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method of virtual quanta has been treated' using
various meson theories, it is of interest to calculate
the I'SI'S result. Using the meson-scattering cross
sections of Ashkin et at. ' and proceeding exactly as
above, one obtains for charged mesons from I—p
collisions:

o =0.0034gsy '(1—0.94' '),

and. for s+ from p —p (or a. from rs —m) collisions:

o =0 0068g'y 'Lln(0 31')+43' '3 (8)

Comparison with the third-order field-theoretic calcu-
lation of Morette' shows substantial agreement in the
leading term. Similar agreement between virtual quanta
methods and rigorous calculations in the scalar theory
has been found by Strick and ter Haar. '

' Ashkin, Simon, and Marshak, Progr. Theoret. Phys. (Japan)
5, 634 (1950).' C. Morette, Phys. Rev. 76, 1432 (1949).' E. Strick and D. ter Haar, Phys. Rev. 76, 304 (1949).

Because of the assumptions entailed in (1), the above
results are of theoretical interest only. In practice one
should integrate perhaps a phenomenological X(o&)
with experimental meson-scattering cross sections.
This might enable one to correlate meson-induced with
nucleon-induced reactions, in a manner similar to Guth
and Mullin's" correlation of experiments on the dis-
integration of Be' by p rays and by electrons. A com-
parison of a high energy e—p bremsstrahlung calcula-
tion using nuclear force phenomenology" with the
method of virtual quanta might enable one to express
N(oi) in terms of nuclear force parameters. Finally it
might be pointed out that the method of virtual quanta
would lend itself more readily to heavier particles with
weaker coupling.

' E. Guth and C. J. Mullin, Phys. Rev. 76, 234 (1949)."J.Ashkin and R. E. Marshak, Phys. Rev. 76, 58 (1949) and
T. Muto, Phys. Rev. S9, 837 (1941) have done low-energy n —p
bremsstrahlung calculations in which the nucleon-nucleon inter-
action is handled by nuclear force phenomenology rather than
by weak-coupling meson theory.
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The principal development iri this paper is the extension of the eigenvalue-eigenvector concept to complete
sets of anticommuting operators. With the aid of this formalism we construct a transformation function for
the Dirac 6eld, as perturbed by an external source. This transformation function is enlarged to describe phase
transformations and, when applied to the isolated Dirac 6eld, yields the charge and energy-momentum
eigenvalues and eigenfunctions. The transformation function describing the system in the presence of the
source is then used as a generating function to construct the matrices of all ordered products of the 6eld
operators, for the isolated Dirac field. The matrices in the occupation number representation are exhibited
with a classi6cation that electively employs a time-reversed description for negative frequency modes. The
last section supplements III by constructing the matrices of all ordered products of the potential vector, for
the isolated electromagnetic 6eld.

INTRODUCTION

'HIS paper and its sequel are continuations of IIV
in their concern with a single externally perturbed

field. We shall discuss the Dirac field as perturbed by a
second prescribed Dirac Geld, which appears as an
external source, or by a prescribed Bose-Einstein field,
as exemplified by a given electromagnetic 6eld. The
Lagrange function of this system is

2 = —~~Pp, p„( sr)„eA „)ip—+mp—j
sL (sr)s eA s)4"Ys+ rip4') 4'3

+ :N, nj+'b, 43 -(~)-
The resulting Geld equations are

7„( ir)„eA „)iP+rniP=—rl, —

(sr)„eA „)iPy„+ rr—iP = r),
' J. Schwinger, Phys. Rev. 91, 728 (1953).

and the generators of infinitesimal changes in P or it on a
surface 0. are given by

and

G(P) = sd

estop

t'P=ssi
J dogpip&5lP

G(P)= —& do.54vA= —& d~5A&pA
. f

J " " J

(3)

(4)

It was shown in III that the vacuum state of a closed
system, 40 can be characterized as the right eigenvector,
with zero eigenvalues, of the positive frequency parts of
the field components, and that Cot is the left eigenvector,
with zero eigenvalues, of the negative frequency parts
of the field components. The inference that the totality
of eigenvectors of these types would be of p~.rticular
utility led us, in discussing a Bose-Einstein system, to
introduce eigenvectors and eigenvalues for complete sets
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of commuting non-Hermitian operators. We shall now
And it desirable to extend the eigenvalue-eigenvector
concept to complete sets of anticommuting, non-
Hermitian operators.

THE TRANSFORMATION FUNCTION

positive frequency, or in the negative frequency parts of
Pand (t,

G i—
) d g( )7-,g, (+) i)t d gP(+)7,P& )— (17)

G =i dalp+)70&&&&(( & —. i day'( &7 tp(+ . (18)0 0 ~

The orthogonality properties contained in (14) and (15)
also enable us to write these generators as

P
G+= 0 ~ dap7pf&$&+) i da—g«+&70$

i&)04 i707 A&I A'(I +m704

»04 —=»)$7)70+~$70= $70&70

We define two Hermitian coordinate operators,

(5) and
f

G =i ~damp+& & i i

—dab'& &70/, (2o)

The discussion in this paper will be limited to the
situation of zero electromagnetic field, as described with
the elementary gauge, A„=O. Relative to a coordinate
system based on a given surface, the field equations in
the absence of the sources can be written as the equa-
tions of motion,

P&+'= -'(1+ (H/E)), (6) or, alternatively, as

where E is the positive-definite quantity

E= (IP)I.

These operators have the projection properties

(&)
and

f
G+=i t dag& )7pg i, ' da—8/70/& &

G =i ' da&J«+&7pf'&$ i —dag70$&+&.

(21)

(22)

(8)

(9)

P&+)+P( )= 1 P(+)P(——) —P(—)P(+)—(j

y(+)~—~gp(+) The latter forms facilitate the derivation of commuta-
tion properties on o for the field components |f(+&, P&+&.

These are expressed by the vanishing of all anti-
commutators save

Hence the representation of f and g as

p(+)+p( )—p —p(+)+—p(—)

(I (6)—p(k) g p(k) —p7 pp(~)70
where (P&+& (x), P& & (x')}=P&+&708,(x—x')

(P(—&(x), (t& &(+)x}=p& &70f&.(x x'). —
(23)

(11) a,nd

In particular, all positive frequency components are
anticommutative, as are all negative frequency com-
ponents.

Complete sets of anticommuting operators on 0- are
thus provided by )&+&(x)=P&+&(x), P&+&(x), and by
y& & (x) =(t( &(x), P& &(x). The existence of right and left
eigenvectors, respectively, with null eigenvalues, follows
from the equivalence of these states with the vacuum
state. Let us now extend the number system by intro-
ducing quantities)&&+'(x) =i/'+'(x), f'+ '(x) and x' (x)
=P&—&'(x), |t& &'(x), which anticommute among them-
selves and with all Dirac field operators. Then the
operators

(12)Qpg(k) —~EP(+) i&)0|t(+)—~gP(+)

It should also be noted that

g(k) —P(~) (13)

In view of the orthogonality properties expressed by

I dgP(+)7 P(+) —)t dg$70P( )P(+)P 0— —(14)

and

is a decomposition into positive and negative frequency
parts, according to the resulting form of the equations of
motion,

day( &70p( )= dap70p-(+) p(—)p=o—
the generator GQ) appears as

(15)
have the same commutation properties as the y(+), so
that there exists a right eigenvector of the complete set
'yH & with zero eigenvalues,

