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The method of reduction of two-particle relativistic wave equations (an extension of„the Foldy-Wouthuy-
sen method), as given in Part I, was applicable only if mz/mzz. Other variants of the procedure, free from
this restriction, are developed now. On the basis of a discussion of properties of the matrices involved, it is
found that the postulate of an "even-even" transformed Hamiltonian was too far-reaching. The less
stringent requirement of a "uU separating" or an "lL separating" X&, leads to a whole class of usable trans-
formations, which includes the transformation of Part I as a special case. Another important special case,
(that. of the "least change" transformation) has been calculated through in detail. Different transformations
give different expressions for K&„but they coincide after (as a part of the next step of the procedure) the
matrices P and P are replaced by 1 (or —1). Consequently the reduced wave equation is the same in all
cases.

]'N a recent paper, ' hereafter referred to as I,f a
~ ~ method was developed for conversion of relativistic
two-particle wave equations from the full (16-com-
ponent) into an approximate (4-component) form. The
procedure consists of two steps: first, a canonical trans-
formation (strictly speaking, a sequence of canonical
transformations) is performed with the help of suitable
generating functions; then, twelve components of the

*This work was supported in part by the Office of Scienti6c
Research, Air Research and Development Command, U. S. Air
Force.' Z. V. Chraplyvy, Phys. Rev. 91, 388 (1953).We take over the
terminology and notation used there.

t Errata to I.—In Eq. (4) the first minus sign is to be replaced
by a plus sign. In Eq (7j) the nume. rical coefficient is to be 1/g
(not 3/16).

wave equation are rejected, and only the four upper
upper or the four lower-lower components are retained,
namely that quadruple which describes states with
both particles possessing positive energy (the other of
these two quadruples corresponds to both particles
having negative energy). The same transformation is
required to make either choice possible.

The proposed scheme was patterned after the Foldy-
Wouthuysen method for one-body equations. ' As a
matter of fact, the expression for the transformed
Hamiltonian in I represents a plausible, though not
trivial, generalization of that obtained by Foldy and
Wouthuysen. But, remarkably, our method is not

' L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950).
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applicable, if the two particles happen to have equal
masses. Now, it is conceivable that more variants of
the reduction procedure could be devised, ' which, like
that of I, would be extensions of the F-W method, but
not restricted by the condition mi/miz. The inves-
tigation of such possibilities must be preceded by a
discussion and classification of matrices.
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REPRESENTATION OF MATRICES

The matrices of a two-particle wave equation consist
of 256 elements each, labeled by two pairs of indices,
nei, zx (j, k, J, E=1, 2, 3, 4). In order to represent
them by means of two-dimensional arrays, we adopt
the following convention: each such array will be sub-
divided into 16 submatrices; the second pair of sub-
scripts (JE) will indicate the submatrix, the first pair
(jk) the position of the element within it. Whenever a
matrix can be represented as a direct product of two
fourth-rank matrices, ' our convention amounts to
taking the "left" direct product" denoted by X.Also,
we consistently arrange the components, fl,z. of the
f spinor in a column (rather than a square array), with
E specifying one of its four subcolumns, and k the
position within the subcolumn.

Examples:

FIG. 1. The two basic types of 4X4 matrices: even and odd. At
least all the shaded areas are occupied by zero elements.

(n„n„,n„P are the Dirac matrices and 8 the fourth-rank
unit matrix. )

Thus, we have fixed the manner in which matrix
elements are to be arranged, and in the following classi-
6cation of matrices we can often make use of con-
venient diagrams rather than the imperspicuous alge-
braic relationships accompanying them. In connection
with this we have to mention the eGect of the matrix
multipliers 2 (1+P') —'(1+P") -'(1+P'P") ~ (1—P')

1—Prr) and 2r(1 —PrPrr). Since we have

0 0 0' 0 0 0
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0 0 0 & k(1+P )= 0. 0 0 0
.0 0 0 .0 0 0 0

0 0 0
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etc. , with
0

0

it follows that each of these six factors, when pre-mul-
tiplied (post-multiplied) into a given matrix, produces
zero elements arranged in double rows (columns) after
a pattern characteristic of that factor.
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CLASSIFICATION OF MATRICES

According to Foldy and Wouthuysen, any 4X4
matrix is either even, or odd, or a sum of an even and
an odd matrix '.
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(u =(u'+~o'= —((o+PcuP)+ —
(&u

—Pa)P). (1)
For a matrix to be even (odd), it has to commute
(anticommute) with P; at least half of its elements
have to be zeros, distributed as is shown in Fig. 1.

In order to obtain an analogous classi6cation of the
1.6X16 matrices, we consider the following decom-
position of the general matrix 0:

n= n"+n"+n"+n" (2)

3This is quite independent of the question as to whether the
original F-W method itself is unique for its purposes. A note on
this subject will be published soon.

