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The experimental determination of Avogadro’s number by the x-ray-density method is uncertain because
of imperfections in crystals. It is proposed to regard the lattice of purest calcite as a reference lattice because
of its proximity to a sound lattice, and to accept the value No=6.02567X10% g mole™ (phys.) which is
equivalent to 6.02403X10% ‘g mole™ (chem.) for Avogadro’s number as derived from measurements on pure
calcite. The perfection of the lattices of all other crystalline substances then would be determined in com-
parison with the calcite as either sound (equal in perfection to that of calcite) within the error limits or as
defective (vacancies, interstitial atoms), using the number above for the calculations.

HE most precise value for Avogadro’s number is

obtained, as already pointed out by other

authors,! by means of lattice parameter and density
measurements in applying the equation

N=nM/dy, ‘ (1)

» being the number of atoms or molecules per unit cell;
M the atomic or molecular weight of the substance
under investigation; d the density (in g/cm?); and v
the volume of the unit cell (in cm3). While d and v can
be determined to a high degree of accuracy by steadily
improving experimental methods, the value of # is
somewhat uncertain. Because of imperfections in
crystals,? #, as the average of a great number of unit
cells, might not be an integer but instead a quantity
very close to an integer. If the real # is slightly larger
than the closest integer (interstitial atoms in the
crystal) which is substituted for #, a smaller value for
N will be obtained. The reverse relationship holds in
the case where there are vacancies in the crystal. N
determinations by Eq. (1), using a larger number of
different substances, may also not solve the problem,
for vacancies are more frequent than interstitial atoms
in crystal lattices.

Therefore, in order to obtain the correct Avogadro’s
number, it is necessary to know the number of imper-
fections per g atom or per g mole of the crystalline
substance. Such a determination, of course, should not
be made by the x-ray method, but by an independent
method, for instance by conductivity measurements.?
Unfortunately, such estimations are very uncertain.
Consequently, it seems there is no way for the precise
determination of the absolute number N, to be made,
unless a method is found, other than the x-ray, for the
exact determination of the extent of lattice defects in
crystals.

However, there is still a possibility of solving the
problem by agreement. If it is found that a certain
substance has a lattice which in its perfection may be

1R. T. Birge, Phys. Rev. 62, 301 (1942); U. Stille, Z. Physik
121, 142 (1943); 125, 174 (1948).

2 See, for instance, F. Seith, Imperfections in Nearly Perfect
Crystals (John Wiley and Sons, Inc., New York, 1952), pp. 3-76.

3H.W. Etzel and R. J. Maurer, J. Chem. Phys. 18, 1003 (1950);
F. Seitz, Revs. Modern Phys. 23, 328 (1951),

very near to a sound lattice (a sound lattice being
defined as one with no vacancies and no interstitial
atoms), the absolute Avogadro’s number N, can be
calculated by careful density and lattice parameter
measurements. Since we now have the . absolute
Avogadro’s number, the x-ray molecular weight M, of
other crystalline substances can be determined, using
the same Eq. (1). If one compares these weights with
the chemical weights M, one can estimate the number
of defects D per g mole of the respective substancet

D=N,(M,—M)/M (chem. scale).

With D positive there are interstitial atoms in the
lattice; with D negative vacant sites are predominant.
If, within the error limits, M ,— M =0, then the lattice
of the substance is as perfect as that of the reference or
normal substance used for the determination of Ny:
the lattice is sound. In case there happen to be sub-
microscopic regions with vacancies and interstitial
atoms in equal amounts within the same crystal, then
the crystal would appear sound if we apply the above
method. However, such a distribution of imperfections
is unlikely, especially after heat treatment of the
crystals.

The imperfection I of a crystalline substance, that
is the ratio of the numbers of imperfect sites to all
sites, can also be determined simply by

I=M,—M)/M, or (No—N)/N, or (d—d.)/d.,

if one prefers to calculate from x-ray data the value of
N for the substance, or the density d., instead of M.

Thus, for the determination of the soundness of
crystals a definite N, is needed, which in turn can be
found using a substance with a sound lattice to make
the necessary measurements. It is herewith proposed
to regard purest calcite crystals as being such a sub-
stance, because of the following reasons:

(1) The growth of calcite occured only very slowly
during long periods and its lattice should be perfect.

(2) Siegbahn obtained the sharpest x-ray spectral
lines only with calcite crystals; this serves as an indi-
cation of the perfection of the lattice for the best calcite
samples. '

4 M. E. Straumanis, Acta Cryst. 2, 83 (1949).
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TaBLE I. The absolute value of Avogadro’s constant
(physical scale).

Ny
Du Mond and Cohen (1948)# 6.02514 X102
The author (1949)b¢ 6.02567
Bearden and Watts (1951)4 6.02566
Du Mond and Cohen (1952)¢ 6.02544
Stille (1952)f 6.02533

d See reference 16.
e See reference 14.
t See reference 17.