G(p) =i ' dap( )70+&+&+i ' da|t«+'705/& &. (16)J ' J

Sy the addition of suitable variations to this generator,
we deduce the generators of infinitesimal changes in the

and a left eigenvector of the complete set 'y' & with zero
eigenvalues,
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As the notation indicates, we thereby obtain a right
eigenvector of the complete set y~+) with the "eigen-
values" x&+', and a left eigenvector of the set x& ~ with
the "eigenvalues" x& &'. In view of the relation (13), the
eigenvectors and eigenvalues are connected by

variation

8&I(x)= ig—& )'(x)y„a„(x,o.i)

+Qg«+)'(x)y„&'&„(x, o2),
(32)

I)&I (x)= i&)„(x, a i)y„I)P& &'(x) —i5„(x, o 2)y„g&+)'(x),
C'(x' 'a) =+(x"'o)'

p&k)' —f&w)'

(25)
where &)„(x, o) is defined by

(26)

(dx)b„(x, o.)f„(x)= da„f„(x).The interpretation of the infinitesimal transformation
equations

6@(x&+&'a) = —iG~%'(x&+) 'o)

&&C (x& &'o) = iC (x&
—&'o)G,

and We conclude that the general transformation function is
t'27~

(2g) obtained from the one referring to zero eigenvalues on
making the following substitution in the latter,

employs the identical operator properties of the field
variations and of the eigenvalues. Thus %(x&+'o)
+b4(x&+'o) is the eigenvector of the x&+) bx&+) w—ith
the eigenvalues y(+~'. But this is also the eigenvector of
the x&+) with the eigenvalues x&+)'+&&x&+). Hence the
alteration given by (2'I) is that associated with the
change of the eigenvalues by 8x(+). A similar statement
applies to (28).

We shall now discuss the Dirac 6eld under the
inQuence of the external sources g, g in terms of the
transformation function

(x oil x"' o2) = (I'(x' ' oi)+(x'+' o2)).

The dependence of this transformation function upon
the eigenvalues is expressed by

(Oo.i
~

Oo.2) =exp (AP&))

(Ooi i
F

~
Oo 2)/(Ooi i Oo2) = (F),

(34)

(35)

the dependence of the null eigenvalue transformation
function upon the source is expressed by

(36)

&& (x)-+&&(x) i/& —&'(x)—y„8„(x,o i)

+if'+'(x) V.4(x o2)
(33)

&I(x)~»(x)+id)„(x, ai)y„P& )'(x)
—i4(x, ")VA &+'(x).

With the notation

&, (x' ' Ix&+' ) or
= i(x' 'oil (G-(oi) —G+(om)) I

x'+'o2) (29)
where ~~a= " (dx)9n(4)+(4)~n3, (3'I)

G (oi) —G+(o2)

+i do„g&+'y„f i . do „fy„—hf &+&'
. f

&r2 &r2

in which it is supposed that the source vanishes ex-
ternally to the volume bounded by 0-& and 0-2. According
to the field equations (2), we have

—iV.~.(4 (x))+ (4 (x))=n(x)

'~,(~())~,+ (~())=e(),

8' ')=(4' ')=o on oi

which are to be solved subject to the boundary con-
do „6$'Y„)t+i da„fy„6$'. (30) diti&)ns

~ ~

~

(40)
In the latter form, it is understood that negative fre-
quency eigenvalues are employed on o-&, and positive
frequency eigenvalues on 0.2.

An in6nitesimal change of the external source pro-
duces the alteration

g(x&
—)'oi

t
x&+)'o ~)

=i~ x&-)'o, (dx) (Sg+Pg„) +x&' )oi. (3I)

(P&+))=(P&+))=0, on o2, (4I)

that follow from the nature of the null eigenvalue states
on 0~ and 02. We can express these as boundary condi-
tions in the extended domain through the requirement
that the fields shall contain only positive frequencies io
the region constituting the future of 0-&, and only nega-
tive frequencies in the region prior to 0.2.

The solutions meeting these conditions are

Accordingly, an infinitesimal change in the eigenvalues
can be simulated by the surface distributed source

(P (x))= (dx')G+(x, x')g (x') (42)
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and

(It (x')) = (dx))I(x)G+(x, x'), (43)

The Green's function G+(x, x') can be exhibited in the
three-dimensional symbolic form

G~(x, x') =iP&+) exp[—iE(xp —xp )/+pl)(x —x ),
Xp&Xp'where G+(x, x') is the Green's function defined by the

differential equations (49)= —iP' ) exp[—zE(xp —xp) Jpp5(x —x ),
Xp QSpz—p„B„G„(x,x')+mG+(x, x')

=i8„'G+(x, x')y„+mG+(x, x')

= S(x—x'),

and the boundary condition that G+, as a function o
shall contain only positive frequencies for xp) sp, and
only negative frequencies for xp(xp'. Since 6+ is only
dependent upon x—x', the same statement applies with
x and x' interchanged. That the identical Green's
function is encountered in (42) and (43) follows from
the integrability condition deduced from (36),

The function of E in the latter equation has the integral
representation

—',zE 'exp( —zElxp —xo'I)

~
—t'uo(~o —~o')00 dpo, e~+0. (51)

2' oo E po zp

or, combining both situations,
(44)

G+(x, x') = (iBo+PPzE—'
fg && exp( —iEI xp —xp'

I
)pot) (x x ). (50)

%e thus construct %"p as

'+o —— (dx) (dx'))I (x)G~(x, x')q (x'), (45)

The Fourier integral expression of the three-dimensional
delta function in (50), combined with (51), leads to the
four-dimensional integral

with a constant of integration that has the value zero
since, in the absence of sources, the null eigenvalue
states have the signi6cance of the 0-independent
v'acuum state

ri=)I=0: (ooiloo.o)=1, mp ——0.

1 t m 7p
G+(xs x') = ' (dp) e'&&

(2qr)' & p'+m' —zp

1
(dp)

(2n.)' " yp+m —zo

p~+0, (52)

where

On performing the substitution (33), the general which shows that the mass m must be supplemented
transformation function is obtained as with an in6nitesimal negative imaginary constant in

constructing the Green's function as the reciprocal of
(x~-)'~,

I

g~+)'o, )= exp(zm), (46) the differential operator in (44).
The three-dimensional Fourier integrals derived from

(49) are advantageously presented as

(dx) (dx')q(x)G+(x, x')zI(x')

do „(dx'))P'(x)7„G+(x, x'))I (x')
al

\

(dx)fd 'rt(x)Get«) Z'(x„)«x,

I
(dy) 1

G+(x, x') =-,'i)
(2~)' po

(m —yp)e'"& ' xo) xo'
&& (53)

(m+yp)e ~p™—~) xo&xp'

where pp is a positive frequency

pp
——(p'+m') I.

+f "f 'd ~*)O +~ '«)rd t*)' ~d ) The tour rowed square matrix —rp has two distinct
eigenvalues, ~m,

In particular,

n= ~=o: (x' '~ilx'+'~o)

=exp i do.„do.„')P'(x)y„G+(x, x')y„)P'(x') . —'rPZZhZr= P(X)mZZ)t» (54)

(—Vp)'= —p'= m'

each of which is twofold degenerate. Ke shall designate
the eigenvectors by Nq„where X=1, 2 refers to the
eigenvalue +m, and X= —1, —2 indicates the eigen-
value m. Thus
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and EIGENVALUES AND EIGENFUNCTIONS

where

In view of the indefinite character of the quantities

—I)&"rp= 8»p(X)m, We begin our applications of (46) with the isolated
Dirac field, as described by (48). The eigenvalues and.(x) =x/l~l. eigenfunctions of the energy-momentum vector P„are
obtained from the transformation function that con-
nects representations associated with parallel surfaces.

