
DEUTERON BOMBARDMENT OF Krs4 AND Krss

TAmz V. Masses of Kr 5 and Kr; binding energy of the
last neutron.

Masses

Kr"=84.94090&13
Kr =86.94125~12

Binding energies

49th neutron: 5.95+0.08 Mev
50th neutron: 10.88&0.23 Mev
51st neutron: 5.53&0.08 Mev

the mass of Kr", we find the mass of Kr to be 86.94125
&12. Thulin' reports a 3.63-Mev beta in the transition
from Kr" to Rb", which leads to a value of 86.93735
~27 for the mass of Rb'~. Nier' reports a value of

' S. Thulin, Phys. Rev. 87, 684 (1952).

86.93709&17 for Rb . These values are in satisfactory
agreement.

The binding energies of the 49th and 51st neutron
calculated from these results in the usual fashion are
5.95&0.08 Mev and 5.53+0.08 Mev, respectively.

The binding energy of the 50th neutron may be
estimated as 10.88&0.23 Mev. This variation in the
binding energy of the last neutron is expected at the
closing of the 50-neutron shell. These results are sum-
marized in Table V.

In conclusion, the authors wish to thank Professor
L. C. Biedenharn and Professor E. C. Pollard for many
helpful discussions.
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The consequences of the invariance under rotations and reQections of the collision matrix are expressed
as a relationship between the expectation values of initial-state and 6nal-state irreducible tensor operators
in spin-orbit space. This relationship is used to give a proof of the Eisner-Sachs theorem on the complexity
of angular distributions of nuclear reactions and some extensions of this theorem.

" 'N collision problems and decay problems in nuclear
~ ~ physics, one often encounters calculations in which
it is necessary to sum over the spins of certain of the
initial or final particles. As a result of such summing it
may happen that a number of terms in the result cancel.
For example, if two unpolarized particles of spin 1
collide in a p state, it is possible that the total angular
momentum is 3 and that the outgoing particles leave in
an f state; nevertheless, the resulting angular distri-
bution, after summing over initial and final spins, can
contain no power of coso higher than cos'8. This result
follows from a theorem proven by Eisner and Sachs'
and also by Yang. ' Intuitively, the argument is that
although the initial state has angular momentum 3, it
is only polarized to degree 1 and the anisotropy of the
angular distribution is a measure of the polarization of
the orbital angular momentum. This argument may be
made precise by focusing attention on the expectation
values of the spin-orbital operators before and after the
collision rather than on the initial and scattered wave
functions. The consequences of rotational invariance
may be expressed in a simple form through the use of
irreducible tensor operators. ' In the first section of this
paper the general method is developed, and in the
second section it is applied to the proof of the theorem
of Eisner and Sachs and some extensions of the theorem.

'E. Eisner and R. G. Sachs, Phys. Rev. 72, 680 (1947); L.
Wolfenstein and R. G. Sachs, Phys. Rev. 73, 528 (1948).' C. N. Yang, Phys. Rev. 74, 764 (1948). The proof of Yang
is also presented in J. Blatt and V. F. Weisskopf, Theoretical
Xgcleur Physics (J. Wiley and Sons, 1952), p. 535 f7.' G. Racah, Phys. Rev. 62, 438 (1942).

The method has also been applied, ' using irreducible
tensor operators in isotopic spin space, to the problem
of the consequences of charge independence for multiple
meson production.

I. GENERAL METHOD

A system which is not completely polarized is in a
statistical mixture of pure quantum-mechanical states
and is best described in terms of the density matrix'

~=(ll ) (Tr )Z.(~")~", (~)

where r is the number of independent pure states to be
considered, S& is a member of a complete set of base
matrices' operating on the vectors representing pure
states, and (S&) is the average value of this operator for
the system. The pure states may be considered as sums
of products of pure spin states and pure orbital states,
and it is assumed that only orbital states with angular
momentum I. less than or equal to some specified
value I. ,„need be considered.

Instead of considering the transformation properties
of the pure states, we shall consider the behavior under

4 L. Wolfenstein, Phys. Rev. 90, 371 (1953).
~ Use of the density matrix in nuclear physics problems has

been made recently by many authors; e.g. , H. Tolhoek and S.
deGroot, Physica 15, 833 (1949); 17, 1 {1951);U. Fano, Phys.
Rev. 90, 577 (1953); R. H. Dalitz, Proc. Phys. Soc, (London)
A65, 175 (1952); L. Wolfenstein and J. Ashkin, Phys. Rev. S5,
947 (1952). This last paper will be referred to as A.