This is not necessarily so in all cases, in particular following
certain transformations to be introduced later.

5 See C. C. MacDuftee, The Theory og 3fatrices (Chelsea Pub-
lishing Company, New York, 1946},p. 81.
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(2a), (2b), (2c), (2d) respectively. Their commutation
properties with P' and P" (see I, p. 389) can be deduced
from the defining formulas. These formulas, when
written in the form

with

Q'=-'(1+P')Q(1+/')+ —'(1—P')Q(1 —P') (3 )

YlA'.
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QulUU& =QluUU&
=Quu 'UL =Qu lUL
=Quu'LU =QluI U =0

etc. , yield information as to which (at least) of the
elements must be equal to zero, in order that the
matrix be even-even, etc. Figure 2 shows the charac-
teristic distribution of zeros in matrices of the four
basic types.

An even-even matrix has the important property that
it "keeps apart" the four kinds of components of the
P spinor. This means that in the product Q'Q, elements
(QP)„z are expressed entirely in terms of upper-upper
components P„U, and likewise elements (&P) 1„(QQ)~~,
(Qf) ~&, in terms of the P„I., /Iver, /~I. respectively. Also in
this regard the ee matrix appears to be a direct extension
of Foldy's concept of an even matrix (see I, p. 388).
However, there exists another matrix for which the
same claim can be made. Its structure is shown by the
first diagram of Fig. 3. The conditions imposed on it
are weaker, it need not have as many zeros as an ee
matrix; hence, its efFect is smaller. When multiplied
into P, it merely prevents the upper-upper components
of P from mixing with components of other kinds, which
means: (Qf) '~ is expressed by the P„~ only, whereas
the expressions for (Qij) 1„(QP)~p, (Qf) ~1. do not

I"io. 2. The four basic types of 26)&26 matrices: even-even,
even-odd, odd-even, odd-odd.

Four basic types of matrices, the even-even, even-odd,
odd-even, and odd-odd are defined' by the expressions

' The definition used in I refers only to matrices representable
as direct products and is, therefore, too narrow for the purposes
of the present paper.
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Frc. 3. Two special types of 26)&26 matrices: the NU-separating
and the /L-separating matrix.
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contain P„u components. Such a matrix will be called
"uU separating. "

The algebraic equivalent of the diagram under con-
sideration is found to be

Q-= Q—!(1+v') (1+a")Q--'.Q(1+&') (1+&")
+-.'(1+~') (1+~**)Q(1+~*)(1+~*'), (4)

with 0 arbitrary. Every NU-separating matrix can be
represented in this form. To simplify this rather
unwieldy expression, we specialize it, assuming suc-
cessively that Q (and consequently also Q"' itself) is
even-even, even-odd, etc. If we make use of the com-
mutation properties of P' and Pr', we obtain the fol-
lowing set of rules: (1) Any even-even matrix is NU

separating (but not mice versa). (2) An even-odd matrix
is NU separating if, and only if, it can be written in the
form ~i (1—P') Q". Similarly, (3), (4) an odd-even
matrix is rendered IU separating by the factor ~~(1—P'r)
in front of it, and an odd-odd matrix by the factor
1 (1 PIPII)

Rule (1) is easily verified by comparison of the cor-
responding diagrams. Rules (2), (3), (4) are illustrated
by Fig. 4. For instance, it is seen that pre-multiplication
by 2(1—Pr) provides for additional zeros in Q", so as
to make it fit into the first scheme of Fig, 3.

The name "lL separating" is proposed for matrices
possessing the property that in the elements of the
product (QP) the K components of P are not mixed
with components of the other kinds. The most general
algebraic expression for an lL-separating matrix,

Q'= Q—l(1—0')(1—0")Q—kQ(1 —0')(1—0")
+l(1-~') (1-~")Q(1-~')(1-~") (3)

and the corresponding distribution of zero elements
(second diagram of Fig. 3) are analogous to those for
IU-separating matrices. So are the four rules: (1) Any
even-even matrix is /I separating. (2), (3), (4) The left
multipliers, which convert a matrix into an /L-sepa-
rating one, are 2(1+P ), i~(1+P ), and -', (1—P'P") for
an eo, oe, oo matrix respectively.

Two more kinds of "separating" matrices with
similar properties could be defined, but this would not
lead to an exhaustive classification of matrices.