(pI~)Nx))= (p(» Vopi))), The e6ect of infinitesimal translations of a~ and 0.2 is

the orthonormahty and completeness properties of these given by
s c( &-&' )= c( (-&' )vs5,4 y O.

g =sC X 0-g P„Ox'„,
eigenvectors appear as

aild
(Ni) Ni ) )=4i'e (I&),

g), o(X)N»,Qy&= 1.

t.e( x+&&'~,) = oP„—Sx,„e(x&+)'~,).

Accordingly, if x& and x2 are the finite translations that
produce 0~ and 02 from a standard surface, we have

The positive definite quantities

(I).)Yo&i) )= (I) ) +) ) )

are then given by

(N»VpN), „)=&),~ (po/m)

The latter result is deduced from

—(N»(vp, Vp) &~ n) =2po(&i.m'. )
=m (p(X)+ o (V)) (u),„ypu), .„),

which shows that (N»N») is indeed negative for X(0.
When the eigenvalue equation (54), in the form

(1/2m) (m —yp)oi), =-', (1+o(X))u»,

is multiplied by o(X)N» and summed over all A with the
aid of the completeness relation, there results

(1/2m) (m —yp) =Q+ m»N»,

C'(x' '~i) =C'(x' ') exp(o~p»p)

e (x&+&'o o) =exp (—oT„xo„)@(x(+'),

(x' '~&I x'+'~o) = (x' 'I exp(o~.&.) I
x"')

=2» (x' ' I
~') exp(o&.'&.) (v'I x"'),

where
X=Xg—X2,

and the y are a complete set of constants of the motion.
Before employing the transformation function (48) in

this manner, we shall extend it to serve also as a
generating function for the eigenvalues and eigen-
functions of the charge operator Q. An infinitesimal
phase transformation on o.,

SP(x) = —kS~(x),

&))p (x) = pe&)n&p (x),

where + signifies the eigenvectors with X)0. Similarly, induces the eigenvector transformations generated by

(1/2m) (m+pp) = —Q pig„lg, .

YVe employ these projection operator representations in

(53), and replace the integral by a summation over cells
of volume (dy). This yields

G+(x, x') =o Z A (x)A„(x'), xo) xo'
+.y (55)

= —o Z A, (x)A. (x'), xo(xo',

According to the orthogonality properties (14) and
(1,5), the charge operator can be written

Q=el ~ d~(l:0( ', vs'+)]+LE"& vp4( )3)

in which
do ()P(

—
)pp&P(+) )P(

—) (&P(+)7p)) (59)

( (dp)

mph'

&»(x)=
I( (2~)' po&

d& 4»vp4), , =t)», i," (57)

The completeness of these functions on a given surface
is implied by the discontinuity of the Green's function
at xp ——xo', as derived from (44),

Q),„)p),,(x)It ),„(x')= gpss. (x—x'), (56)

The associated ortho-normality statement is

In arriving at the latter form with the aid of the
commutation relations (23) and (24), we have assigned
the value zero to the quantity

Tr (P&+)—E&—
&) =Tr (H/E), (60)

where the trace is applied to spatial coordinates and
spinor indices. This evaluation is based upon the time
reflection invariance of the theory, which indicates that
a one to one correspondence can be established between
positive and negative frequency modes. Thus complete
cancellation occurs in summing the eigenvalues of H/E,
which are &1.
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The infinitesimal eigenvector-transformation equa- Now 6+pp becomes iP'+& or —iP& ~ as sp —spy~0.
tions are Either limit results ina null value for (65) (8&+&E& &=0).

Hence,
&&.4 (x& &'«) = iC (x& &'«—)ef'&a

(X g1&21I x"'g2&22)

X t dg (P& &'Vpg—&+&+

P&+&gpss&

&')—
=exp i —dg„dg„'P& &'(x)y»e "N

&rl + &r2

&&.+(x&+&'gn) = —ie8&2

X dg(4& &vs&+'+4'+'vp4& &)+(x&+'«).

XG+(*,*')y,P&+'(*')—i)t d~„
&r2

dg. ,'P&+&'(g)y»G~(x, x')e "~y P&
—&'(x') (66)

A comparison with (17) and (f8) shows that the
eigenvector transformations are just those produced by
the eigenvalue changes

l&P&"&'= —ie&&~&+&',

g & 6& ' —i@&2/ & +& '

as we could anticipate from (58). Finite phase trans-
formations

and we need not have indicated the positive or negative
frequency parts of the'Geld eigenvalues since these are
automatically selected by the structure of. the Green's
function.

We insert the expressions (55) for the Green's func-
tion and introduce the following linear combinations of
eigenvalues, which are not explicit functions of the
surface,

C (x&
—&'«) =C (x& &'g) exp (iQu),

O(x&+&'«) = exp( —iQn)@(x&+&'o),

are thus described by

)&0:
dg f& &' (g)~ P1

—
(g)g

—i P»1

I'
X1n&+'= d~»A. (pp) g"*'YA'+'(pp),

and
@(p& &'p& &—'«) =—I/i(g

—&8/&—&' g&e»p&—&' g) (6])

If different phase transformations are performed on 0.
~

and r2, we have

)«0:
&+&' —jI dg y&+&'(g)~ y1 (pp)g&»»2

where
Qf =CEy

—Q2.

(X g1&21I X g 2&22) = (X g 1 I exp(iQ&2) I X 1r2) (63)
With these definitions, the transformation function (64)
becomes'

Hence

(x' 'g&~1
I
X'+'~2~2)

= (x& &'
I exp(iP„X„+iQn) I

x&+&')

=2'(x' '
I
v') exp(i~. 'X.+iQ' ) (v'I x'+') (64)

(x' ' g&~1 I
x&+'~2~2)

=exp[+ x&, „&
—&' exp(ipX+ie p(&&)n)X1,&+&'j

Xy

=g exp[X1„& ' exp(ipX+iep(l&)n)X1»&+&')

is the generating function of the simultaneous eigen-
functions and eigenvalues of the commuting operators
P» and Q, and this transformation function is obtained
from (48) by applying the substitutions indicated in

(61) and (62).
It should be noted that (48) does not contain terms in

which both integrals refer to a common surface. Con-
sider, for example,

I dg do. 'P&—&'(x)ypG~(x, x')gpss& &'(x')

=,"d
t d V'va "G.v.f" V'. (65)-

=II 2 —(X1,& 'X1,&+')"

Xexp[i22(pX+ep(&1)n) j. (67)

In view of the anticommutative nature of the eigen-
values, the square of any pz~(+)' is zero, whence the
expansion of the exponential terminates after the erst
two terms, e~„=0, 1. It will be observed, that the dis-
tinction between B.E. and F.D. systems is embodied
primarily in the nature of the eigenvalues rather than in
the formula containing those eigenvalues.

2 A basic statement in all manipulations with eigenvalues is that
the product of two eigenvalues, as a unit, behaves like an ordinary
number.
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On comparison with (64) we see that

where

and that

P„'=P„(n)=g),,y N&,,p„, e„„=0,1,

Pe' ——Q& „m&„ps)0,

Q'= Q&, „e&„ee(X).

