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The relativistic dynamics for a system of non-interacting particles in Hamiltonian form is separated by
a contact transformation into motion of their center of mass and internal motion. Interaction at a distance
between them is then introduced into the expression for the rest-mass in terms of the internal variables. This
gives a dynamics for which invariance over space displacements and rotations is trivial and which is rigor-
ously invariant over Lorentz transformations. Earlier approximate treatments may be reduced by contact
transformations to special cases of the general treatment.

1. INTRODUCTION

N this paper we adopt the point of view of an earlier
paper® and describe a system in terms of dynamical
variables whose mutual Poisson brackets are given. We
shall specify each particle 7 by three pairs of canoni-
cally conjugate dynamical variables forming vector
coordinates q; and momenta p;, three variables forming
its vector intrinsic spin ;, and its rest mass ;.

We shall take these to transform trivially for simul-
taneous rotation or displacement of the frame of
reference in space, leading to an “instant” form of
dynamics,>? (as opposed to a “point” form in which
transformation over the homogeneous Lorentz group is
trivial, such as the form considered in It).

The dynamics will then be specified by a Hamiltonian
function H leading to the changes of the dynamical
variables with time, and a vector V, of which the com-
ponents U, V, and W, give in the same way the in-
finitesimal transformations for change to relatively
moving coordinate systems. In addition we introduce
the vectors R, components X, ¥, and Z, the total linear
momentum, and , components L, M, and N, the total
angular momentum of the system, which give in a
similar way the here trivial, infinitesimal transforma-
tions for space displacement and rotation. These ten
functions of the basic dynamical variables q;, p;, ©;
(and m,;) must satisfy the conditions for all the trans-
formations to give the inhomogeneous Lorentz group.*

It is, however, not implied, nor is it true, that, even
in non-quantum mechanics, there exist world lines
r;=q;(?), for the particles, that are the same loci in
space-time when transformed by the corresponding
Lorentz transformations, unless there is no interaction
and the particles are without spin.?

* Presented by B. Bakamjian in partial fulfillment of the re-
quirements for the degree of Doctor of Philosophy in the faculty
of Pure Science, Columbia University.

1 Watson Scientific Computing Laboratory, Columbia Uni-
versity.

1L, H. Thomas, Phys. Rev. 85, 868 (1952); referred to below
as L.

2See I, Egs. (4.2) and (4.3).

3P. M. Dirac, Revs. Modern Phys, 21, 392 (1944).

4 See I, Sec. III.

§ M. H. L. Pryce, Proc. Roy. Soc. (London) A195, 621 (1948).

2. DYNAMICS FOR A SINGLE PARTICLE

For a free spinless point particle we have three coor-
dinates ¢, g, ¢. and canonically conjugate components
of momentum p,, p,, p. with Poisson brackets (g., =)
=1, (g, p)=1, (g, p.)=1, the remaining Poisson
brackets vanishing. We may take the usual components
of momentum, angular momentum, and energy,

X=pz, L=qp:—q:1y
Y=p,, M=q.p.—q@p., H=m*c+p’+p +p) 3
Z=Pz7 N=quy_‘Zny;

where m is the rest mass and ¢ the speed of light, and
then, if we take

U=qH/ V=gqH/¢ W=qH/Z

all the conditions are satisfied,

[e'g') (U; X)= (gza Pz)H/C2=H/C2]-

U, V, and W do not have as immediate a physical
interpretationas X, ¥V, Z, L, M, N, and H, because they
do not commute with A and are not constants of the
motion of the system. They may be called velocity
operators.

If we replace ¢z, gy, ¢., by operators

h 9

27t ap,,,

h 0

2mi apy’

h 9

2mi 0p.

and write

1 1
U=—(¢.H+Hq,), V=—(H+Hg,),
2¢2 2c%

1
W:—(qu—}—qu),
2¢?

we obtain operators giving a relativistic quantum
dynamics.
In vector notation,

R=p,  H=Dnc+pel,

Q=[qXp], V=(1/2¢)(qH+Hq). 12
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For a particle with spin, we may write in like fashion:
H=[m?*~+p** ]},
Q=[qXpl+o,

where (wz, wy)=w,, (W, w.)=ws, (W, w)=w,, and w,,
wy, and w, have zero Poisson brackets with the rest of
the basic dynamical variables. We now find that we
must take

R= p,
(2.21)

1 . [eXp]
V=—(qH+Hq)— .
2¢? mc-+H

(2.22)

Further, the Dirac electron can be obtained from
this by introducing negative energy states, putting
o= (h/4r)e, and making the unitary transformation
given by the matrix

[mc*+E—icpy (o~ p) )/ [2E(mc*+E) I,
where E=|H| and H= —p;E, and ¢, 0, and o,, and

p1, p2, and p3, are two independent sets of Pauli matrices.

3. DYNAMICS FOR A SYSTEM OF PARTICLES
WITHOUT SPIN

In building up a dynamics for more than one particle,
it is convenient to start with two non-interacting par-
ticles. We write ¢=1 for brevity and take the sums of
functions of the form (2.1) for each particle,

R=pi+p, Q=[a:Xp]+[q:Xp:],
H=[my+p P+ [m+p2 1,

V= qu[m*4-p2 1 qo ma4-pa2 0.

