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(f) The Curie temperatures are found to depend upon
the number of nonmagnetic ions substituted inde-
pendent of the type and to follow nearly a linear
decrease with increasing concentration of AP+ or Ga'+.
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It is shown that the augmented plane-wave method recently proposed can be given an alternative inter-
pretation which leads to a much simpler analytical formulation. We join a plane wave of energy Eo outside
the spherical atoms continuously, but with a derivative which is discontinuous, to spherical solutions of
Schrodinger s equation inside the spherical atoms, corresponding to an energy E, to be determined. We
compute the expectation value of the energy for this combined wave function, consisting of contributions
from the plane-wave region, the. spherical atoms, and also a surface contribution from the surface of the
sphere, since the discontinuous derivative is equivalent to an infinite Laplacian which integrates to a 6nite
contribution over the sphere. We now regard E as a parameter, and vary it to make the expectation value
of energy stationary. The resulti'ng wave function is proved to be identical with that set up in Part (I).
Furthermore, the energy E inside the spheres proves to be identical with the expectation value of the
energy, so that our functions are exact solutions of Schrodinger s equation inside the sphere, but not outside
the sphere, since the energy of the plane wave Eo is difI'erent from E. However this discrepancy is just can-
celed in the expectation value of energy by the surface integral. The resulting formulas for energy and
wave function are much more convenient to use then those in Part (I).

HIS note forms an extension to the paper by one
of the authors, ' outlining a method for Gtting

approximate solutions of a spherical Schrodinger equa-
tion within the atoms of a crystal onto a plane wave
in the region between the atoms. The reader is assumed
to be familiar with this paper, which we shall describe
as (I). In Eq. (9) of (I) we have set up the expansion
coeKcients of the assumed function within the spherical
atoms, corresponding to energy values given by Eq.
(8) of (I). Both these equations contain infinite sums
which would be hard to evaluate in practice. By noting
the resemblance of these sums to the expansions of
Green s functions in terms of eigenfunctions of Schrod-
inger's equation, it occurred to one of us (MMS) that
these sums in Eqs. (8) and (9) could be rewritten in a
closed form. In this note we state the resulting equa-
tions, and the simple physical interpretation which can
be given them.

Outside the atoms, in a region whose potential energy
is taken to be zero, we have a plane wave, of propagation
vector k, energy Eo. Let us now set up a solution of
Schrodinger's equation inside the ith spherical atom,
with energy E [so far undetermined, though later to be

~ Work assisted by the U. S. 0%ce of Naval Research.
' J. C. Sister, Phys Rev. 92, 603. (1953).

identified with the E of (I)j. We build up this solution
from solutions of the Schrodinger equation for each l
value, for the assumed E; let such a solution, regular
at the origin of the ith atom, be N, i(E; r) We can.
superpose such functions, with appropriate coefficients,
to set up a function which is continuous with the plane
wave at the surface of the sphere; in general, however,
the derivative will be discontinuous at the surface. Ke
can now compute the expectation value of the energy
for the wave function consisting of the plane wave of
energy Eo outside the sphere, and the spherical solution
of energy E inside the sphere. There will be contribu-
tions to the integral of the Hamiltonian function con-
sisting of Eo times the integral of the square of the
amplitude of the plane wave outside the sphere, and E
times the integral of the square of the spherical solution
inside the sphere. These are not the only contributions,
however: on account of the discontinuity of derivative
on the surface of the sphere, the Laplacian, or kinetic
energy, is infinite there, and integrates to a finite
contribution over the surface of the sphere.

%e can now show that the augmented plane-wave
function as set up in (I) is just such a function as we
have described, in which further the expectation value
of the energy is identical with the value E for which we
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have a solution of Schrodinger's equation inside the
sphere. In other words, our functions within the sphere
are exact solutions of Schrodinger's equation, for an
energy equal to the expectation value of the energy,
and the discrepancy in expectation value of energy
arising because the energy Eo of the plane wave differs
from E is exactly compensated by a contribution arising
from the surface discontinuity. We can further show
that if the value of E is varied, the expectation value
of the energy is an extremum for just those values of E
which we have just described, so that we can derive
our functions from a variation principle, using E as the
quantity to be varied.