The occupation numbers eq„ thus form the complete set
of constants of the motion. The associated eigenfunc-
tions are

of all products of the field operators &P(x) and &P (x). For
this purpose, we remark that the transformation func-
tion describing the system, with sources present, is the
matrix of a certain time-ordered operator for the
isolated system. Indeed,

(x' 'or
I
x'"'os)

(=
l

X& &'o.i
l

eXp i (dX)(&I(X)f(X)

(~lx'"') =II(x,"')""= (x "')"'(x"')"'
and

(x' '
l )='II(x, ' ')"""= (x ' ')"'(x ' ')"',

in which we have introduced an arbitrary standard
order of the field modes. That order, when read from
left to right, is symbolized by II, and in the reverse
sense by 'II. Thus, if only modes 1 and 2 are occupied,
we have in (67)

xi' 'xi'+'xs' 'xs'+'= (xs' 'xi' ')(xr'+'xs'+')

With the eigenvalues x&+&'(x) at corresponding points in
the relation (26), we have

+t(x)~(x)) l
xi+' ~ l, (6g)),'

where js indicates that the operators and states corre-
spond to q= g=0. To prove this, let us replace q and g
with )g and ) q, where P is a numerical parameter. The
eGect of an infinitesimal change of the latter is ex-
pressed by

(r)/BX)(x
—'oilx+'o, )=

l x
—'oi (dx)t(x) x+'os l,)

in which we have temporarily written

I (x) = i(&& (x)4'(x)+ 4'(x) r& (x)).
On diBerentiating again, we find'

(r&'/Q, ') (x& &'0]
l
x&+'o.s)

and therefore
I) y' '=X~~'+'t,

(x'-'
I ~)= (~ I

x'+')',

=
l

x' ' oi (d»)(d»)(I(»)t(»))+ x'+'~s l~

and, in general,
as demanded by the eigenvector connection (25).

The eigenfunction of the vacuum state, referring to an (r)/~)') "(x ' o'i
I
x+ os)

arbitrary surface, is

and therefore
(x' 'ol0)=1 (dx,)" (ax„)(t(x,)" t(x„))+ xi+&'o, l.

J )
If we now construct the transformation function de-
scribing the system in the presence of sources (X= 1) in
terms of that for zero sources (X=0), as a Taylor series
expansion, we obtain an infinite series which is com-
pactly represented by (68).

can be expressed as

(x' 'ol«)= (x' 'ol0)'II(x~n' ')"""

=(x' ' l'II(x.' ')' lo),

y, exp i (dx) (Cx')rI(x)G+(x, x')ri(x')+(~ )= L'II(x..'-') ""3+.,

The transformation function 46
in which we have introduced the operators on tT pos-
sessing the xz„& ' as eigenvalues. Accordingly, the (x&

—
& o lx&+& o,) (xi—& o, lx&+& ~,)),

eigenvectors of the state with particle occupation num-
bers e~„are

and
+(«)1=+.tLII(x.,'+&) "~ j. +,~(d*)( ( )4' ( )+4' (*) ( )) (69)

' J. Schwinger, Phys. Rev. 82, 914 (1951),Eq. (2.133).

THE MATRICES OF FIELD OPERATORS in which we have used the symbols &P'(x), &P'(x), at
points in the interior of the region bounded by 0.

& and 0-2,
We shall now use the transformation function j46j to

obtain the matrix elements, for the isolated Dirac Geld,



1290 JULIAN SCHWINGER

to mean

0'(x)=xJf~ '&x(x x')VA'(x')

or, more simply,

I
exp p)' (dx)(~'&+V~)

(

do„'G+(x, x')y„)J (-)'(x') =exp p) (dx)(dx')g(x)G+(x, x')iI(x'), (74)

de„'G~ (x, x')y„P(+'(x'),

O'(x) = "f&—.V (x')X.G+ (*', x)

= —j ' do„'P( )'(x')y„G+(x', x)

Ke see that

+z t d~„'f&+)'(x')y„G~(x', *).
J

)

P'(x)= Q!f),„(x)e—'"*'X~~' '+ Zfj, „(x)e'" 'X) (—)'
+.p l

is the solution of the Dirac equation with the prescribed
positive frequency part |!(+'(g), on (rp, and the pre-
scribed negative frequency part!t '(x), on O.i. Similarly,

in which we have introduced the operators

V(x) =4 (*)-4'(g),
V(g) =0(x)—0'(g).

An expansion of both sides in powers of g and g will
yield the matrix elements of ordered operator products
of the g and P.

From the absence of terms that are linear in g and y,
on the right of (74), we see that

or that
(0( ))=e'(*), ps)

(&(x))=4'(g). (76)

The term on the left of p4) that in bilinear in q and iI is

(dx)(dx'j(x(x)'P(x)'P(x')X(x'))~)

is the solution of the adjoint Dirac equation which has
the positive and negative frequency parts, f(+)'(x) and
P' '(x), on 02 and (ri, respectively. Note, however, that
P'(x) is not the adjoint of f'(x). Indeed,

where

P (,)tx,= -z$a „7'(x')x„G (x', x),

G (x, x')=ypG~(x', x)typ (7O)

satisfies the same differential equations as G+ (x, x'), but
obeys ingoing rather than outgoing wave temporal
boundary conditions,

where

(dx) «x')~(x)((V(x)V(x'))+)p(g, g')n(x'),

Hence

p(g, x') = +1, xp) xp'

I) xo+xo

or

Zk+l

(d*)" (d*)(d ')".(d*')e(.) "
q, ~ pt)l g

((7(*)V(*')).) (., ")= —'G, (., *),

((4(x)!t(g'))+) (x, g') =0'(g)0'(x') —'G (x, x'). p7)
The complete expansion of the left side in (74) is

G (x, g')=p P Pg, (x)y)„(x'), xo&xo
Xg(x, ') . q(xi'), (78)

= —p Q P),„(g)))!),„(g'), xp(gp'. (71) where e&, & is the alternating symbol expressed by

&), i= (II &(x' g~)) tI &(g' x~'))(II &(x' x~)). (79)
In terms of the notation Lnot to be confused with

(3~)7
(+), )~( & j,

~

(+), )7 (&) (72)
This is to be compared with

we express (68) and (69) as (dg ) (dx p) (dxi') (dx p'))I (g„)
a Ptd

exp i dx
(

=exp p, t (dx) (dx')gag+ p (dx)(g'+P'g), (73)'

Xq(xi)G+(xi, xi'). G+(x)„xp')iI(g, ') . )7(g„')

a (p!)' J
Xpdet(~)G+(x;, x/)7q (xi') ~ ~ iI (gp'),
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where the k-dimensional determinant constructed from
the elements G+(x;, x,') has been introduced by sub-

jecting the variables x~' xl, ' to the set of k~ permuta-
tions. The anticommutativity of the p provides the
algebraic signs to form the alternating combination of
terms which constitutes the determinant. Therefore

The further substitution performed on the right,
itJ"(dx)g' +—t, yields

dt—e' exp i "(dx)(dx')rI(x) (G~(x, x')
zz

+it—'P'(x)P'(x'))rl(x') .

expressed m 80, now shows that
in which both sides are completely antisymmetrical in
the variables x;, and in the variables x .