This defines ten functions trivially satisfying the forty-

five Poisson bracket relations* required for invariance.
The expression

(3.1

m= (H?—R2)} 3.2)

can be regarded as the effective rest mass of the system
viewed as a single entity and has the important prop-
erty that it commutes, or has zero Poisson bracket, with
each of Egs. (3.1).

We expect, for an instant form of dynamics, that
interaction terms will enter only in # and V and not in
R and Q, and that they will depend in some sense only
on relative or internal variables of the system, affecting
the motion of the system as a whole only through .

Suppose that we make a transformation from p;, qy,
P2, Q2 to variables R, r, total momentum and coor-
dinates of the ‘“‘center of mass,” and P, g, relative
momentum and relative coordinates, twelve variables
having similar Poisson bracket relations to pi, qi, ps,
and q, in such a way that (i) Q=[rXR]+[eXP],
(so that p and P transform like vectors in a space
rotation), (ii) 7 depends on P only, and (iii) V can be
expressed in terms of 7, r, R, and Q only. Then in the
expression for H,

H= (m2+ Rz) %)

and in the expression for V in terms of 7, r, R, and Q,
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we may introduce an interaction by replacing m by any
other function of ¢ and P which is a scalar for space
rotations. Relativistic invariance will be preserved
because m still commutes with r, R, and Q, and the
commutation relations of these with each other and
with H and V are not disturbed. (The transformation
between p;, qi, P2, q: and R, r;, P, ¢ must not be
altered.)

We now obtain a trahsformation for many particles
as similar to that to center of mass and relative coor-
dinates in Newtonian mechanics as is consistent with
the above requirements. We start with non-interacting
particles having momenta R, and coordinates r, relative
to an arbitrary observer, and write H,= (m.4R.%)?}
Q.=[r.XR.], Vu=3(.H.,+H.r.), so that we can
take

R=Zu Ru; QZZ’M Qu;
H=3% ., H, V=Zu A

and the requirements for relativistic invariance will be
met. .

Next, we make a transformation to a frame in which
the total momentum of the system is zero. In this new
frame the particles have momenta S, and energies K,
such that X, S,=0and >, K,=m.

Writing as before H>=m?+R? and further R*=R?,
R=m sinhv, H=m coshy, R,= (R.-R)/R, we obtain
for this Lorentz transformation in the direction of R,

Su= R, coshv— H, sinhy,
K.= —R, sinhv+ H,, coshy,

(3.3)

or, returniflg to vectors,
S.=R.— R,R/R+5.Ru/R
(m+H)H.,— (R-R.)
‘o { m(m~+H)
K.=—R-R,)/m+HH,/m;

]R, (3.4)

while reversely,

HK.+ (RS,

Ru=su+{(m+ VK o+ ( )}R
m(m~+H)

H,= R-S,)/m+HK,/m.

(3.5)

We verify that
(@) LuSu=0, () XuKu=m; (c) Ki=mi+S.,

while also
K.+H,
R. (3.6)
m+H

The equation (3.4) now defines a “point transforma-
tion” in momentum space from the momenta R, to the
momenta R and S,, subject to the condition Y. S.=0,
which satisfies the requirement (ii) above in that
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depends only on the relative momenta S, in scalar
fashion.

We can now find a corresponding transformation for
the “coordinates” r, of the particles by writing down
the condition for a contact transformation which in this
case is an “‘extended point transformation” in momen-
tum space.

> u(ru-dRy) = (r-dR)+2" . (su-dS.), (3.7

subject to >, S,=0. The requirement (i) above
follows now necessarily from the vector form of our
equations as

Here, r may be chosen to be any arbitrary linear com-
bination of the r, with coefficients functions of the Ry,
and in particular to satisfy requirement (iii). We may
take the Egs. (2.21) and (2.22) in the form

Q=[rXRHo, V=3@H+Hr)—[oXR]/(m+H),
and solve these to give
1 R(V-R)
r=—V+ [@XR]- , (3.8)
m  m(m+H) mH (m+H)

which is of the necessary” form and determines the
transformation. The detailed calculations are given in
Appendix I, the important results being Egs. (1)-(5).
When there are just two particles we may write

P=S;=—8,,
and (3.8) becomes
(r1-dRy)+ (r2-dRy) = (r-dR)+ (o-dP),  (3.9)

where ¢ and its canonically conjugate momentum P
may be interpreted as the relative coordinate and rela-
tive momentum of the two particles. Thus, we have
performed a contact transformation from the original
pairs of conjugate variables describing the separate
particles, (ri, Ri), (rs, Rs), to two other pairs (r, R),
giving the state of the system as a whole, and (g, P)
giving its internal state.

Now any scalar combinations, ¢ (¢-P), P% and
functions of these, of the internal variables commute
with the ten fundamental quantities, so an interaction
can be introduced consistently by making » any func-
tion of these scalar combinations. An explicit expression
for p is found from Eq. (2) of Appendix I.

(I‘l—l'z'R) 1 Hl Hg
)
m(m~+H) H\s+m? s+mg?