It will be recognized that the method as described in
this language has a close resemblance to that proposed
in 1937 by one of the authors. ' The diGerence is that
in that earlier paper, the energy E of the solutions
inside the spheres was carried as a parameter all through
the calculation, including the secular equation involved
in making a linear combination of augmented plane
waves, and was finally constrained at the end of the
calculation to equal the expectation value of energy for
the linear combination of waves. This process proved
in practice to be extremely diKcult to carry out, and
prevented the practical use of that method. The present
method avoids this difhculty, and as will be apparent
from the mathematical formulation to be presented, it
is now very easy to get the energy values of the separate
plane waves.

The statements which we have made about the
present method can be easily veri6ed, and lead to
greatly simplified formulas to replace Eqs. (8) and (9)
of (I). We proceed by expanding the functions e,~(E; r)
as series of the functions I;„~(r) of (I). Those functions
were solutions of the Schrodinger equation for such
energies E; ~ that the functions I;„~ had the same
logarithmic derivatives at the surface of the atomic
sphere, r=r;, as the corresponding spherical Bessel
functions j ~ (kr) appearing in the expansion of the plane
wave. The expansion coe%cients c;„~ in the expansion
N, ~(E; r) =P(m)c;„il,„i can be easily shown to be

c,„~——(2l+1) '4~rPu;„~(r, )N, ~(E; r,)(E,„~ E)'—
XLd in@;&(E;r)/dr d lnj, (kr)/dr) =.;. —(1)

We can multiply these coefficients by I;„,(r), and sum
over e, obtaining a formula for I;~(E; r). If we build
up a sum of these functions inside the sphere, con-
tinuous with the plane wave outside, we have

as exp(ik R;)P(l) (2l+1)i'P&(cose)j &(kr;)

X '(E' )L '(E; ')3 ', (2)

in the notation .of (I). If we expand the functions
I;~(E; r) and I;i(E; r;) in terms of the I, ~'s, as de-
scribed in Eq. (1), we can then immediately show that
the expression (2) becomes identical with the wave
function inside the sphere as derived in (I), which we

s J. C. Slater, Phys. Rev. 51, 846 (1937).

find by multiplying the coefficients u;„& of Eq. (9) in

(I) by the functions u;„i(r), and summing over all
values of e and l.

Next we consider the energy. It is immediately
obvious how to compute the contributions of the plane
wave, and of the spherical solutions, to the integral of
the Hamiltonian operator over the wave function. As
for the surface contribution, we note that the integral
of the Laplacian kinetic energy operator over a thin
spherical shell over which there is a discontinuity of
normal derivative is fu/(dN/dr) i (dg/dr—)s)da, where
(du/dr) „(dN/dr) s, respectively, are the normal deriva-
tives inside and outside the shell, and

fdic

indicates
integration over the surface of the sphere. Using this
result, we find that the surface contribution to the
integral of the energy can be written in the alternative
forms:

as*as4~rPP (l) (2l+1)jP(kr;)
XLd lnN;i(E; r)/dr d lnj &(k—r)/dr jr =r; (3)

or

~.*~,g(i)(2i+1) jP(kr, )
XK(~)~'- '(r~)/(E'- —E)j '.

The second term in the square bracket in (3) can be
eliminated if we wish by using the relation g (l) (2l+1)
Xj,(s)dj &(s)/Cs=0, which can be proved from the
properties of spherical Bessel functions.

When we add the three contributions to the energy
integral, and use Eq. (10), (I), giving the normalization,
we find that if we express everything in terms of the
I;„~'s, our condition for the energy becomes identical
with Eq. (8), (I). However, if we express the same
thing in terms of the N, t(E;r)'s, we have the much
simpler but equivalent formula

Q(E—Es) =P(i, l)4mrP(2l+1) jP(kr, )
XLd lnu, ~(E; r)/dr)$. =.;. (5)

We can now use Eq. (5) to determine the energy E.
This is a very simple formula to use, since we can plot
the right side as a function of E, requiring only the
logarithmic derivative of the function I;~(E; r) on the
surface of the sphere. This function has a resemblance
to a cotangent curve, with an infinite number of
branches. The intersections of this curve with the
straight line Q(E—Ee) give the required values of E.
When these are determined the wave functions can be
set up in terms of (2), and it is then a simple matter to
calculate the matrix components of energy between
diferent wave functions, required in setting up the
secular equation for interaction of diferent augmented
plane waves. Further properties of the method will be
described later in connection with its application to
speci6c cases.

