(66) o.= arg cosh[sts —1].

At the critical point z=4 and for large m,

('77)

s,=P f 'f, =P f
—'-

l=l 1=1
The errors in Eqs. (75), (76), (78) are in each case of
higher order in (1/n) than the last term given. From
these results it is seen how the spectrum approaches
the limiting form (74) as n—+~.

The G~ and G2 are integral functions of s with power-
series expansions

(67) ~ (&)-1—[I(l)] '[12/n]'= 1—(0.32 )n '. (78)

a& (n 1+j)—
Gi=Z

I . IL(—ns)'/j ]sj )

(n 1+j)—
Gs=P IL(—ns)'/j ](s'+»))

(68)

(69)

VII. APPLICATION TO TRANSMISSION LINES

Consider an ideal loss-free transmission line composed
of a series of inductances I.l, I.2, with a capacitance
C; between each pair I.; and I.,+&. The equation of
motion for the current I; in the inductance 1., is

and p is Euler's constant. Asymptotically for large s,
6» and G2 have semiconvergent series expansions

G,= [(—1) /(n —1)!]P (ns)
—[(j—1)!]'/(j—n)!, (70)

Gs ——2[(—1)"/(n —1)!]Q (ns)
—i

1=n

&&LU—1) )'s -i/U —n)" (»)
From Eq. (63) we can find at once the limiting be-

havior of M for small s,

M„(s) [(m'/6) —f i][m'+ (logns+s„, +y)']—'. (72)

L,dsI;/dt'=C; '(I;+.i I;)+C, i '(I; i—I,). —(79)

This is identical with Eq. (1), only with L; replacing
m, and C,—' replacing E;. Therefore, the whole of the
theory of this paper applies without alteration to a
transmission line whose elements I., and C; are sta-
tistically random variables. The function M(s) gives
the integrated frequency distribution of the normal
modes of propagation of current in the line.

In conclusion, the author wishes to thank Professor
Kittel for suggesting this problem to him, Professor
t.uttinger for some useful discussions, and the Uni-
versity of California for its hospitality during the
summer of 1953 when the work was done.
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E(q, c)= II L(j ) E(q", c).
j=c+1

(A.2)

We now start reducing q" from the other end by
omitting steps (a~a+1) and (a+1-+a). In this way
we eventually reach q"' defined by q"'(j)=0 for j).c
orj &c 1, q"' (j )= q (j ) f—or j = c or j= c 1. We find—

APPENDIX I. EVALUATION OF R(q)

Define E(q, c) to be the number of cycles o. corre-
sponding to a given set of q(j), and beginning and
ending with a given j0——j2„——c. Suppose first c&b.
Prom each of these o. we can derive a new cycle o-' by
simply omitting from o. the steps (b—+b+1) and
(b+i~b), since by hypothesis the step (b+1—+b+2)
does not occur in o-. These o' will all belong to the set of
integers q', where q'(b) =0 and q'(j) =q(j) forj &b The.
number of the o' is E(q', c). From a given 0' we derive
the parent e by inserting q(b) pairs of steps (b~b+1),
(b+1~b) distributed in any way among the q(b —1)
places where the integer b occurs in o'. So the number
of o. corresponding to a given o-' is the number of ways
of distributing q(b) identical objects among q(b 1)—
boxes, which is L(b) defined by Eq. (22). Hence,

E(q, c)=L(b)E(q', c). (A.1)

Proceeding repeatedly in the same way, we shall reduce

q to the set of integers q" defined by q"(j)=0 for j)c,
q"(j)=q(j) forj &c. We find

If we use Eq. (14), this becomes

r(n)= ~ D(y)diJ. t dy2pe" "I"[1+pe'") '

p $D (Ii)dp eia 1oep e 2 ia o sec—hydy
0 J—00

= (~ sechsn) " Ii&D(p)e' "o&d(logy). (A.8)

and substitution for r(n) from (A.7) gives Eq. (42).

APPENDIX III. ANALYTIC CONTINUATION OF
X„AND L

We write

I(q) =I(q, n, y) = t $" '(1+$)' "e t"d$, (A.10)
0

where y=n/x. For positive y, this is an analytic
function of q for every q, and in particular

Thus, I r(n) cosh') is also the Fourier transform of
Ii'D(p) as a function of (logic). If we invert the transform'
(A.S), we obtain

~00

p&D(p) = (2or') ' exp( —in logy)r(n) coshmndn, . (A.9)

c—1

E(q", c)= II L'(j) E(q"', c), (A.3)
K„(x)= I (0), L„(x)= (dI/dq)o=o. (A.11)