08178y,

0=81—82

=T11—1I2

—[Hy(m+H)— Ri-R)TRy) } (3.10)
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where s=} (m?—m2—m4?). Likewise

1
r— (b )+ {[rlxRJxRJ
m

m+H
X RIXR]— e ROR— (e, RR). (3.1
+[[raXRo X ]—»E(l‘l' ) —E(H‘ ) } (3.11)

These equations, with Hl=m>+R:? H2=m?+Rs3,
R= R1+ Rz, H= H1+H2, 'm2= H2— R2, and
(m+H)H,— (R-Ry) ,R
m(m~+H) ’

P=R,—

give the transformation explicitly, while the funda-
mental quantities giving the dynamics are

R=R, H=(*+R?,
Q=[rXR]+[oXP],

[LoxXP]XR]
M+H

where M may be any function of g% (¢-P), and P2
Since r and g are linear in r; and r,, the extension to
quantum mechanics is always possible.

4. SPIN

We may introduce spin into our equations as follows:
(¢) We define the intrinsic spin o of a particle relative
to an observer O as a four-vector which is space-like in
a frame P in which the particle is at rest. Further, we
assume that the components w,, w,, w, of @ satisfy the
Poisson bracket relations: '

(3.12)
V=3i(rH+Hr)—

(4.1)

(0) Viewed from any other frame of reference, the
intrinsic spin defined in this manner will be given in
general by a different four vector which is also space-like
in the frame P. In particular, the intrinsic spin relative
to the frame C in which the system has zero linear
momentum will be denoted by a vector n. Three suc-
cessive Lorentz transformations from P to O, O to C,
and from C back to P will now give us the relationship
between o and n:

(w2, ) =23 (wys w)=wr; (e, wo) =0y

S. | (0.'R)R
n,= (l)u+ ((l)u . R) +
m(mu+Ka) m(m+H)

(0u-RW)Su(m—H) (0u-RJ)R

ou=1n,— (n,-R)

m(mu+K.) m(m~+H)
(ny SR, (m—H) (n.-S.,)R
A K) (mtH) mm K
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These relations then define the transformation proper-
ties of imtrinsic spin under a Lorentz transformation
from the frame O to the frame C. We may further
conclude from the properties of successive Lorentz
transformations that n and « will have the same mag-
nitude but will differ in orientation. Two successive
Lorentz transformations are not equivalent to a single
Lorentz transformation, but rather to a Lorentz trans-
formation plus a suitable rotation. In other words,
Lorentz transformations do not have the group prop-
erty. They have the group property if each Lorentz
transformation is coupled with a rotation. Thus we
associate with the Lorentz transformations O—C, O— P,
and C— P, rotations of the coordinate axes defined by
Eulerian angles ¢, 8, ¥; o, B, v; and &, n, {, respectively.
(c) Since the components of o do not have the Poisson
bracket relations of true momenta, we cannot introduce
them in our contact transformation (3.7) directly. The
angles a, B8,y and &, 9, {, however, represent true coor-
dinates and therefore have canonically conjugate true
momenta 4, B, C and &, H, Z associated with them. If
now we consider an infinitesimal rotation given by a
vector d=x with components defined in the frame O as

(dmrz) o= cosadB+sing sinady,
(dmy)o=sinadB—sing cosady,
(dm.)o=da+cosBdy;

and we set

(@ d=)o= Ada+ Bds+Cdy, (4.3)

then
(wz)o= — cotB sina A+ cosaB+cscB sinaC,
(wy)o= cotB cosad+sina B~ cscB cosaC,

(wz)ozA.

4.4)

g, wy, w, NOW form a function group in terms of canonical
variables 4, a; B, 8; C, v such that the relations (Sec. 2)
are satisfied. v :

Similarly, we may consider an infinitesimal rotation
given by a vector d0 with components (dd.).= costdn
+sing singdt, (d9,).=sinédn—sing cos&dy, and (d¢.).
=dt+cosnd;. We can write relations similar to (4.3),
(4.4) that give the components (1), (1y)e; (1)e Of M
in terms of canonical variables &, &; H, 1; Z, ¢.

Now if we write

Zu ru'dRu+Zu wu'dﬂu
1 dRESu $u-dSut- S nu-dby, (4.5)

where the spin terms represent their equivalent expres-
sions in terms of true variables, this represents a contact
transformation between true coordinates and momenta.
Since n, is related to the new variables in the same way
that o, is to the old, we can conclude that the com-
ponents of n, will have the correct Poisson bracket
relations among themselves.

Further, we can show that we do not need to know
either o, 8, v or & 7, { to find the transformation of
(w2, Wy, @2) to (92, My, 12) or to obtain that from r, to s.,.
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Thus, if we consider an infinitesimal rotation de related
to the Eulerian angles ¢, 6, ¢ in the same manner that
the vectors d=x and d9 are related to «, 8, and v and
£ n, ¢, we can write

dn=d9+de,

when all are given in the same coordinate system. Equa-
tion (4.5) can now be written as

Zu ru'dRu+ (Zu mu'd"ru)o
=r-dR+2. Sy dS,— (Zu nydoy)ot (2 Ny dmy)e.

Identifying coefficients,

(nu)e= (@u)o 4.6)

and
S wtu dRy=1-dR+D . 8,dS— Cu nu-don)e.  (4.7)

Equation (4.6) means that n, can be obtained from .
by a rotation through the Eulerian angles ¢, 6, ¢. And
Eq. (4.7) means that a knowledge of do alone is suf-
ficient to give the transformation from the r, to r and
.. The expression for de can be found if we observe
that

dn=do+[doX o], (4.8)

if dn and do are evaluated in system C and O and the
equation is in either system. The detailed calculations
are given in Appendix II.