It is interesting to see how the wave functions within
the sphere, which were originally intended to join onto
the plane wave continuously and with continuous
derivative, have acquired a discontinuity of derivative
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at the surface of the sphere. Such a discontinuity is not
present if we break oG the series in e at a 6nite point,
for each of the functions I;„~joins the plane wave with
continuous slope. Superposition of the infinite number
of functions introduces a discontinuity of slope, how-
ever, just as we know that a Fourier series can introduce
such a discontinuity. The infinite series representation
of the function inside the sphere cannot be diGerentiated
at the surface of the sphere; its discontinuity of slope
at the surface is related to the fact that it can be
identi6ed with a Green's function for Schrodinger's
equation.

In the Appendix (the work of MMS), we shall show
three things: that the slope of the function represented
by the right side of Eq. (5) is always negative, verifying
its resemblance to a cotangent curve, since it has
asymptotes wherever one of the u;E(E; r;)'s is zero, and
goes monotonically from an infinite value at one
asymptote to a negatively in6nite value at the next;
that our statement regarding the energy being an
extremum as we vary E is true; and that the sums over
u encountered in (I) are expressible in terms of Green's
functions, the fact which led to the motivation of the
present treatment, and which explains the discontinuity
of slope.

ap*ap( df/dE+Q) = 1.— (7)

Hence we see that the contribution of the part of the
wave function inside the spheres to the normalization

APPENDIX

Let us define the quantity

Q (i, l)4xrP(21+1)jP(kr;) [d lnu; q(E; r)/dr j.=.,
as f(E). It is this function which appears on the right
side of Eq. (5). Comparison with Eq. (8), (I), shows
that it can also be written in the form

f(E)=Z(i 1) (21+1)'ji'(kr')
X[K(u)u'. P(r')/(E, ~

—E)7 '.

Let us diGerentiate this expression with respect to S.
Then we have

df/dE= —Q(i, l) (2l+1)'jP(kr )

&& [K(u)u;.P(r;)/(E;. ~
—E)'3

. X[&(u)u; P(r;)/(E;. ~
—E)j '. (6)

Each term in (6) is a perfect square; thus we see that
df/dE must be negative. Furthermore, by comparison
with Eq. (10), (I), we can understand the'significance
of the quantity (6). 'That equation was the normaliza-
tion relation; and we see that it can be written in the
form

equals ap—*apdf/dE, and the contribution of the plane
wave is uo~a00.

Next we can prove our theorem regarding the
variation properties of the solution. Let us 6rst set up
the expectation value of the energy. The contribution
of the spherical p'art of the solution is ap*ap( —Edf/dE),
and of the plane wave Epap*apQ. From Eq. (3) or
(4), the contribution of the surface discontinuity is
ap*apf(E). If we write the total expectation value of
energy, and eliminate ap~ap by use of (7), we have

Energy= (f Edf/—dE+EpQ) ( df/dE—+Q) '. (8)

If we differentiate this expressiori with respect to E,
denoting derivatives of f with respect to E by primes,
the result is

f"[Q(Ep —E)+f$(—f'+Q)-'. (9)

Our energy equation (5) is equivalent to setting
Q(Ep —E)+f=0, so that we verify the statement that
our procedure makes the expectation value of energy
an extremum, ' when 8 is varied.

Finally we point out the relation between the series
over n, which appear in Eqs. (8) and (9), (I), and in
Eq. (4) of the present note, and Green's functions.
For a given type of atom and for a given angular
momentum we can subsume the two infinite series,
taken over the index rI, which appear in these equations,
under the expression

(21+1)G;i(x;,$; E)/4prgx

=2( );- (');. (~)/(E;. -E) (1o)

This series is the expansion of a Green's function of
the radial Schrodinger's equation in which the energy is
to be regarded as a parameter. This Green's function
G;q(x; P; E) is determined through the condition that
G;&(x; $;E)/$x satisfy the same boundary conditions
(for arbitrary P in the interval (0, r;) and for arbitrary
energy) as do the u;„~.

As is well known, the Green's function is continuous
with discontinuous slope at x= $. For the series we are
interested in $=r; and x=r is to the left of P. For
these values, then, it can be shown that

G;g(r; r,", E)= (r/r;)u;E(E; r)[u;$(E; r;)j
)& [d lnu, ~(E; r)/dr d ln j~(kr)/dr) '—. (11)

The boundary condition at r = r; is satis6ed by the value
of G;~(r; $; E) at r=r, , and the slope of G;~(r; $; E)
taken with r=r, and $ to the right of r. However, the
function which represents our series takes on the slope
of G;q(r; g; E) with $ to the left of r. Thus the series
has the slope de6ned by G, ~'(r, —0; r, ;E) which is
diferent from G, ~'(r~+0; r, ; E), which has the proper
slope.