CHOICE OF GENERATING FUNCTIONS FOR
CANONICAL TRANSFORMATIONS

The original wave equation KP=EP (or, alterna-
tively, Kf= —Eg) has to be transformed into
X~,P~,=EP~, (or BC~,P&,

—— EP&,), because we inte—nd
to separate out and to retain the only four component-
equations which contain only the mU components (or
the ll. components) of the spinor P. That is, the trans-
formed Hamiltonian K&, is expected to be NU sepa-
rating in the one case, and /L separating in the other.
Any other e8ect of the transformation is either super-
Quous or irrelevant. Now the transformation proposed
in I led to an even-even 3C&, , therefore, while satis-
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I'io. 4. The narrow-gauge shading shows the zeros due to the
basic eo, oe, oo character of the matrix; the wide-gauge shading
the zeros introduced by the respective left multiplier.
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factory, it overshot the mark: instead of providing us
with one suitable quadruple of equations, disentangled
from the rest, it yielded four quadruples, not interlinked
with each other.

In accordance with the present more limited objective
of the transformation, its generating function will now
be chosen according to less stringent rules; iS will

consist of expressions of the following form (rather
than that given in Eq. (Sa, b, c) of Ij:
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Here t„, t„, t., are terms appearing in the Hamiltonian;
f„, etc. , is a term obtained from t„, etc. , by replacing
its matrix part by another matrix which is of the same
(eo, etc.) type, but otherwise arbitrary. Wherever
double signs occur, the upper one refers to a trans-
formation leading to a IV-separating K~„whereas
the lower one is to be taken, if an /'L-separating X~, is
required.

It is easily verified that

t..+(~... (P' +P** )")=—l(1~P')t-;
t.,+fe.„(pz~,gpzz~») c']= —-', (1~p») t„;
t„+[5„,(P'mz+p"mzz)c') = ', (1 p-'p"—) (t..—1,.);

t +L& (p'+p")~")=k(1—p'p")t

which means: when used in Eq. (2) of I, the terms 5„
of iS changes (by its highest-order contribution) the
even-odd (undesirable) term t,.of the Hamiltonian into
another one, again even-odd, but acceptable, since it
is NU separating (or /L separating). The undesirable

terms t„, t., are affected likewise by 0„, 5„, (or 5..'),
respectively. In addition, each of the 5 expressions will
contribute some terms of lower order, of which the
even-even and the acceptable ones will appear in the
final BC&„whereas those of undesired types must be
treated in a similar manner by means of subsequent
transf ormations.

Because of the mentioned arbitrariness in f„, etc.,
the expressions (6) are rather general; in fact, they
yield a whole class of transformations. Special cases
include: for t„=t„=0, f„=t„(nz IWm z)z, the "radical"
transformation of I, which not only modi6es, but even
destroys undesirable terms; and, as the other extreme,
for f„=—t... t„=—t„, t„=f„'=0, the "least change"
transformation, which secures the indispensable amount
of modihcation, putting the necessary zeros in the
matrices so as to make them accep table, without
causing any further "damage. " It should be remarked
that this is not the simplest transformation, which we
rather should expect for t,.= f.,= f..= I,.'= 0.

THE TRANSFORMED HAMILTONIANS

By repeated application of the "least change" trans-
formation, the following expression for the transformed
Hamiltonian, approximate out to the order (1/c)2, has
been obtained:
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However, they may be not the most general possible. In particular, under certain conditions t„, etc. could differ from t„, etc. not
only as regards the matrix contained, but also in its other parts as well. Yet it seemed of little importance to pursue such possibilities.
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It contains in (7a) the (unchanged) even-even part
of the original Hamiltonian; in (7k, I, m) the original
even-odd, odd-even, and odd-odd part (denoted by
(B8), (8B), (88)), modified in the desired manner; in
(7b .j) new even-even terms produced by the trans-
formation, our main point of interest; and in (7k, l, m)
new terms of the eo, ot, , and oo type, numerous, but
irrelevant, and for this reason not specified, but only
indicated.

A comparison of this Eq. (7) with the Eq. (7) of I
shows considerable di8erences, which is not surprising.
However, it should be remembered that the transformed
Hamiltonian is merely an intermediate stage. As was
pointed out in I (p. 390), the next, and final step, is the
replacement, now made possible, of 16&16matrices by
suitable 4&&4 matrices; in particular, both Pr and P"
are to be replaced by the (fourth rank) unit or the
minus unit matrix, according to whether the NU or

the K quadruple is to be retained. Now it is seen that
putting P'=P'r=1 and taking the upper signs, (or
P'=P"= —1 with the lower signs) makes the Hamil-
tonians (7) and I(7) coincide. Thus, different trans-
formations of our class finally lead to the same reduced
wave equation. This fact is essential, in order that the
proposed reduction procedure be sound.

Although only two special transformations have been
considered in full detail, there are strong indications
that the same result would ensue for all other trans-
formations generated by (6). In order to prove this in

general, it would be necessary to calculate K&, using
the full, nonspecialized expressions (6). However, in
this general case the calculations, while still straight-
forward, become prohibitively lengthy and tedious.

The author appreciates valuable discussions on the
above subject with Dr. William A, Barker.