5. CONCLUSION

In discussing the many-body problem in Newtonian
mechanics, one may make a contact transformation
from the coordinates and momenta of the various bodies
to the coordinates of the center of mass and the total
momentum, and to internal coordinates and momenta.
We have carried through a similar transformation in
relativity mechanics, at the cost of giving up the as-
sumption of invariant world lines.

Spin variables are treated as quasi-momenta, re-
ferred, in classical mechanics, to true coordinates like
Eulerian angles. Their commutation relations are suffi-
cient, however, to justify the transformations without
this reference.

The introduction of interaction by replacing m by
the function M of the internal variables in Egs. (2.21)
and (2.22), with =2 {[s.XS,]+n.}, gives a dy-
namics which may be modified by any further contact
transformation of the variables.

Darwin’s Hamiltonian® can be derived from our
formalism if we set

1 1 1 1 1
M= m1+m2+%P2(—“X"“ —“P4(—_+""—)

my me/ 8 \md mgd
qg: qige 1 Q192
P (g P)?,
p p Zml’”'Lz [.)3 2m1mz

8 C. G. Darwin, Phil. Mag. 39, 537-551 (1920).
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and perform a contact transformation generated by the
function

W=¢ (o-P)(R-P)— (e-R)P”],
Mo— Ny

=

2 myme(mytms)

where

Similarly, two Hamiltonians” derived by Breit will be
equivalent to our Hamiltonians if we take

2 et

o P 3n
M= 2m+~—;1——f(p)——~(9><P) (01F02)

w3

J 0 3hf
——p+—(o-P)+——(e'P)
m? 2m? 2im?

af nf
+——p—(0:P)——(15+40:-02)
2im? dp 8m?
modf
———50*+p*(01-02)— (0-01) (0-02) ]
4m? pdp
7208 d ( df)
8m? dp \ pdp
in one case, and
P Pt 3> hf
M=2mt————T (p)+—J+——(eXP-01F02)
m 4md 2m?  4m?

/ , P af
+2—”‘L(9'P) —%(Sf-i'f)d—p) (o-P)

72 d
——“[1Df+10p—f+p ( f)]
8m? dp  dp\pdp

in the other case. Here m;=ms=m and no further
contact transformation is necessary. For two particles
with unequal mass Breit derives another classical Hamil-
tonian® which can be derived from our equations if we
set

1 1 1 1 1
M= m1+m2+ P2 ~“f‘*—)——l"‘(———“i“—)

my Mo 8 m®  mod

—J(p)+

and perform a contact transformation generated by the
function

W=¢e(o-R)J(p), with e=3(me—m1)/(m1tm2)?

APPENDIX I

For a system of particles defined by coordinates r.,
canonically conjugate momenta R,, mass ., and zero
7 G. Breit, Phys. Rev, 51, 248 (1937), especially p. 259, Eq.

(17.6), andp 260, Eq. (18. 2)
8 G. Breit, reference 7, p. 253, Eq. (13.1).
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spin we try to find a transformation to a new set of
variables describing the system which distinguish
between external and internal variables.

We are to have R and n— 1 functions of the S, subject
to > S,=0 as variables and wish to find a set of
variables canonically conjugate to these, including

Z l’uHu"f-T Z{ [[r.xR,JXR]

m u

H.
sy R)R}
H

and n—1, other sets of three variables. Differentiating
Eq. (3.5) in the text we can write:

R-S.) K,
dR =dS,+{—— —+-——)dR
m(m+H) m
l (R-dS.) | (S.-dR) i(Su-dSu)
m(m~+H) I m(m~+H) ‘ mK.,
(R-S.) (R-dR) (S.-ds,)
m(m+H)? H » K,

K. 1 1+m/H
x|+ ®es + )]}
m? m(m-+H) m(m+H)?

(r.-R) (r.-R)
z(ru-dku)=z(dsu-ru+~—~—mk+ S,
u u m(m~+H) mK.,
K, R-S)
-Z(rv R)[mZ m2H] )
R.-S.) K,
R. A= "
+[d 2u:(r {m(m+H)+m}
n (r.-R) Su_R(ru'R)(R'Su))].
m(m—+H) mH (m~+H)?

Comparing this with
5 u(ru dR)=Eu(4-d8)+ (1-dR), T, dS,=0,
we get:
R-S,) K. 1
I=Zu: { (m(m—I—-H) +;) lru_l-m(m—l—H)
(ra-R)(R-S.)