The notation is the same as in A except that here the operators
S"operate on the orbital states as well as the spin states; that is,
here the orbital angular momentum is treated as another spin.
The set called "a complete set of operators" in A is here called
"a complete set of base matrices. "
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rotations and reQections of the operators S& in terms of
which the density matrix is expressed. The complete
set of base matrices S& forms a representation of the
rotation group which is equivalent to the representation
formed by the direct product of two independent
representations each equivalent to that of the set of
pure states. %e denote by S» an irreducible compo-
nent of this representation which transforms under
rotation like the spherical harmonics Ys (8p) and
under reflection with parity p; the subscript n distin-
guishes dBkrent irreducible components having the
same J and p values. From Eq. (4) of A,

pf=Mp;Mt,
where pf and p, are the 6nal and initial density matrices,
respectively, and M is the scattering matrix. Using
Eq. (1) for p;,

pf= —(Tr p;) P (S Jy ) MS Jp Mt.'(2)
Sagest;

The operators MS g~ M t may be expanded in terms of
a complete set of base matrices 5' 'J „~which operate
in the space of the final particles; since M is invariant
under rotations and rejections, MS g„M~ has the
same transformation properties as 5 g„, so that

JpaM g baa' 4J'8m''bop'S J'y'a'
a' J'y'm'

(3)

It is readily shown by performing a general rotation
on both sides of this equation that it is necessary that
b .s" be independent of m (as has been assumed in the
notation), although this result is not actually used in

the present paper. Equations (2) and (3) together
with Eq. (1) applied now to ps give

Jya')f= Pa caa' (S Jye)ty (4)

where the coeKcients c are equal to the coefficients b

times Tr p,/Tr pf. This result could have been obtained
directly by applying invariance arguments to Eq. (5)
of A. Equation (4) is a general statement of the conse-
quences of invariance under rotation and reQection for
nuclear collision problems. In particular it states that
it is impossible to define a component of a vector (or
an irreducible tensor of rank J) in the final state unless

that component of a vector (tensor) is defined, that is,
has nonzero expectation value, in the initial state.

This discussion may be used as a basis for dining
the degree of polarization of a system mentioned in the
introduction. The degree of polarization of a system equals

&~J, , +here J,„ is the largest value of J for which

there exists a nonvanishing (S s~ ). From Eq. (1) it
follows that the degree of polarization describes the
complexity of the behavior under rotation of the
density matrix. Thus a completely unpolarized system
has degree of polarization zero. It is easy to see that a
pure state of angular momentum L has a degree of
polarization L; in particular, this is true for the initial
orbital state in a collision if we consider only one orbital

angular momentum L, since then only the pure state
with m =0 is involved. If several orbital angular
momenta are considered in a collision the degree of
polarization of the initial orbital motion is equal to the
maximum orbital angular momentum L„„.A system
formed by compounding two other systems with degrees
of polarization d~ and d2 has a degree of polarization
less than or equal to (d~+d2) and greater than or equal
to d&—d2. This can be proved by using for the operators
S& products of two operators each of which operates in
the space of only one of the original systems. In partic-
ular, for a collision between two unpolarized nuclei of
arbitrary spin with a maximum relative orbital angular
momentum L,„, the degree of polarization is L,„,-,
since this may be considered a combination of the
unpolarized spin systems (d, =0) and the orbital
system (d2 ——L, ).

Part of the consequences of Eq. (4) can now be
restated as the following theorem: the degree of polar
isation of the jinal state cannot be greater than that of the

&uncial.

II. APPLICATION TO ANGULAR DISTRIBUTIONS

The complexity of angular distributions is limited by
the following theorem ' If in a collision of unpolarized
particles of arbitrary spin the maximum orbital angular
momentum that need be considered is L, , then the
angular distribution of the outgoing particles when

expanded in spherical harmonics will contain no spher-
ical harmonics of degree greater than 2L„, This
theorem follows easily as a corollary of the general
theorem stated above.

From the discussion at the end of the 6rst section,
the initial state has a degree of polarization equal to
I. , We consider the spherical harmonics 1';"(8'y'),
(times the unity operator in the final spin spaces) as
multiplicative operators in the space of the 6nal
particles these are clearly irreducible subsets of the
S'& with J', P', and m' equal to j, (—1)&, and h, respec-
tively. Since the degree of polarization of the anal state
cannot be more than L, the expectation value

(Y,~(8'p')) must be zero if j is greater than 2L, .

From the orthogonality of the spherical harmonics it is
evident that (F,~(8'p')) is directly proportional to the
coefficient of F;~(8'q') in the expansion of the outgoing
intensity (after all outgoing spin states have been
summed over) in spherical harmonics. This completes
the proof.

Other well-known results can be obtained using Kq.
(4). Since, for the initial nonvanishing operators, m

must be zero, it follows that m' (or k) must be zero
and that the angular distribution is symmetrical about

7 In order that the S t' have a Gnite dimensionality, it is neces-
sary to impose some limit L, , on the outgoing orbital angular
momenta. The spherical harmonics are allowable operators then
only if they are multiplied on the left by the sum of all projection
operators for states of orbital angular momentum L' from 0 toL', . Since this sum is invariant under rotation it does not
a6'ect the argument. The interpretation of F;~ requires only
that L'm x be chosen at least as large as the true maximum
possible value of L'.
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the axis of incidence. If the initial system has a well-
defined parity, then p must be (+1) for all non-
vanishing operators, since every operator connecting
states of the same parity has even parity. It follows
that p' must equal (+1) and therefore jmust be even;
that is, only even spherical harmonics can enter the
angular distribution.