2 See reference 15.
b See reference 4.
¢ See reference 13.

(3) Siegbahn’s Avogadro constant (V) is related to
all x-ray wavelength measurements,® which in turn, if
multiplied by the conversion factor A,/A,=1.00202,
agree perfectly with wavelength measurements made
by means of gratings.S

(4) Nuniversat (see Table I, DuMond and Cohen)
agrees within the experimental error with NV, determined
from calcite, as shown below.

There also are disadvantages, since even the purest
calcite samples contain some impurities in solid solution
with the parent crystal,” and this changes the molecular
weight of the substance.® Nevertheless, accurate deter-
minations of Ny are possible, if thorough analysis of the
calcite (for the calculation of M) and precision deter-
minations of lattice parameters and of density are
made with the same samples.

However, it is also possible to calculate Vo using the
data already available. Siegbahn’s Avogadro number
(N =06.0594X 10% mole™?),5 obtained with the molecular
weight of CaCO;=100.075, can be easily corrected
using the molecular weight for purest calcite (a mixed
crystal), and the absolute wavelength in A.

N calculated by means of Eq. (1) is

No=nM (calcite)/dv, (2)

where the volume of the unit cell v is expressed in
A3/10%. N, was obtained, and can be checked, by ex-
pressing the volume of the unit cell in kX3/10% (1 kX is
1000X units), and using the above-mentioned molecular
weight for CaCOj:®

N,=uM (CaCO;)/dv'. 3)
Assuming that the lattice of calcite is sound (in the
sense mentioned above) and that the densities of purest

calcite agree within the error limits with that used by
Siegbahn, it is easily obtained from (2) and (3) that

M (calcite) o/ kN,
0= ——ZV‘g = b
M(CaCOs3) v (1.00202)3

because #'/v=1/(1.00202)3. The latter is the conversion
factor obtained by comparing the x-ray wavelengths, as

4)

5 M. Siegbahn, Spektroskopie der Rintgensirahlen (J. Springer,
Berlin, 1931), second edition, g 43.

6 K. Lonsdale, Acta Cryst. 3, 400 (1950); W. L. Bragg, J. Sci.
Instr. 24, 27 (1947).

7 A. Ievin$ and M. Straumanis, Z. Physik 116, 194 (1940); see
also K. W. Andrews, Mineralog. Mag. 29, 85 (1950).

8 M. Straumanis, Z. Physik 126, 49, 60 (1949).
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measured by means of a grating and by the calcite
crystal.®

The factor %=100.095/100.075= 1.00020-0.00003
was previously determined by the author in 1944, and
its necessity emphasized for determinations of x-ray
molecular weight and Avogadro’s number.8* However,
the respective papers, because of the war, did not
appear in print until 1949, although they were accepted
for printing in October, 1944. A paper by Birge, sug-
gesting the same correction for Avogadro’s number
because of solid solution formation, appeared in 19451

If one considers only the change in the atomic weights
of Ca and C since the time of Siegbahn’s measurements,
a value of 100.090/100.075= 1.000149 could be obtained.
On the basis of the analysis of purest calcite samples,'? a
molecular weight of 100.095 was calculated for calcite,
and the factor % then became 1.0002. Substituted for
k in Eq. (4) the absolute Avogadro’s number is#3

No=(6.024034-0.00025) X 10% g mole™ (chem.),
No= (6.02567-£0.00026) X 10% g mole—t (phys.).

The relative error was computed assuming that
AR=3X10"5 k, A(\/A)=1.1X10"5(\,/A),% and Ar
=0.5X10"% 7, Ar being the error for the Smythe
factor.* The systematic error, which is caused by the
imperfections which still may be present in the crystals,
is of course not known.

The reciprocal value of Ny is 1.66002X 102 (chem.
scale) and not 1.66035X 102 as derived from the old
N=6.02282X10%. Calculated densities d, then are
given by the relation

d=1.66002 M gpom/,

with v in A% Thus, the density value of purest calcite
appears as a reference value.

Table I shows the agreement of Ny (in the physical
scale) with the evaluation of Avogadro’s number by
some other investigators.**=17 These figures show that
the value of Vo, derived from measurements made with
purest calcite, is in excellent agreement with other
evaluations, especially with those made by Bearden

, especially wit} : y
and Watts. It agrees also with the universal constant as
calculated by the method of DuMond and Cohen,
confirming the assumption of the soundness of the
calcite lattice.

The proposition of regarding calcite as a reference
substance with a lattice nearest to a sound one is there-
fore justified, and the perfection of lattices of other
crystalline substances can now be compared with that

9 J. A. Bearden, J. Appl. Phys. 12, 395 (1941).

1M, Straumanis, Z. Physik 126, 65 (1949).

nR T, Birge, Am. J. Phys. 13, 67 (1945).