’MR u
[(r S

5 (Ku+Hu) 4
= ru
' u { m+H

X}

(r.-R)
m(m—+H)

€Y)
HK,—mH,

X[S“+ H(m+H)'R] }



RELATIVISTIC PARTICLE DYNAMICS. II : 1305

H. ®R-R) |Su(m+H)+RK,,
= — " u= Sy A— (Su lR —
§{(m 1rL(m~i—H))r Rt (ot )] m(m—+H)H, I
(r"-'R) +{ZuKu(sv+l‘R)}
———JHR,—RH,] },
m(m+H)H

lSu(m+H)+RKu_ R },

2
and, introducing a Lagrange multipler X: m(m+H)H,  mH (m+H)

K. +H, (s.+2-R)S,
s, t+a=r,+ (ru-R)(Wl rz}i‘,( m+H )(su—*—l)_z": m(m-+H)
m(m+H)K,,
_Z(rv.R)wsu T - %?5
v m*HK,
=14 (.- R) l Rulont 1)~ R0 l - l_zi(?mljfz) " (I;i )s“
m(m+H)K, ‘ '
(5 H(R)) _y B o KGR
v v m(m+H) « mH(m+H)

‘Ru(m-{-H)—RHu R } K,+H, (s, R)S,

- (2) = l‘+ su_z sv+
mH(m+H)K, mH(m+H) v m+H v m(m-+H)

. = —— . — —_ - ”"R N
(2 R= =R ( e m) (s ' m(m+HH, ]
S. H)+RK,
X{Zv Hv(rvR)}y +{Zv Kv(sz)}l—(Tm-l_—ﬁ——ﬂ‘]’ (3)
Zu Ku(su+l'R)=Zv Hv(rv'R): while ” (m-l_H)Hu
K, K 1 =
(rR)=—"(s.42-R)— ————) LoLrXRI=LeXRIFZLeXS0], @)
u m+H H [ul8.XS,JXR]
S r.H,=1tH— . ©)
X{Zv Kv(sv'{";'R)}: m+H
APPENDIX II

In this Appendix we take the differential of the expression for n, as given in Eq. (4.2) of the text and try to
put it in the form of Eq. (4.8). Rewriting Eq. (4.2),

Sn I ((a)o'R) R+ (wo'Ro)So(m—H) (o)o'Ro)
m(mo-i—Ko)Tm(m-!—H) Tm(mo-}-Ko)(mo-l—Ho) m(m°+Ho) )

no= o+ (wo-R)
We notice that it contains wo, R, Sy, m, H, Ry, Ho, K, as variables. But we can express the differentials of all theseé
variables in terms of the differentials of the first four variables only. From (3.4), (3.5), (3.6) in the text
dH= (m/H)dm+ (R-dR)/H,
H Ko+ H R(So-dR) R(mH,—HK,) (So-dS R-dS
dRo= —— dmRA+—— R4 —— Y (R-GR)dSe R °
mH m+H m(m+H) mH(m+H)? mKy  m(m+H)
dHo=———(HH,—mK)+ I + + )

mH m \ mH m mKy

with
dm=3_,dK,=3_, (S,-dS,)/K,.
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Using these relationships we can now get dny as the sum of four expressions: (@) one containing terms in dwo;
(b) one containing terms in dR; (¢) one containing terms in dSo; (d) and one containing terms in dm. For (a)

we have

So ' (d(a)o' R) D (d(oo . Ro)So (m— H) (d(.)o' Ro) R
m(met-Ko) m(m+H)  m(mot-Ko) (mot-Ho) m(mo+Ho)
dH= (m/H)dm; dRy=— (Ho/mH)dmR; dHy=— (dm/mH)(HH,—mK,),

dno= d(n)o+ (d(:)o' R)
For (d) we have

and
o ((oo'R)So l (ﬁ)o'R)R' ((c)o'Ro)So(m—H) ((;)o'Ro)R }(_'d—M) { (QOR)So(m—H)
T ek Ko mntH) | mmot Ko) mot Ho) - mmat H)) N m ) Unm(mort-Ko) (mot-Ho)
R)S (H—m d
(wo-R)R ]( Hodm (0o-R)R , +((.)0. 0)S0 'm ) m
— — — m
m(mo-+Ho) mH mH (m+H) m(mo+Ko) (mo-+Ho)
{ (wo'Ro)So(m—H) ((x)o'Ro) ‘dm(HHo’—-mKo)
m(mot+Ko) (mo+Ho)  m(mo+Ho) ) mH (mo+Ho)
dn= L X [RXSST]
N HOmet Ho) -
For (¢) we have:
(So-dSo)  (R-dS, (R-dSe) H(Sq-dSo)
dRo=dSo+R{ —= ], = “Il )
mKy  m(m+H) m mKo
and
((n)o‘R)dSo ((n)o'R)So(So'dSo) . ((n)oR)dSo(m—H) ((:)o'Ro)So(So‘dSo) (M—H)
'no_m(mo—}-Ko) m(mO+Ko)2Ko N m<m°+Ko)(MO+H0) m(m0+K0)2K0(m0+HO)
[(SO'dSO)_{_&dSO) ]
{ So(m—H) EH(wo'dSo)-f-.(mo-R) mKo  m(m+H) (@o-Ro) [(R'dso) ' H(SO'dSO)“
m (mU+K0) m ('mo—f- Ho) WZQ+ Ho (MO+ H0)2|_ m . ’WLKO ’
3 dSo { (H—m) (mo-So)+4 (mo+Ko)( )} {So(m—H) EH (no-dS) 1 (@0 R) (So-dSq)m
—m(m()‘l‘Ko) (mo+H,) oo T(mo‘|—Ho) ’ m(motKo) mo (’mo‘l—Ho)TMKo(MO‘i‘Ho) (mo+Ko)
((:)o . Ro) (So . dSo) (Hmo-}- mKo) } _ (b)o . R)Sg (So dSO) ((.00 M Ro) (S() . dSo)
m(mo+Ko) Ko(motHo)? m(mo+Ko)*Ko  m(mo+ Ko)*Ko(mo+Ho) ,
_ dSo : { (H—m) ( (mo+Ko)( R ] { So(m—H) R}{ (no'dSo) (no‘So)(So'dSo) }
_m(mo-l—Ko) (mo+H,) o mo+H " m(moe+Ko) m) (me+Ho) Ko(mo+ Hy) (mo+Ko)
B So(SO'dSo)_{ (H—m) (no-S0) lr(mo-i-Ko) (no-R),,
mKo(mo+Ko)? | (mo+Ho) (mo+Ho)
and
o= (o X A8 X R+ [noX [dSeX ST FnoX [RXSoT] (5u-d50
e _"0 ’ m(mo+Ho) " e Jm(mo—l—Ko)(mo-l—Ho)I ' ' JMKO(WLO‘}‘HO)(MO“"KO).
Finally for (b) we have:
R-dR -dR R-dR o+H, R(So-dR) R(mH,—HK,
dH=( )’ - (So-dR) } Ko )’ dR0=K + Rt ( ) R(m )(R-dR),