Straightforward algebraic rearrangement would yield
the matrix elements for successive products of the
operators f and P, as illustrated by (75) and (77).
However, one can obtain an explicit formula from (73).
We erst consider operator products with k=3, and
remark that such terms are isolated in (73) by substi-
tuting q

—+tg, g—&t 'g, and evaluating the integral

1 —e'det()f —iG (x x ')+t-'P(x )P(x ')J2'

+(- )"d t(.)G+(.„,'),

v(")v( ) v("»,)".
= ea, ( i —" det(g)G+ x;, x, 80+ " ' ' The known result of expanding the right side of (74), as

1 dt—
I

exp i
~

(dx)(t++t '0~)
27ri t ( j ) +

in which the various terms will be given by the develop-
ment of the determinant, combined with the theorem

1 Gt—exp i (dx) (dx')qG+rl2'
1 dt

gt—
2~~ t +~

The effect of the t integration is to compensate the

+i I (dx) (tg, ~+t—1$&~) (81) numerical factors that appear on expanding the de-
terminant. An example is

—G+(, ')+t-V'( )0'( '), —G+(, ')+t-4'( )4'( ')
+1 x2 x2 xl + &2, 2

('G+(x2) x1 )+t $ ( 2)xf (xl )I ~G+(x2) x2 )+t f (x2)(t' (x2 )

=f (x1)$ (x2)4' (x2 )0' (xl )—$$ (xl)lp (x1 )G+(x2) x2 )—$$ (x2)f (x2 )Gy(x11 x1 )

+if (xl) 4' (x2 )G+ (x2 xl )+Q' (x2) p (xl )G+ (x1 x2 )

—G+(xg, xg')G~(x2, x2')+G+(x(, x2')G+(x2) xg').

Operator products with k —l)0 are isolated by the
integral

dt (expi ' dx

On expanding the right side, it is seen that

xl ''' x/c x$ ''' xl + 6/g

dt—e' det(, )&t-y'(x;)("-'~,
2xi t —iG, (x,, x )+t-y'(x, )g'(x )J,

k—l—e'~ it-' (dx)qy'
~

2~i

xexp i
J

(dx) (dx )f7(G++i lp ljl)ff,

in which the determinant is constructed with t 'f'(x, ),
i=1. .k, occupying the first k—l columns, and the
rectangular matrix iG+(x;, —x/)+t 'P'(x;)P'(x, '),
i= 1 k, j= 1 1, completing the k-dimensional square
array. It is understood that the determinant is defined

by alternating permutations of the rom indices, applied
to the product of the diagonal elements written suc-
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cessively from left to right. This is illustrated by

S] Xg $3 +]. + &3, ].=
(xl)) I 7 (xl)t tG+(xi txi )+$ iP (xl)4 (xl )

dk

e f p (x2) f f (x2) tG+(x2 xi )+~ f ( x)2pt(xi )
2''b

( 'pl'(x, ), ] 'P'(x, ), t—'G (x„x ')+t 'P'(x, )P'(x, ')

=@'(*,)y'(")a'(. )O'( ') —'O'( )W'( )G.(. , ")
—tV'(x29 '(xa)G+(», »') —tV'(»)4'(»)G+(»»').

A similar treatment for 1—k&0 yields

((4 (») 4 (»)4 (xi') 4 (x,'))+).a, i

det&t&L —&G+(x;, x; )
2''b

where this determinant contains 3 'g'(x ), j=1 I in

the erst l—k rows, and the 1-dimensional array is
filled out with the rectangular matrix, iG+—(x;, x )
+[ 'p'(x;)tp'(x )-, t'.= I; .k, j=1 I. Here the de-
terminant is defined by alternating permutations of the
gollme indices applied to the product of the diagonal
elements, written successively from right to left. Thus,
for the example k=0, we have

(«iltp(x) I

e'o.2). We shall prefer to construct

(~ly(x) I~') =exp( —a (&)»)
&& («ilk(x) Itt'~2) exp(t'P(tt')x2),

which is independent of o.~ and t7~, and refers to the
standard surface. On incorporating e '& 2 into y),„'+'
and e'"*i into xi„& &', (84) becomes

Z (x' 'I )( I4(*) I
')( 'Ix' ')

AtQ

=LB A, (x)xi,' '+ 2 A,x~,' 'j
+ y p

&&K(x'-'I )( Ix"').
Now

»u' '(x»' 'l~)=x»' ' 'II(x' ')"
=0, e),„=i

=(—&)" ""(x' 'I +~,),
Sl ' ' gl + 60l Sl ' ' $1

= 0'(xt') .0'(»').

The Occupation Number Representation where m~q„ is the number of occupied states that follow

Xp in the standard order. Similarly,Matrices in the occupation number description can be
derived from these results. The simplest examples are
the diagonal matrix elements referring to the vacuum
state —the vacuum expectation values. Indeed, on
placing all eigenvalues equal to zero in (80), we obtain

(&Ix'+')x~ '+'=g(x'+')"xt. '+'

=(-I)"» (~+&..Ix~+&'), N„=0.
(0l(4(xi)" k(x~)0(xi') "0(»'))+I0)",i

~) i det, „,G (x x.t) (82) We see that the nonvanishing matrix elements of f(x)
are of the form

and, in particular,

(Ol($(x)f(x'))+IO)e(x, x')= —iG (x, x'). (83)
( I4()l +&")=(—&)" 'V..(), ~&0, (85)

(~+&.„I4(x)l~) = (—I) "»Q&„(x), X&0, (86)

(x' ' I4(x)lx"' )=4'(x)(x' ' lx"' )
(x' '~il 0(x) I

x"'~2)=0'(x) (x' '~il x"'~.)ol

To obtain the occupation number matrices of P(x)
and p(x), we observe that (75), for example, can be wherettx„=0inbothstatements. Theseexhibittp(x) asa
written unit charge annihilator.

In an analogous way,

Z (x' 'l~)(«ill(x) IN'~2)(&'lx"')
A t S

= I:ZA.(x)e '"*'Xi."'+EA.(x)e'"*'»n' 'j
t t P

&Z(x' 'l~) e pL"~(~)(x —x)j(~lx'+'), (84)

which exhibits it as a generating function for

yields

Z (x' 'I~)(~lk(x) l~')(~'Ix"')
n, n'

= LZ &»(x)x~n"'+ 2 A. (x)x~n' '3
t t

xZ(x&-&
I )( Ix&+&'),
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from which we obtain the nonvanishing matrix reverses the sense of multiplication for the e anti-
elements commuting eigenvalues in (n 'lx (+'). Similarly, &(+(+)'

and x &
)' are comprised in

(nlrb(x) In+I»)=( —I)-» y, n(x), I(&0,

with n),n= 0, which display P (x) as a unit charge creator.
The matrices of f and P suggest the utility of a

classification of matrix elements that would unify a
given change in occupation number for positive fre-
quency modes with that in the reverse sense for negative
frequency modes. This is accomplished by transposing
the matrices with respect to the occupation numbers of
modes with )«0, which efI'ectively introduces a time-
reversed description for the negative frequency modes.