It is interesting to note that the spherical harmonics
do not constitute a complete set of base matrices even
for the orbital states alone. Indeed, for a given L',„
there are (2L',„+1)' spherical harmonics, but
(I.', +1)' operators are needed for the complete set.
On the other hand, the spherical harmonics exhaust
the operators whose expectation values can be found
from the outgoing angular distribution alone. Thus,
even if the final particles have zero spin, the angular
distribution tells less than the final density matrix in
the most general case, so that it would seem possible in
principle to make more complete observations on the
final state than simply the angular distribution. For
example, an equal statistical mixture of the three p
states yields the same angular distribution, but does
not have the same density matrix, as a pure S state.
In order to distinguish between these, one would have
to observe the interference between portions of the
waves coming out at some angle relative to each other;
while such observations might be possible in principle
through the use of additional scatterings, they clearly
are not practical.

These results may be easily extended to the case
where the spins of the initial particles are polarized or
to the angular distribution of the polarization produced
in a reaction in which the incident particles are un-
polarized. ' Since the results are essentially the same
for the two cases, we comment only on the former
problem. The polarization of a particle of spin S must
be specified by the expectation values of a set of
irreducible tensor operators T";„with j varying from
0 to 2S and p even. For a collision'of polarized particles
of spin S and spin i, the operators, S g„acting on the
initial states are sums of products of

T' '~ j.+) U""~2+) L'~3p)

where T and U operate on the spin states of spin S and
i, respectively, and L operates on the orbital states.
Considering the eGect of particular tensor operators T
and U', we find the maximum value of J is (ji+js
+2L, ) and for this value of J the parity p is even,
since the operator L2L, , has even parity because it
connects pure states having the same parity. It follows
from the previous argument that (Y;") can be nonzero
only if j((jt+js+2L,„). However, the equality
can hold only if (j i+js+2L,„) is even, in order that

' L. Wolfenstein, Phys. Rev. 75, 1664 (1949l; R. J. Blin-Stoyle,
Proc. Phys. Soc. (London) A64, 700 (1951);A. Simon and T. A.
Welton, Phys. Rev. 89, 886 (1953); A. Simon, Phys. Rev. 90,
326 (19S3).

9 The term polarization is sometimes used in the more restricted
sense of the expectation value of the vector T&~, see B. Bleaney,
Proc. Phys. Soc. (London) A64, 313 (1951l.

P'(= (—1)i) be even T. hus, ifji+js ss enon, the maxi-
mum degree spherical harmonic altmvable is (ji+js
+2L „„); if jt+js is odd, the maximum is (ji+js
+2L, —1).

In particular, for polarized particles of spin ~ colliding
with an unpolarized nucleus, j&=1 and j2=0 with the
result that the maximum is 2L,„just as for the
unpolarized case. The same will be true for polarized
particles of higher spin, e.g., deuterons, provided only
the part of the polarization specified by a vector is
considered. In the general case of an incident polarized
deuteron" we have ji——2 and (still assuming js=0) the
maximum degree spherical harmonic allowable is
2L „„+2.By.carrying out these arguments in more
detail one can find the most general angular dependence
in the term in the angular distribution associated with
each particular tensor operator describing the initial
polarization; to get this result it is necessary to use the
fact that c~& „.in Eq. (4) is independent of m.

nI. DrSCUSSIOm

The main advantage of the method presented here
is that it gives the invariance principle directly in terms
of observables rather than in terms of wave functions.
This is of particular value when the road leading from
the wave functions to the observables is fairly involved
because of averagings over an initial statistical mixture
and summings over final unobserved variables.

The use of tensor operators to specify a system has
some disadvantages also. In the case of a pure state
it is very redundant; thus for a pure state of spin. 1,
there are clearly only five independent real parameters
necessary to specify the state (including its normaliza-
tion), but there are nine tensor operators whose expec-
tation values are to be specified. The four relations
between these nine are not linear. " Tensor operators
acting on the spin state alone are nearly always useful
in specifying the polarization of the spin, '" but it is
important to note that the operators S J~ entering
Eq. (4) are not these but rather are the irreducible
components of the products of these spin operators
with orbital operators. These orbital operators (partic-
ularly for the initial state) are generally unfamiliar;
however, in applications one need only make explicit
use of the Anal state operators which are spherical
harmonics. For detailed discussions beyond the general
kinds of arguments given here, . it is nearly always
desirable to introduce explicitly the matrix elements
relating initial and anal wave functions. This then
requires summing over spins, for which purpose the
methods of Racah are particularly suitable. ""

» W. Lakin and L. Wolfenstein, U. S. OfBce of Naval Research
Technical Report (unpublished); Phys. Rev. 90, 365 (1953).

"See H. Tolhoek and J. Cox, Physica 18, 357, 359 (1952) for
an application to the decay of a nucleus polarized by use of low
temperatures.

'~ J. M. Blatt and L. C. Biedenharn, Revs. Modern Phys. 24,
258 (1952).

"Note added &s proof: F Coester a—nd J. . Jauch, Helv. Phys.
Acta 26, 3 (1953) use methods similar to those of this paper for
deriving more detailed results.