m mH m~+H m(m+H) mH(m+H)*
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and
B (00°dR)S, . (00-dR)R ‘ (0o:R)dR  (wo-R)R (R:-dR) ‘ (00-dR)So(m— H) (Ko+ Ho)
m(mo+Ko) { m(m-+H) l m(m+H) m(m+H?: H Tm(mo-'l—Ko)(mo+Ho)(m-i—H)

no

(@0-R) (Se-dR) (m— H)S, (0o-R)(R-dR) (mH— HK)So(m—H) (wo-dR) (R) (Ko+Ho)
m?(mo+ Ko) (mo+Ho) (n+H) m2H (m~+ H )2 (mo+ Ko) (mo+Hy) m(mo+ Ho) (m~+H)
(wo-R)(So-dR)R , (wo-R) (mH— HK ) R-dR)R (wo-Ro)So(R-dR) (w0 Ro)So(m—H)
et HO ek H) et B ek Ho) m(makKo) (o HOH (ot Ko) (ot Hop?
% (So-dR) } K,(R-dR) 3 (wo-Ro)dR { (wo-Ro)R { (So-dR) \ K,(R-dR) .
m mH m(mo+Ho)  m(mot+ Ho)?

+
m mH
In this expression we recognize terms in Sy(i), terms in dR(ii), and terms in R(iii). For (i) we have

(00-dR) (0o dR)(m—H)(Ko+Hs) =~ (w0 R)(So-dR) (m—H) (w0 R) (R-dR) (mHo— HK o) (m— H)
m(matKo)  m(mot+ Ko) (mot-Ho) (m-+-H) 2 (mortKo) (mo-H) om+H) mH (me+ H (mort Ko) (mo+-Ho)
(wo-Ro) (R-dR) (@o'Ro)(m—H)  (So-dR) (wo-Ro) (m—H)Ko(R-dR)
“m(mo—f-Ko)(mo‘l'Ho)H m(mot+Ko) (moet+Ho)*  m —m(mo+Ko)(mo+Ho)2mH
(@o+ dR) (mmo+2mH o+ moH~+mKo— HK,)
T et H) (ot Ko) (mo+-Ho)

(.)o'R —H ﬁ)o'Ro ’—H
+(So~dR){ (wo-R) (m—11) (w0 Ro) (—H) }

m? (mo+ Ko) (mo+Ho) (m~+H) - m? (motKo) (mo+ Ho)?
(0o R)(mH,— HK) (m—H) , (wo-Ryo) (mmoy+mH y+mKy— HK ) ]
‘ m?H (m~+H)* (mo+ Ko) (mo+Ho) m? (mo-+Ko) (mo-+Ho)*H

_ (no-dR) (no-R)(R-dR) | 2(no-dR) (mH,— HK,) 2(no*R) (So-dR)
ot o) mH (mA-H) (mat-Ho) | m(n-+-H) (ot Ko) (mat-Ho) - m(m-+H) (mo-t Ko) (mo-t Ho)

——(R-dR){

For (ii) we have

((’)O'R) (QO'RU) _ ('ﬂo'Ro) . (‘l’lo‘R) Z(no'SO) (mHU—HKg) l 2(n0R) (Ko—”lo)
mm+H) mmg+Ho) — mmorHo) m(m-+H) m(m-+H)(mo+Ko) (mo--Ho)  m(m-+H)(mo-tHo)

For (iii) we have

(@0-dR)  (00-dR)(Ko+-Ho) (0o R)R:dR)  (w0-R)(So-dR) (w0 R) (mHo—HKo)(R-dR)
m(m~+H) m(mo+Ho)(m+H)  mH(m+H)®  m?(motHo) (m-l—I-I)T mH (m~+H)?(mo+Ho)
N (wo* Ro) (So-de) Ko(R-dR))
I m(mot+Ho)2l m I mH

_ (no N dR) (K0+Ho) (ﬂo N dR) (no . R) (R . dR) (Ko+ Ho) ) (no . Ro) (R . dR) 2 (no . dR) (Ko—‘ ”'Lo)
- mmet-H)(m+-H) m(m-+H)  mH (AP omo+-Ho)  mH (n+-H) (mot-Ho) - m(m+-H) (mo-Ho)