The generating function for the matrices of all ordered
products is (73), written as

P (x( )'In)I n
I exp i ' (dx)(glP+lyr/) I

n'
I

A j A )

An = d~.kin(x)v A (x),

To carry out the transposition, we must take

Q (x+( )'In~)(x (—&'ln )(n„n IFIn~'n ')
AfR

&& ( -'I &(-"')( 'I x+"'), (93)

where F is any product of the operators P, f, and reverse
the positions of the two negative frequency eigen-
functions. This introduces the factor (—I)"-" ', so that
(93) becomes

in which we have written

)& exp i (dx) (dx')qGig+i (dx) ()&))I '+ P')&), (87)
and

I
PIPIT')= (nlFln'),

(~) ( I)x—
( ])', (N=N ')(N +1 -N ')—-——

—( I)x—
( ])', (N N ')(-iv '—+1 N— )— — —

(&(' 'I x'+') =BC''I &)(—I)"-Pl4')

in which all states refer to the standard surface. The
sources g and g are understood to be placed on the
extreme left and right, respectively, as we have done in
(78). We now indicate the positive and negative fre- Thus, if F is the unit operator, we have

quency modes separately, placing the negative frequency
modes first in the standard order, iV

(95)

(&(' 'ln) = (x+' 'ln+) (&(-' 'ln-),
(n'

I
x"')= (n-'I x-'+') (n+'I x+'+'),

= expl:E A.'~(~)A, ') (96)

and define the mixed eigenfunctions
To complete the re-expression of the generating

function (87), we remark that

Here the integers e and e ' indicate the respective
number of occupied negative frequency modes, while E
and S' symbolize the sets of occupation numbers

{n+, n ') and {n+', n }, respectively. We shall also
write X = n ', X '= n The not.ation g'

I N) refers to
the fact that the y+&

)' and x '+' together comprise the
quantities

Hence,

4'(x) =Z» An(x)An',

~t'(x) =Z~n It~n(x)~t~n'.

(97)

(98)

An'= "d~.k'(x)~A»(x)
J

for positive and negative A. . Thus

LV I &)= 'II(~t .')""",

= exp i) (dx) (dx')r&G+)&

«xPLZ 4') n ~(~()An +i)&) nAn +id') n ')I) n) (99)

(90) in which we have employed the notation,

and this product is in standard order, from right to left,
in virtue of the factor (—I)'"-'(" ' ",which effectively

(dx)n(x)A„(x), q) „(dx)P)„(x)g(——x)
J



1294 JULIAN SCHlVINGER

It should be emphasized again that the sources g and. q
are written to the left and to the right, respectively,
rather than as indicated in the left-hand member of Eq.
(99), since the sign factor expressed by (95) is valid only
if the matrix element in (93) is a number, rather than a
quantity possessing anticommutative properties.

The second exponential factor in (99) can be written

II expLV ) n'~(~)P) n'+in) A),~'+ 4),n'n) n)
Xy

expansion of the product (100) can then be written

II('~4")IIL(0')"~ (1+1V~nn) (lt')")II(ilt'n) (104)
a C

The b mode product can be re-arranged as in the dis-
cussion of the diagonal matrix elements, which yields

-pl Z ~., (~)~.;..)(-1)"-"II(~..)"II(~..')"

where the expansion of the exponential referring to a
given mode yields only five nonvanishing terms, as
represented on the right of (100). We shall first extract
the diagonal matrix elements, which constitute the
following terms of (100),

xL+I1v)L1v'ly')II(i (—1) o),

in which Ã&q„represents the number of occupied b

modes that follow Xp in the standard order, while 1V.
and E, are the total number of modes in the a and c
classes.

i i e f 99 is thus ex ressed as
II Z (4,')" L (»)""L1+~.(».—.~.)V.')"
)y N)& Therghtsd o ( ) p=g expLP 1V) „e(X)&)),q) „)

Xy 2 'II(in( —1) &) expl )(—1)""
xLl('l1v)( —1) -L1vllt'1. (101)

=II 2 (~.,')"L~ . '"(1+1V"-.) If we now bring the eigenvalues P),~' of the a modes and
Xp N, N'

P),„' of the (: modes into standard order, (100) becomes
+i&)lV'(1 —1V)+s&)1V(1—1V')7(f),~ ), (100),~(. ( ) ) L~ )( )~,( )~

The exponential so obtained combines with the first
factor on the right of (99) to form where

xlÃl 1v)L1v'l0')lI('&(-1) .)
exp i (dx) (dx') &) (x) (G~(x, x')

-'2 1V.. (I )e.,(*)~..(*'))~(") .

expl )=exp i) (dx)(dx')))(x)

X(G~(x, x') —i Q 1Vx„e(I()lt),„(x)y),„(x')))I(x') .

No minus signs are introduced on moving the g to the
right of the eigenfunctions in (101).On comparison with
(74) and (80), we see that (1V),„ts),~):'——

(~l(l((»)" lt (»)k(x(') "0(»'))+I&)",)
= 8),, g det(g) [ iG+(x&—& x )

—pg„eg, e(X)pg„(x;)ltd„(x )), (102)

of which the simplest example is

(~ I 8 (x)0(x'))+ l ~)~(x, *')

iG„(x, x—') —g)„N)„e()())J),,(x)P).„(x'). (103)

The modes that occur in the general matrix eIement
can be divided into three classes: class a, those for which
Ãq„——0, gq~' ——1; class b, modes with gq„——gJ,» class
c, those with E&„=1,Ez„'=0. A typical term in the

We must obey the injunction that all q appear on the
left, and all q on the right. The effect of moving an g in
the above exponential past the product of the eigen-
functions is to introduce a factor of (—1)~ ~', where 1V

and Ã' represent the total number of occupied modes in
the respective eigenfunctions. Accordingly,

(~) 1V
l exp i (dx)(gyp') l

1V'

i+

—1) -+~ x''II(ig( —1) ) exp i( 1)—
On expansion, we obtain the following result for the

general nonvanishing matrix element,

L1VI (0 (») .0(x~)lj"(x(') lt (xi'))+I 1V'1".(

0,= ( 1)k(& I & c) k()&' a+—)&' —c) d—et—(~ ~—)—
-(-1) +.(x'),

(—1)" a.( )
(105)

-'G, (;, )-Z.1V., (7)a,(*')6,( )-



THEORY OF QUANTIZED FIELDS 1295

in which
k—N =l—N, =r

must be a non-negative integer. Also,

N =N' —Np, N.=N —Np.

tion (III, 20) can be expressed as
(106)

(P(—)'g 1P(+)'g )—(P(—)'g ~1P(+)'gp)$p

In this determinant, 0 stands for the null matrix of N,
rows and E columns, and. (—1)N+ (x;) represents a
matrix of k rows and N columns in which the eigen-
functions of the various a modes are standardly arrayed
in the successive columns. The matrix (—1)N&g. (x; ) is
one of N', rows and l columns, with the various c mode
adjoint eigenfunctions, in standard order, occupying the
successive rows. Finally, we have the matrix —iG+(x;, x )—Q p 1V),~p(X)$)~(x;)$),~(x ) of k rows and I columns.
Thus the dimension of this determinant is

k+X,=l+E =k+3—r.

where ]p indicates zero external current, and

2 „'(x')= 2 da„F„„' '(x)D+(x—x')

—2 do „F„,(+) '
(x)D+ (x x')—

=2 d(r„P„„' x D+ x—x' .

Ke also recall that

(108)

Since this can also be written as X +X,+r, we see that
the integer r is also the maximum number of Green's
function factors that appear in the development of the
determinant.

For the elementary example k=1, l=0, we have
Ã,= 1, N, = r= 0, and the nonvanishing matrix element

P 14(x) I&+1.1= (—1)" "9.(*)

which unifies (85) and (86) as intended. Similarly,

P+1,„1P(x)1Xj=(—1) "P„(x).
With this classification, f(x) and f(x) appear as single
"particle" annihilators and creators, respectively. The
selection rules (106) for the general matrix element can
then be described as follows. The operator contains k
annihilators and l creators. If r of these operators com-
bine in pairs to produce a null net eGect, the remaining
k —r annihilators and l—r creators will empty N = k—r
occupied modes, and fill N, =/ —r occupied modes. Of
course N= X'+l k. —

The diagonal matrix elements (102) represent the
extreme situation in which

r=u=l, N.=N, =O.