We evaluate I(q) assuming q) n —1, in which case

L'(j) = (qU)+q(j —1)—1) '/ where
I(q) =J(q)+E (q), (A.12)

L(q(j) —1) (q(j—1)) ) (A4)

But E(q"', c) is just the number of ways of arranging

q(c) pairs of steps (c—&c+1)(c+1~c) and q(c—1) pairs
(c—+c—1)(c—1—+c), beginning and ending at c. This
number is

E(q"' c)=(q(c)+q(c—1))'/I:(q(c)) (q(c—1)) ) (A5)

If we put together (A.2), (A.3), and (A.5), we obtain

b

{q, )=(q{)+q( —1))(q{~)) ' ~ I{j) . (A

I( ) t gn
—1(1+ t)o ne $ydg— —

(n 1)—
=e"2 (—1)'I

=o & j &do

f n —1)
=e"y '2 (—1)'I . Ii'{q—j)y',

;=o E j )

"0

(A.13)

We now sum (A.6) over all values of c from a to b+1
Then Pq(c)=Pq(c —1)=n, and so Eq. (21) of the
text is verified.

APPENDIX II. DERIVATION OF EQUATION (42)

Consider the Fourier transform of xlQ'(x) considered
as a function of the variable logx, namely

r(a) = )~ x**0'(x) expL —in logx]d(logg). (A.7)

= (—1)"2 b'/j')
g'=0

XI I'(n+ j)1"(q
—+n1)/ ( I+qj+1)). (A.14)

The series in (A.13) and (A.14) are convergent and
represent functions of y which aie analytic over the
whole y plane except for the simple branch point at
y=0 produced by the factor y o. As functions of q, I(q)
and E(q) are analytic, but each has a simple pole at
q=0 which only cancels in the sum I(q). Hence, we



1338 F REE MAN J. D YSON

n —1 (+—1)
2L (x)=e"& I I(y'/j')[(~J —

V
—logy)'&j)

)e+j—1~
+~;+ '/6j- E ( l(y~/j )

;=0 E

&& [(s, s&)'—+t,+t„,], (A.16)

in which p is Euler's constant, and s;, $; are defined by
Kq. (67). These formulas show X„and L„explicitly as
analytic functions of y= e/x, with a logarithmic branch
point at y=0. In order to obtain the analytic continu-
ation of E„and L„ to a point (—x) on the negative
real axis, going through the upper half of the x plane,
we have only to replace, in Eqs. (A.15) and (A.16), y
by (—y) and logy by (logy —wr). This leads at once, by
Eq. (12), to the result stated in Eq. (63).

APPENDIX IV. METHOD OF STEEPEST DESCENT

We consider the analytic continuation of the function
IC„(x) given by Kq. (62) through the upper half-plane
to a point x= —s ' on the negative real axis. This
continuation may be written as a contour integral

E„(—s ')= (A.17)

(A.18)

may evaluate E„and L„using (A.13) and (A.14),
expanding these expressions in powers of q and retaining
terms of order —1, 0 and 1. The terms in q

' cancel as
they should. The terms in q' and g' give, respectively,

~—& ('e—1p
. '-' I(y'/j ) ('—7—»+')

,=O ( j -)

(e+j—1&
+ g ) ~(y'/j!)(~, —~ 1) (A 15)

j )

and the path of integration passes from 0 to (—~)
above the singularity at g= —1. Similarly, by Eq. (61)

Jp

We choose the path of integration to pass over the
lowest saddle point of F($) between the minima at 0
and (—~). The sa, ddle points g are given by the
quadratic equation

rP+ g+s-'= 0. (A.20)

in the upper half-plane. The path of integration crosses
this saddle at an.angle of 135' to the positive real axis.
For large n we calculate E„and L„by considering
contributions to the integrals from the neighborhood
of the saddle only. If we use Eq. (12), this gives the
result (75). Next suppose s)4. Then there are two
saddle points on the real axis

n+= 2[ 1+(1 —(4/s))'—j,
~-= k[—1—(1—(4/s))'j. (A.22)

The path of integration goes along the real axis over q+
from 0 to q, then breaks off at 90' to the real axis and
goes from g to (—~) above $= —1. For large n the
real parts of E„and L„come from the integral near q+,
but the imaginary parts come from contributions in
the neighborhood of z . In this way we find the result
(76), which tends to 1 for large e because ~F(g ) ~( ~F(g+) ~. Finally, consider the case s=4. Then there
is one saddle point at q= ——,', at which the first two
derivatives of F($) vanish. The path of integration
goes from 0 to g along the real axis, then breaks off at
an angle of 120' and goes to (—~). The integral in

the neighborhood of g now gives Eq. (78).

Suppose first 0&s&4. Then, there is one saddle point

(A.21)


