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Energy Loss of Moving Electrons to Diyolar Relaxation
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The relation between energy loss of a moving charged particle and dielectric loss in an insulator is analyzed,
and a formula giving the rate of energy loss to dielectric relaxation of an electron traversing a dipolar medium
is deduced. For an electron having kinetic energy lower than the lowest electronic excitation potential, this
interaction makes a substantial contribution to the total energy loss, one often comparable to the loss to
molecular or lattice oscillations. Possible applications in physics and in radiobiology are mentioned.

should be noted that, in the problem under considera-
tion, all magnetic eGects can properly be neglected. 4

The method is limited, of course, to suKciently fast
particles, and to small energy transfer per "collision. "

The electric displacement vector D(p, t) at a point
P due to a point charge e moving with velocity e in a
path having shortest distance from P (impact pa-
rameter) equal to p has components

A PURPOSE of this note is to point to a close rela-
tionship between the energy loss of a moving

charged particle and dielectric loss in an insulator.
This implies in particular that dielectric absorption
stemming from dipolar relaxation, which in dipolar
substances such as water is very important, should also
give rise to a substantial energy loss of a moving charged
particle —a fact which appears to have been overlooked,
or at least rarely appreciated, heretofore. An under-
standing of this process is of considerable importance
for many theoretical and practical problems in the
study of the electrical behavior of solids and liquids,
and in the study of chemical and biological effects of
ionizing radiations.

For an electron of kinetic energy sufficiently high to
excite the electronic system of a molecule, atom, or
ion of the medium, that interaction always dominates,
and is well understood. ' If the kinetic energy is lower
than the lowest electronic excitation potential, further
dissipation of the kinetic energy proceeds by excitation
of oscillational modes of the lattice or of individual
molecules; the rate of energy loss by this interaction
is also rather well understood. ' It will be shown here
that the aforementioned interaction of the electron
with the permanent electric dipole moments of mole-
cules in a dipolar medium may contribute significantly
to the energy loss in this second energy region. An

approximate expression for this contribution to the
rate of energy loss will now be deduced.

We shall use a method whereby the moving particle
is considered as a moving point charge, and in calcu-
lating the rate of transfer of energy to the medium
shall neglect in first order the reaction on the particle,
which will thus be considered to be moving along a
straight path. The rate of transfer of energy can be
obtained with the use of the empirically determined
complex dielectric constant by developing the field of
the point charge into its Fourier components. This
method is similar to (and, in first approximation, gives
a result identical with) that of the equivalent radiation
Geld Grst developed by Fermi' (see also Williams' ). It
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D, (p, t)=ep(p'+v't') '*, Ds(p, 1)=eel(p'+tsar') i, (1)

perpendicular and parallel to the direction of motion,
respectively (with appropriate choice of the zero of
time 1). Let

D(p, t)= D„(p)e '"'Cke

E(P )= E-(P) '"'d (2)

whence

D„(p)= (2ir) '
~ D(p, t)e'"'df

E-(P)= (2 ) ' " E(P, ~) '"'«. (3)

Here E(p, t) is the electric Geld strength, and reality
of D(p, t) and E(p, t) requires that

(4)D„=D „*, E„=E „*.
Hence, ' if

Gn1= 6] GO 162 M )

is the complex dielectric constant (ei and es are real),
ce/2~ being the frequency, then

D =e„E, or E„=e„*D„/e„e„*.

The energy transfer from the particle to unit volume
at I', due to the complete path of a single particle, is
given (ignoring quantum effects) by'

BD(p, t)
dt.L(p) = (4~)-' E(p, ~).
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where x is defined by
x= orpmin/&q

(10)

p;„being the minimum value of p. This value will be
taken to be of the order of magnitude of the inter-
molecular distance d. If the de Broglie wavelength X of
the particle were greater than d, then p,„;„=Kshould
be chosen, but in this case it will be shown that the
results become inaccurate for another reason, and we
therefore restrict our treatment to velocities which
satisfy

ir) re/md,

where m is the mass of the particle.
It has already been mentioned that a condition for

the validity of the method used here requires that, in

general, the transfer of energy in a single "collision"
be small compared to O'. The individual energy-transfer
events can in this context be assumed to occur in quanta
of energy hor. Hence the final integral (10) may not be
extended beyond

or,„=W/ti,

and the main contributions to the integral should arise
from frequencies small compared to ~, . If this is the
case, then the value of the integral will be altered only .