_ Z(n(]R) (KO""HQ)(S(}dR) N Z(ﬂo'Ro) (SodR)
m(m+H)2 (mo+Ko) (mo+-Ho)  m(m--H) (mo+Ko) (mo-+-Ho)
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Gathering all these expressions, we get

(no-Ro)dR‘ (no-dR)Ry  (no-dR)R | (no-R)dR’ (no-R)(R-dR)R, ‘ (no-Ro) R-dR)R
m(mot-Ho) mmetHe) m(m+-H) mim+-H) mH(m+H)(mot-Ho)  mH (m-+H) (motHo)
2(no-So) (mH,— HK,)dR , 2(ng+dR)So(mH,— HK ) 2(no-dR)R(Ko—my)
" m(mt-H) (ot Ko) (mo+-Ho) | m(met-H) (mok-Ko) (mo+-Ho) m(m-+H) (mo-+-Ho)
2(no-R)dR (Ko—my) 2(no-R)Ry(So-dR) ] 2(no-Ro)R(S,-dR)
m(m+-H) (mo+-Ho)  m(m-+H) (mo+Ko) (mo+-Ho) - m(m—+H) (moKo) (mo-t+-Ho)

Now combining the terms two by two, we can write this last expression as:
[noX[RoXdR]] [noX[RXdR]] [meX[RoXRJJ(R-dR) 2[neX[dRXSo]](mH,—HK,)
B m (mo+Ho) m(m+H) mH (m~+H) (mo+H,) - m(m~+H) (mo+Ko) (mo+ Ho)
2[noX[RXdRT](Ko—ma)  2[noX[RoeXR]](So-dR)
D et H) mlnH) ok Ko) (mo o)
[noX[RoXdRT] [neX[RXdR]] [neX[RoXRII(R-dR) ~ 2[neX SoJ(ReX[RXdRT)
T mnetH)  mntH)  mHebE) kB (et H) Gnack-Ko) mk B

Now collecting the (@), (b) and (c) expressions for dny we finally get:

dno= d(:)o+

(almo-R)So+(a¥mo-R)RTl (dwo-Ro)So(m—H) (dwo-Ry) R [[SOXR]dm ) [RXdSq]
m(motKo) m(m~+H) m(motKo)(motHo) m(mo+Ho) mH (mo+Ho)  m(mo+Ho)

| [SoxdSoJ(#—m)  [SoxR](S:-dS)  [RixdR] [RXdR]  ~[ReXRJ(R-aR)

" mmot-Ko) mo+-Ho) - mKo(mot-Ho) (mot-Ko) - m(mo+-Ho) - m(m+-H)  mH (m-+H) (mo-tHo)

B 2S,(Ry-[RXdR])

" m(m-H) (o Ko) (mot-Ho) ]

Also,
[SoxRJim [RXdS:]  [SxdSil(H—m)  [SixR](SodS)  (RiXdR)  [RXdR]
(mH(m0+H0) " mOmot-Ho) | m(mot-Ko)mot-Ho) | mKo(mot-Ho) (ot Ko) mOmat-Ho)  m(m+H)
[RoxR](R-dR) . 28s(Ro- [RXdR]) .no)
mH (m~+H) (mo+Ho)  m(m~+H)(mo+Ko) (mo+Ha)
[SoxRJim  [RXdSo]  [SoxdSo)(H-m)  [SoxRISidS) . 2R(Sy-[RXdS0)
- (mH (mot-Ho) mmot-Ho) ' m(mot-Ko) imot-Ho) - mEo(mot-Ho) (mot-Ko)  m(m-H) (mort-Ko) (ma+-Ho)
[RixdR] [RxdR] [RoXRI(R-dR)
ot Ho) mm-+H)  mH(m+H) <mo+Ho>"°°)'

'Using this result we can now write the contact transformation:
Zu(ru'dRu)'*'Zu(mu'dﬂu)

(r.-R) (r.-R) (r,rR)H,S, [w.XR] [wuX S, ](H—m)
=Z(dS,,- r.+ R+ S. } {
u m(m—+H) mK, » mHK, m(my+H,) mm,+K,)(m,+H,)
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(@u-[Su+R])S. N 2(wuR)[S.XR] N (@ [S:XR]) S, )
mKy(myt+Hy)(mut+Ka)  m(m+H)(mo+K) (mut+Ha) > (me+H,) mHK,
{ru(Hu (R-R.) + (r.-R) 3 [wuXRu]+[wuxR]
m  mm+H) mH(m+H) m(m+H,) m(m+H)
(LouXR]-R)R S. . (0. R)R
mH (m+H) (m+H,) mmat-Ky)  m(m+H)
(00 RW)Su(m—H) (@ RJR
m(mut-K.) (mA-H.) m(mu+Hu>)’ W

2 u(tu dR)F2 (0w dmu)=3u(Su-dSu)+ (r-dR)+ 2w (0. - d0.),

+(dR~Z

u

(HR.—RH,)

})+zu;(dﬂu~mu+ (wuR)

which is of the form

where 3 dS,=0. We can also write for the total angular momentum:

[Lo«XRIXS.] [[ewXS.IX S, J(H—m) ) 2(wu-R)[[SuXR]XS.]