At the opposite limit is

r=o, N.=u, N, =l,
where the matrix element (105) becomes

adet(~)L( —1)"&.(x~)1det(()L(—1)N~W. (x ))
and

( 1))cN a(N a&) ( 1)—cN —c(N c )) ( —1)Na—N—c N aN c——

MAXWELL FIELD MATRIX ELEMENTS

This section is a supplement to paper III, in which the
transformation function describing the Maxwell field
with an external current is used to construct the
matrices of all products of the potential vector for the
isolated electromagnetic field. The transformation func-

&p——-', ~(dx)(dx') J„(x)D+(x x')J„(—x')

=
p (dx) (dx')LJ~(x) (b~(D+(x—x'))("J((x')

—Jp(x) n(x —x')Jp(x')i,

where the latter form is appropriate to the radiation
gauge.

The dependence of the transformation function upon
the external current is expressed by

g~(p(—) 'g
~1

p(+)'g p)

r

=i1 F(-)'gg (dx)&)J„(x)A„(x) F'+'gp 1. (109)

In the radiation gauge, Ap(x) is the numerical quantity

&p(x) = (dx') n(x x')Jp(—x')

Hence

()zp (F&
—)'o

) 1F&+)'o p)

(dx) (dx')5Jp(x) X)(x—x')Jp(x') (F& )'o(1F(+)'op),

(F 'o, 1F+ 'o,)= (F. 'o1F. +'o))zo=p. .

Xexp i-',
J (dx) (dx') Jp(x) $(x——x')Jp(x')

which gives the simple dependence of the transformation
function upon Jo, in the radiation gauge. This factor is
evident in the radiation gauge version of exp(i%p).
Accordingly, we restrict ourselves to transverse currents,
for which Jo——0.
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On introducing the scale factor A., J~
—+XJ~ we infer

from (109) that 'A (x)=A (x)-A '(x) .

(8/B) (F(-)'oil p(+)'o2) An expansion of both sides in (111)or (112) will supply
the matrix elements of ordered A products.

The right side of (112) is an even function of J.
=zl F( ) o, ~ (dh) J),(x)A„x F(+) ~' Accordin l

Repeated differentiation yields

(8/8)() "(F( )'0 i l
F(+)'a.z)

=z
l

P(-)'~, I (dx,) (dx„)Ja, (x,) J~„(x.)J

In particular,

ol

(('A(x,). 'A(xz„ i))+)=0.

('A (x))=0,

(A (x))=A'(x). (113)

The general even term in the expansion of the left side

X(A)„(x,) . A), „(x„))+p'+', l, i (112) is

i2"

X(('A (* ) " 'A (* -))+).

and the transformation function appropriate to the j (dhi) ' ' ' (d»~) J(h&) ' ' ' J(h2n)
external current (),=1), is obtained from that of the
isolated electromagnetic field ()(=0) as

(p(-)'Oil p(+)'0 )
This is to be compared with

( (dx)) (dxz„)J(xi) . J(xz„)
=l F( )'0., l

exp i, (dx)JJ, (x)Ay(x) l
F(+'oz

l
. 2 g, !J) 0

XD+(x,—x,) . . D~(x, „—,—*,„)
If we employ the notation

(p' ' ~
I I

p'+' ~,)/(p' ' 0. IF +'0-,)3o=-( &

the transformation function (107) can be expressed by

l exp z ~ (dx)Jg(h)Ap(x) ),

(dki). (dxz„)J(x)) . J(xz„)
(2zz)!

Xsym(„) D+ (x;—x,),

in which has been introduced what we shall call the eth
symmetrant of D+. This is defined by

sym(„) D+ (x;—x,)

p '-'~ (d )(d*')J (*)(& D+( —'))'"
yerm

D+(X.l h(z) ' ' 'D~(X(2+1—»zn) p-

XJ((x')+i)l'(dh) Jg, (x)A g'(x) . (110)

It will be advantageous to suppress the vector indices.
Accordingly, we rewrite (110) as

l exp i (dh)J(x)A(x)
(

J

= exp i-', "(dx) (dx') J(x)D~(x—x')J(x')

+z (dx) J(x)A'(x) . (111)

An alternative version is

and the summation is extended over all distinct permu-
tations of the indices i ~ i 2 „,which are some rearrange-
ment of the integers 1 .2e. Since D+ is an even func-
tion of its argument, and the order of the n factors
is irrelevant, the number of such permutations is
(2zz)!/2 "zz!= (2e—1) (2zz —3)

The matrix of an even product of the 'A is thus
expressed by

(('A (xi) 'A (xz„))„)=(—z) sym(„)D+(x;—x;). (114)

The first two such products are

(('A (x) 'A (x') )+)= zD+ (x x'), — —
ol

((A (x)A (x'))+)=A'(x)A'(x') —zD~ (x—x') (115)

l
exp z (dx)J(x)'A(x) ),

=exp i-,'~ (dx) (dx') J(x)D+(x x')J(x'), (112)—
(('A (xi) 'A (xz) 'A (xz) 'A (x4))+)

= —
LD+ (xi—x2)D+ (xz—x4)+D+ (xi—xz) D+ (x2—x4)

+D~ (xz xz) D+ (xi x4)). — —
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where
cosx=C(I exp( —~~tx')$,

C,(t")= 2 "e!/(2e)!

To obtain corresponding results for products of the
operators A, as in the simple examples (113)and (115),
we first consider the even terms of (111). The even
function, cosx, can be obtained from an exponential
function of x' by a suitable operation

diBerentiation from those of even products,

((A (xg) A (xo~g))+)

((I/()A (x& ))((A (x&) ' ' A (x& ))+)
= (8/aA'(xo„))Cg sym(„)L —iD+(x;—x;)

+tA'(x;) A'(x;) $,
ol

which is intended to indicate a symmetrant that is
obtained from (116) by replacing the elements con-
taining the variables x)„xo„with tA'(x)).(( co@, ((Ex)J(x)A (x)

The Occupation Number Representation
= C ( exp —-', (dx) (dx')J(x) The diagonal matrix elements referring to the vacuum

state are obtained by placing all eigenvalues equal to
X(—iD+(x —x')+tA'(x)A'(x'))J(x'), zero,

((A (xg) A (xo„)))+)
eGectively de6nes the operator C&, although an explicit
integral representation can also be exhibited, as in (81). =C&sym(~)l ~D+(x' xi)+tA (*')A (xi)~ tA (»)l~
Hence the even part of (111) is

which, in view of (112) and (114), yields

((A (xg) A (xo„))~)

=C& sym(„)L —i'(x,—x;)+tA'(x, )A'(x, )j
=A'(x)) A'(xo„)+

+ (—i)" sym(„)D~(x, x;). (116)—

(Oi (A (xg) A (xo„g))pi 0)=0,

(0~(A(x,)" A(x, „))+~0)
= (—i)" sym(„)D~ (x —x )

and, in particular,

(0
~
(A (x)A (x') )~ ~

0)= —iD+(x—x'). (118)

As the initial term of the developed version indicates,
the effect of the C& operation is to reinstate the unique
counting of each distinct permutation in the expansion
of the symmetrant (116).