insignificantly if it is extended to infinity instead of to

By use of Eqs. (2) and (4) to (6) we find

p 00 p00 ~00

L (P) = —p(4rr) ' dt dor dtc(D„E„)ore 'c~-»'

ep(or)
D„.D„*ordcd. (7)

ei co c2

Now from Eqs. (1) and (3),

9-(p). D-*(p)=
I
D -(p) I'+ ID -(p) I'
= (e' '/+p'~)Ãp'( )+& '( )j, (g)

where we have introduced a new parameter

n=o p/ir

and Eo and E~ are the modified Bessel functions of the
second kind, of order 0 and 1, respectively. If t/I/' is the
kinetic energy of the particle, its average rate of loss
of energy then follows, with application of Eqs. (7)
to (9):

. Now the maximum eRective frequency in the
Fourier development occurs at about or~ir/p;„. The
aforementioned condition thus requires that

or .= W/h»i/rd, or, x .= or,„d/c»1. (12)
Since W=mv'/2, this condition is essentially the same
as condition (11).

Evaluation of the final integral (10) requires knowl-
edge of ei(or) and pp(or). In general pp(cd) has contribu-
tions due to the various absorption mechanisms of the
medium. [Empirical values of ei(or) and pp(or) could,
in principle, be used. in (10).) For dipolar substances
which, like water, show Debye absorption (single re-
laxation time), '

and

&s 4r
eqv =e

1+or 'r

s 6ir 077
6g CO =6 M

1+or 7'

(13)

(14)

where 7 is the relaxation time, p, = pp ——pi(0) the static
dielectric constant, and ei„ the dielectric constant at
frequencies su%ciently lower than the lowest main
infrared absorption frequency or;„. The quantity p" (or)
describes the absorption due to ionic oscillations in the
infrared, and in the regions of still greater frequency;
c'(or) describes the corresponding dispersion. In par-
ticular,

p'(or) = p;„ if or(or;„, ~'(or) = rc' if or) or,„(15)
where e is a suitable average of the optical refractive
index.

To find the contribution to dW/dt due to Debye ab-
sorption alone, we substitute, in the final integral (10),
[pp(or) —p" (or)] for e2(or). It will be seen from (14) that
the quantity or[e2(or) —p" (cd)$ increases proportionally
to orp for small or, but becomes (p, p,„)/7.—, independent
of or, if or»1/7. Now Eq. (15) shows that the denomi-
nator (pP+pp') is smallest for or)or, „, where it is
p '+pP=n4. Thus

&2 M 6 CO 6s Sir
lf M+coir

ey or eq co

(16)

For co&coi„, the left-hand expression has a considerably
smaller value. Therefore the or integration in (10) can,
with sufficient accuracy for our purposes, be restricted
to values ro&cubi„, provided that

x;„=or;„d/ir«1, (17)
because relatively little energy is then transferred in
the region co(cubi„, owing to the eRective "screening"
manifested as a relatively great value of (pP+ pP). In
water, for example,

~ir=3X10" sec ' d=3X10 ' cm,

so that, in view of (11), condition (17) is always ful-
filled for electrons. (This value of or, „ is obtained from
an examination of the available data on the frequency-
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dependent refractive index of water, ' and is that value
of co above which e has essentially the optical mag-
nitude. )

The average rate of energy loss is now found by in-
serting (16) in (10), and restricting the integration as
indicated in the preceding paragraphs:

d5" 2e' &,—~;„p~~
xEe(x)Ei (x)dx. (18)

dt ~d 7.n4

In view of (17) and (12), the limits of integration can
with adequate accuracy now be extended from 0 to
infinity. The integral is then equal to m'/8. Thus,
6n ally,

To judge the magnitude of the rate of energy loss,
we consider first the case of electrons penetrating liquid
water. Here, recent data' give, at 20'C, e,=80.4,
e,„=4.9, 7-=1.01)&10 "sec; furthermore, n= j..3. Then

—dW/dk=10" ev/sec (HeOi;, „;a, 20'C).