Zu:[r. ] ; m(mu+H,) v m(m,+K) (ma+H,) v m(m~+H) (m,+K.) (m,+H.,)
w.XR,IXR o, R)S, «-R)R 0w RS, (m—H
G IoXRIXR], oS @ RR (o RS i)
w m(mu_{_Hu) u u m(mu+Ku) w m(m—I-H) u m(mu+Ku)(m1t+Hu)
Z ((:)()'R,,)R R
- - m—zu:[rux u]‘*‘zu: Wy (2)
Also,
uSu Su u Ny R Wy Ru
Hr_EZ[ X8I+ 2w nuX ]=2Hurr2[ X ]' 3
H+4m u v H,+m,

Following the same method as above, Appendix I, now:

S.(m+H)+RK, S. o XR XS (H—
Sut2=ru+ (ra-R) S.0nt H)+RK, —5 (e RV, I [w.XR] : [ouXS.J(H—m)
m(m+H)K, v mHK, mm,+H,) mm+K,) (m,+H,)

(@u-[SuXR])S, L 2(04 R)[S.XR] . (o' [SuXR]) S,

mKu(mu+Hu)(mu+Ku)Im(m+H)(mu+Ku)(mu+Hu)Tv metH, mHK,

(4)

H, (mH,—HK,) v
St R)=— (1, R)—————(X, H,(r,R)}
K, mHK,
(CoXSIRYHKD) | (0 [SXR) (o~ HK)
" KumAH)mAK) T (meAH)  mHE,
0. XS ) R)Y(H,—K,
u u w  (mytHy)(m4K.)
Ku Hu—HKu Wy Su, 'R Hu—‘Ku
(e B s R IR o (s Ry XS R (e K
u mHH, v Hu (mu-l'Hu) (mu+ Ku)

(mH,—HK.) _ ([&,XS,]-R)
'WLHH“ v m”-*-Kv ’
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Su(m+H)+RK, ([wsXS.]-R)
TSt (G2 R { m(m+H)H, }+{Z Bl == k. }
Su(m+H)+RK, R (0u [SuXR])S,
{ m?(m-+H)H, mH(mfI—H)}‘mHu(mu—!-Hu)(mu—FKu)
(0u [SuXRDR(H.—K.) [e.XR]
Tm(m—}—l'{)Hu(m,,—l—Hu)(mu—{—Ku)__m(mu—}-Hu)

[0uX S ]J(H—m)

2(e.-R)[SuXR]

Ot K k- Ha) m(metH) (K. (nut-Ho)

K. +H, (sut2-R) Ku(s.+2-R)R (0u'[SuXR]R
=2 (=) ut0-5 s |
v \ m+H v m(m+H) v mH(m+H) v m(m+H)H(m,+K,)
2 Y (@2 [SuXR])S. K.+H, [w.XR]
(- H) (mat-H) (mat-Ka) | ( mH {_m(mu—l-Hu)
_ [ouXS.J(H—m) 2(0u-R)[S.XR] }+Z{ [ouXR]  [wuXR,]| )
m(myt+Ky) mat+Hy) mim+H) (my+K ) (m+Hy) w lm(m+H) m(m,+H,) ’
and, as before, r,—r does not contain .
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The method of reduction of two-particle relativistic wave equations (an extension of the Foldy-Wouthuy-
sen method), as given in Part I, was applicable only if my7“myr. Other variants of the procedure, free from
this restriction, are developed now. On the basis of a discussion of properties of the matrices involved, it is
found that the postulate of an ‘“even-even’ transformed Hamiltonian was too far-reaching. The less
stringent requirement of a “xU separating” or an ““/L separating” JC4, leads to a whole class of usable trans-
formations, which includes the transformation of Part I as a special case. Another important special case,
(that of the “least change” transformation) has been calculated through in detail. Different transformations
give different expressions for JC¢r, but they coincide after (as a part of the next step of the procedure) the
matrices BT and B are replaced by 1 (or —1). Consequently the reduced wave equation is the same in all

cases.

N a recent paper,! hereafter referred to as LT a
method was developed for conversion of relativistic
two-particle wave equations from the full (16-com-
ponent) into an approximate (4-component) form. The
procedure consists of two steps: first, a canonical trans-
formation (strictly speaking, a sequence of canonical
transformations) is performed with the help of suitable
generating functions; then, twelve components of the

* This work was supported in part by the Office of Scientific
Research, Air Research and Development Command, U. S. Air
Force.

1Z. V. Chraplyvy, Phys. Rev. 91, 388 (1953). We take over the
terminology and notation used there.

t Errata to 1.—In Eq. (4) the first minus sign is to be replaced
by a plus sign. In Eq. (7j) the numerical coefficient is to be 1/8
(not 3/16).

wave equation are rejected, and only the four upper”
upper or the four lower-lower components are retained,
namely that quadruple which describes states with
both particles possessing positive energy (the other of
these two quadruples corresponds to both particles
having negative energy). The same transformation is
required to make either choice possible.

The proposed scheme was patterned after the Foldy-
Wouthuysen method for one-body equations? As a
matter of fact, the expression for the transformed
Hamiltonian in I represents a plausible, though not
trivial, generalization of that obtained by Foldy and
Wouthuysen. But, remarkably, our method is not

21, L. Foldy and S. A. Wouthuysen, Phys. Rev. 78,29 (1950).