12 M. Straumanis and A. Dravnieks, Z. anal. Chem. 120, 168
(1940).

18 M. E. Straumanis, J. Appl. Phys. 20, 726, 733 (1949).

“4J. W. M. DuMond and E. R. Cohen, Am. Scientist 40, 447,
450, 458 (1952).

16 T, W. M. DuMond and E. R. Cohen, Revs. Modern Phys. 20,
82 (1948).

16 J. A. Bearden and H. M. Watts, Phys. Rev. 81, 73 (1951).

177, Stille, Physik. Bl 8, 397, 403 (1952).
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one of calcite, using the value for N, as derived in the
foregoing.

Note added in proof:—The new value for \,/A, recently
calculated by DuMond and Cohen®® is 1.002063. Substi-

8 J, W. M. DuMond and E. Cohen, Revs. Modern Phys. 25,
691,706 (1953).
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tuting this value for 1.00202 in Eq. (4), No=6.02489
X102 (physical scale) is obtained, which is even in
a better agreement with 6.02472X10%, the newest
Nuniversar of the two authors,’® than those of Table I.
But if one uses the newest No, the respective Ag/\.
also must be used.
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The theory of the general binary collision is discussed, and it is demonstrated that the rearrangement
scattered amplitude can be derived from the integral equation which is convenient for determining the
direct (no rearrangement of particles) scattered amplitudes. As a consequence, it is shown that no ambiguity
in matrix element for the rearrangement amplitude in Born approximation exists.

HE binary rearrangement collision is a process
in which a system A in state # collides with a
system B in the state m, and systems C in state s and D
in state ¢ emerge. We shall consider events in which no
photons are involved and that no particles appear or
disappear. In previous treatments'?> of the general
two-body collision different unperturbed Hamiltonians
are employed for developing the stationary state in-
tegral equations. If no rearrangement of particles occurs
in the collision, the relevant unperturbed Hamiltonian
is that describing the relative motion of the two non-
interacting systems 4 and B. If a rearrangement of
particles occurs so that systems C and D appear, then
it is convenient to select as unperturbed Hamiltonian
that pertaining to the relative motion of C and D as
noninteracting systems. However, with the latter pro-
cedure it is not clear from the derived integral equation
in what way the boundary conditions are met since the
incident wave, which is an eigenfunction of the alter-
native unperturbed Hamiltonian referring to systems
A and B, is manifestly not present. Indeed, it is not
apparent that the corresponding integral equations
resulting from the separate imposition of the outgoing
boundary condition describe the same wave function.
Clearly, a single integral equation satisfying the
boundary conditions should provide the amplitudes
pertinent to any event, rearrangement or otherwise. It
is the purpose of this note to demonstrate that this is
indeed the case, and incidently to remove the serious
ambiguity in matrix element arising in the Born ap-
proximation for rearrangement amplitudes. This am-
* The research reported in this paper has been sponsored by the
Geophysical Research Directorate of the Air Force Cambridge
Research Center, Air Research and Development Command.
IN. F. Mott and H. S. W. Massey, Theory of Atomic Collisions
(Oxford University Press, New York, 1949), second edition.

2 L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Com-
pany, Inc., New York, 1949), p. 230.

biguity stems from the fact that either of the interaction
energy operators between systems 4 and B, or C and D,
yield the same matrix element? when exact wave func-
tions for the unperturbed systems are presumed. How-
ever, such wave functions do not exist except in the
very special three-body collision of electrons with
hydrogen atoms, so that, in general, a difference in
matrix element necessarily arises. For rearrangement
(exchange) scattering of electrons from atoms this am-
biguity has been referred to as “prior-post discrep-
ancy,”* and has been clarified by an analysis® which
will now be extended to the general binary collision.
We wish to solve the wave equation

(H—E)¥=0, ¢))

where the Hamiltonian can be written in either of two
ways,
H=H,p+Vap=Hcp+Vep. (2)

Since the entire calculation is performed in the center-
of-mass system, the unperturbed Hamiltonians for the
initial and final systems may be written as

2

Hap=H,(ro)+H(rs)— Vrap?,
MAB
ﬁ2
Hep=Hc(re)+Hp(rs)— Vred.
MCD

Here 1,, 15, ¥, and r; are the internal coordinates of the
respective systems, while rq;, and r.; denote the vectors
that connect the centers of mass of the systems 4, B
and C, D respectively. For the internal motion we

3 Bates, Fundaminsky, and Massey, Trans. Roy. Soc. (London)
243, 93 (1950).

4 Corinaldesi, Trainor, and Wu, Nuovo cimento 9, 436 (1952).

5S. Altshuler, Phys. Rev. 91, 1167 (1953).