Equation (19) shows that this rate of energy loss is
independent of the electron energy, in the range from
1 ev to 10 ev. Its magnitude is indeed comparable to
that of the energy loss" by transfer of vibrational
quanta (for example, for electrons with an energy of
several electron volts, emission of a quantum of 0.1 ev
every 10 " second). Moreover, it is temperature de-

pendent, chieQy because of the temperature dependence
of r.' in water at 75'C it is about four times as great
as at O'C.

For the case of ice slightly below the melting point,
we note that'e at —0.1'C only r(2X10 ' sec) is

markedly diGerent from the corresponding quantity for
the liquid. Thus

(19)

dN~/dt=—10' ev/sec (HsO„i;a, —0.1'C).

This result should be valid for all electrons with kinetic
energy greater than about 1 ev (the great value of the
relaxation time effectively removes the restriction im-

posed by v/d &to,). This will usually be an insignificant

magnitude; indeed, the striking difference between

liquid and solid water near the melting point could
provide the basis for an experimental measurement of
the dipolar-relaxation energy loss. As the temperature
drops, the reciprocal relaxation time, and therefore the
energy loss, declines extremely rapidly. "

Our results show that in problems dealing with the
motion of electrons of low velocity (below the lowest
electronic excitation potential) in dipolar solids or
liquids, neglect of the dipolar relaxation excited by the
moving charge must introduce an error which may be
a great one. This conclusion has an obvious bearing on

experiments, with dipolar materials, involving such

phenomena as photoconductivity, dielectric break-

down, etc., and in interpretations in radiation chemistry
of aqueous systems and radiobiology. In the latter,

especially, consideration of the interaction of the many

secondary, tertiary (etc.) electrons produced by ionizing

radiation, with the medium, which is almost always

aqueous in nature, must be essential for a realistic

appraisal of fundamental mechanisms. The general role

of the dielectric dispersion in radiobiology has already

been emphasized. '~
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A213, 400 (1952).' The energy loss due to other types of absorption can, of course,
be calculated from the general expression (10), provided that the
appropriate dielectric constants and dielectric loss are known as a
function of frequency.
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It should be noted that —(dW/dt)/n gives the energy
loss per unit of actual path length, but that, because
(chiefly) of elastic scattering, there is frequent angular
deflection, and the actual path is usually tortuous.
Therefore Eq. (19) cannot, be used to ascertain a
measurable range.

A further limitation of Eq. (19) must be mentioned.
According to Sack, r the Debye equations (13), (14)
become inapplicable at frequencies greater than

kTr/I, (20)

where I is an average moment of inertia of the dipolar
molecule. Thus expression (19) is not valid when the
maximum effective frequency e/d is of order of magni-

tude greater than co,. Together with condition (12),
this would limit the applicability of Eq. (19) to par-
ticle energies lV within the limits given by

2I't'/retd'& W &rrtd'to '/2. (21)

For water (I=10 ~
g cm'), to,~s)&10" sec ', and Eq.

(19) therefore applies in this case to electrons having
kinetic energies in the range between about 1 ev and
10 ev. This restriction does not imply, of course, that
energy loss to dipolar relaxation does not occur without
the speci6ed range, but rather that Eq. (19) there re-

quires modification. However, the upper limit to 8'
given by (21) does not appreciably diminish the useful-

ness of (19), because it is usually as high as or higher
than the lowest electronic excitation potential, and loss

by electronic excitation or ionization, ' when it is ener-

getically possible, is always very great compared to the
dipolar relaxation loss. In this connection it may be
noted that dipolar relaxation loss could not possibly
account for the allegedly anomalously great stopping
power of liquid water for alpha particles, ' for (19) will

always yield too great a value of dW/dt when v/d) —co„
and even so it gives, for high-energy charged particles,
a contribution negligible compared to the electronic loss.

' N. E. Dorsey, Properties of Ordirsary Water Substauee (Rhein-
hold Publishing Corporation, New York, 1940), p. 285.

' R. A. Sack (private communication, to be published).
R. L. Platzman, in Symposiums. on RaCiobiolngy (John Wiley

and Sons, Inc. , New York, 1952), Chap. 9.