For the construction of matrices describing odd
products of the A, we remark that

We introduce the mode functions

( (dk) 1 pl
A»(x)„= I ~

e„(Xk)e'",
L. (2n.)' 2ko)

()'(dk) 1 ) '
~

e„p,u)e 'o*-
0 (2m)' 2ko&

(119)

(I)/l)A'(x))
I exp i ~ (dx) JA

in terms of which the tensor Green's function (III, 23)
appears as

(=iJ(x)
~

exp i) ((tx)JA
I I 8„„D+(x—x')=i+„„A~„(x)„A,„(x')„, x )x,'

On expanding both sides, we obtain

(~/»'(x))((A (") A(x.))+)
= () (x—x))((A (xo) A (x„))+)+

+()(x—x ')((A (x,) A (x )))+),

Accordingly,

=i P) ) A~o(x)„A»(x')„, xo(xo'. (120)

which can also be expressed by

(8/BA'(x ))((A (x)) A (x„))~)
=((A (») A(x -)))+)

Hence the matrices of odd products can be obtained by

becomes (suppressing the vector indices)

A'(x) =P), ), (A), ), (x)e '~"A »(+)'+A), ), (x)e'"*'A»( )'),

A), ),(
)'= 2i I da„F„.( )'(x)A), ), (x)„e '"*'
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and

Ai)&+'= 2—i I" dtr„F„„&+)'(x)AgI,(x),e'"".
0'2

The latter quantities are the negatives of az &(+'

(III, 27, 28). Since these minus signs would be some-
what unfortunate for our present purposes, we notice
that the opposite choice of sign in (III, 27, 28) produces
relatively trivial changes in the work of III. Thus, in
Eq. (III, 34) and its consequences, the signs of the
terms contalnlng Jqf, and J~~* are to be reversed. We
now write the eigenfunctions of the isolated electro-
magnetic 6eld as

The generating function for the matrices of all
ordered products, referred to the standard surface, is

Q (F& &'ln)
n nl

Xl n
I

exp i (dx)J(x»(x) l
n' l(n'IF'+')

t'

J )+ )

= (F( )'lF&+&') exp i2 (dx) (dx') J(x)

XD~(x—x')J(x')+i t(dx) J(x)A'(x)

(F' 'ln)=II(n') '(A»' ')"

( IF'+')=lI( !) '(A-"')"
= exp i-, (dx) (dx') JD~J

while the transformation function is

(F(—)'0 i l
F(+)'02)

=exp[/&, t, Ai)&—)'g'»i(, —(»2A»&+)'j

= P „(F& &'
l n) exp[zP(n) (xi x2))—(nl F&+&').

The occupation number matrix of 3 is derived from
(113),written as

(F& )'ailA(x)lF(+)'o2)

= Q (F' 'ln)(nailA(x) ln'og)(n'lF&+)')
n, n'

=A'(x) (F&
—)'o, lF&+)'tr, ).

The substitutions e
—' Agy, + '—+g), I,

+ ', g g), ~
—'~

Aqi, &
~' convert this into a generating function for the

matrix referring to a standard surface,

XII exp Ax)& )'Ai), &+)'+iAxt& &'

Xk

X (dx)J(x)A), ), (x)+iA»&+)'

X,t (dh) J(x)A), &, (x) . (121)

The expansion into eigenfunctions is greatly simpli6ed

by exploiting the infinitesimal nature of (dk). Thus the
second exponential factor of (121) becomes

(A' ')" ( t t.

(n!)& 4 J

+(&, +in&i (dx)JA+!&„,„+in "i

(nlA (x) ln') =exp(=iP(n)xi)

X (na. ilA (x) ln'0. 2) exp(iP(n')x~),
namely,

Q (F&
—&'ln)(nlA(x) ln')(n'lF(+&')

n n'

=Q (A), ) (x)A~)(+'+A) t, (x)A~), & ')
XP(F( 'ln)(nlF'+&').

Now
A»' '(F' 'ln —1»)= (F'-'ln)n»:

(n 1i.
l

F&+&—')A»&+&'=n„t (n l
F&+&'),

so that the nonvanishing matrix elements of A (x) are

(n 1),), lA (x) ln) = n), t,lAit, (x)—

— (A(+)') n

X t (dx)JA . (122)
(n' t) k

(A(—)')n-
t t

—(A(+)')m
1 n I (dx) JA—

, (dx)JA
(nt)k J (n!)l

=P(F& &'ln) exp — (dx)(dh') J(x)

A change in the occupation number of a given mode by
two, for example, would lead to a matrix element pro-
portional to (dk), an(l thus to a transition probability
proportional to (dk)'.

We erst consider diagonal matrix elements, which are
contained in the following terms of (122),

and

(nlA (x) l
n—

1& t) =n&, ), 'A), t (x).
X(P n), A&, (x)A&, t, (x'))J(x') (nlF'+').
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Thus

= exp —-',

) ((Ex) ((Ex')J(x)(—iD+(x—x')

We shall use A (x) to den. ote collectively the a mode
functions, A), (, (x), and the c mode functions A»(x) (a
complete unification would be achieved by transposing
the matrices with respect to the occupation numbers of
the c modes, which would introduce a time-reversed
description for emission processes). With this notation,
(125) appears as

which asserts that
(

e
( exp i (dx)J(x)A(x) (

e'
i

(n~ (A (xg) A (xp(-())+~ n)=0,
and that =II(n")II(n')II i~ (~x)J(x)A-(x)

(n~(A(»)" A(xp())+ln)
= sym(, )t —iD, (x,—x;)+Z» n»

X(A), ) (x')A), ) (x;)+A),) (x')A) ) (x;))j. (123)

The elementary example of the latter result is

Xexp P, t (d-x) (dx') JD+(")J .

We introduce a classification of modes in the general
matrix element: class a, those for which elf, =e),~' —1;
class b, modes with n), ~=e), A,

',. class c, those with
n), z=e), ),'+1. A typical term in the expansion of the
product (122) can then be written where E is the number of ().=a+c modes, and r is a non-

negative integer such that

The expansion of this generating function leads to the
following formula for the general nonvanishing matrix

(e
~ (A (x)A (x'))~

~
n) = —iD~(x—x') element,

+E» n»(A»(x)A»(x')+A»(x)A»(x')) (»4) (n~ (A (x,) A (x ))+~ e')

=II(n I)II(n~) (—i)" sy™ov,.)
Q C

XLA (x;); D+(")(x;,x(,)], (126)

(F(—)'in)II n'4 ~(dx)JA

XII 1—e ((Ex)JA (dx)JA
J J

re= E+2r.

We have introduced an extension of the symmetrant
which is constructed from E diferent functions of a
single variable, A (x,), and a symmetrical function of
two variables, D+'"'(x;, xp), taken r times,

Accordingly,

XII nb (dx)JA (n'~P(+)').
J

sym(~ „)LA.(x;); D~(") (x;, x),))
= Q A ~) (x()) A a~ (x'~)

perm

)
n

( exp i (dx)J(x)A(x) (
e'

~

(
)+ )

I= exp i ',
) (dx) ((Ex')J-(x)D„(")(x, x')J(x')

XII n"*i (dx)JA» II e4 (dx)JAg(, ,
a 3 c

in which we have introduced the symbol

(125)

XD+ (x(N+l~ x&))(+2) ' ' 'D+ (x&m—lq x&m)y

where the summation is extended over the (X+2r)!/2'r!
distinct permutations of the indexes i j. i, which are
some rearrangement of the integers 1 . nz.

The diagonal matrix elements correspond to the
situation where E=0, m = 2r. At the opposite extreme is
r=0, E=m, where the symmetrant reduces to

sym(, p)LA (x;)$= P A ~(x(~) A (x(„).
perm

This sum of m~ permutations is obtained from the
corresponding determinant by omitting the alternating

X LA»{x)A) ) (x')+A) ) (x)A&„(x')). sign factor.


