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Effect of the Surface on the Magnetic Properties of an Electron Gas
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The energy levels of free electrons confined to a finite cylindrical box with a uniform axial magnetic field
are obtained by the WKB approximation and used to compute the magnetic susceptibility with Fermi
statistics. The usual treatments which neglect the eBects of the walls are shown to be justified for both the
steady susceptibility and the de Haas van Alp/en terms provided the radius of the box is sufBciently large.
In the case of the oscillatory terms it is only necessary that the radius of the box exceed the classical orbit
radius E., of an electron having the Fermi energy g in the magnetic field. However, there exists. a surface
correction to the steady susceptibility whose magnitude relative to the Landau value is (f/pH)&(R, /ft)
This surface correction, the existence of which has been previously pointed out by Osborne and Steele, and
by Dingle, is shown to be extremely sensitive to the exact boundary conditions at the surface, including
both the abruptness of the surface jump in potential and the height of the barrier relative to the Fermi
energy. Indeed, the correction term can be either paramagnetic or diamagnetic depending on these details,
The form of the WKB approximation appropriate to different boundary conditions is discussed, and a
modification, of Dingle's theory is presented which may be used to calculate approximately the susceptibility
of the system for any value of the ratio ff/R, when the boundary conditions are known.

I. INTRODUCTION

NUMBER of papers' " have been published in
the last twenty years concerning the theory of

the magnetic susceptibility of a system of free electrons
or of electrons con6ned to a box, and a variety of
elegant methods have been developed. It has not been
altogether clear, however, to what extent the walls of
the system could be neglected in some of these calcu-
lations, and the dependence of the susceptibility on the
form of the wall potential has not been adequately
investigated. Osborne, ~ Steele, ' and Dingle, '' have
recently given calculations which take the walls into
account, but they have arrived at difterent conclusions
concerning the corrections to the susceptibility required
by the finite size of the box. Since the walls play an
essential role in a box of any size, it seems desirable to
have a derivation which shows this explicitly. The
author believes that the present treatment oGers a
clear picture of the physical situation as well as some
new results concerning the dependence of the suscep-
tibility upon the size of the box.

It is well known"" that in classical physics the
positive moment contributed by electrons that collide
with the walls of the system exactly cancels the negative

' D. Schoenberg, Proc. Roy. Soc. (London) A170, 341 (1939).' E.H. Sondheimer and A. H. Wilson, Proc. Roy. Soc. (London)
A210, 173 (1951).' R. B.Dingle, Proc. Roy. Soc. (London) A211, 500, 517 (1952);
A212, 38, 47 (1952).

4 R. B. Dingle, Proc. Roy. Soc. (London) A216, 118 (1953).' J. H. Van Vleck, Theory of Electric and Magrletic Suscepti-
bilities (Oxford University Press, London, 1932), p. 353 8.' K. Teller, Z. Physik 67, 311 (1931).' M. F. M. Osborne, Phys. Rev. 88, 438 (1952).

M. C. Steele, Phys. Rev. 88, 451 (1952).' L. Landau, Z. Physik 64, 629 (1930)."C.G. Darwin, Proc. Cambridge Phil. Soc. 27, 86 (1930)."R.Peierls, Z. Physik 80, 763 (1933);81, 186 (1933).
"M. Blackman, Proc. Roy. Soc. (London) A166, 1 (1938)."A more complete bibliography is given in the papers by Dingle.' J. H. Van Leeuwen, Dissertation, Leiden, 1919;Summary in

J. phys. et radium 2, 361 (1921)."Reference 5, Chap. IV.
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moment of electrons far from the walls. Van Vleck' and
Teller' showed that a similar balancing occurs in
quantum mechanics (with a nonzero resultant) and
gave arguments to justify the value for the magnetic
susceptibility obtained by Landau' from the free energy.
However, Teller's argument was for an infinite plane
wall, and Van Uleck's required the use of the old
quantum mechanics, although the details of his argu-
ments are very similar to those used in the present
paper. It is not clear to what extent either justi6es the
more recent calculations by Landau' and others of the
oscillatory de Haas van Alphen terms. The present
work had its origin, in an improved derivation for a
cylindrical box which made clear this balancing of
diamagnetic and paramagnetic states and obtained the
usual results for the Landau steady susceptibility and
the de Haas van Alphen oscillations provided the box
was su%ciently large. It was then found that the WEB
approximation could be used to calculate the energies
of the electron states whose wave functions were appre-
ciably distorted from free-electron form by the presence
of the walls and that from these energies corrections to
the total susceptibility could be obtained which were
important for smaller boxes. This work was in qualita-
tive agreement with that of Osborne' and Steele, ' who
predicted a "surface diamagnetism, " and agreed with
Dingle's work' in the size- and field-dependence of the
corrections but disagreed in that Dingle predicted a
paramagnetic correction of about one-third the mag-
nitude of our result. We have found that this difference
arises from our having determined the energy levels
from that form of the WEB phase integral condition
which is correct when the potential barrier at the surface
rises slowly, whereas Dingle used the form correct when
the barrier rises abruptly to inlnite height. We have
outlined a number of considerations which must deter'-

mine the correct form of the WXB approximation when.
we know the form of the surface potential in a real
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metal, but since we lack suKciently detailed information
concerning the surface potential we have not attempted
to carry through a calculation for any model of a real
metal. It appears that surface corrections of the general
form predicted should result for any reasonable model,
the numerical coefficient and sign depending on the
details of the model. Before further calculation is done,
it would be desirable to have experimental evidence at
hand: if such surface corrections can be located, their
sign and magnitude may be of great assistance in our
selection of a model of the metal surface and our choice
of the best form of the WEB approximation. If no
such corrections can be found, we must seek a model
that makes the surface e8ects too small for observation.

Unfortunately, much of the calculation that has gone
into this work is too lengthy for publication here, so
that frequently only results may be quoted. Most of the
analysis has been made available elsewhere. "

II. METHODS OF CALCULATING THE
MAGNETIC MOMENT

The usual procedure has been to calculate the mag-
netic moment M from the Helmholtz free energy F by
the formula

3f= —(BF/BH)r, r, ~, (201)

where H is the absolute value of the uniform external
magnetic field applied to the system, T the absolute
temperature, t/' the volume of the system, and E the
total number of electrons present. It is, however,
evident that if the electrons are independent, except
in so far as they obey the exclusion principle when
Fermi statistics are used, then the moment of the
system should also be given by the sum of the moments
of the individual electron states weighted with the
probability that the state is occupied. ' ' Thus with
Fermi statistics we should have

M = —P, (a~, (H)/BH)
X j 1+expL(;(H) —i)/»jI ', (2 2)

where k is the Boltzmann constant and ~;(H) the
energy of the state i, and where f is determined by the
condition

&=+;{1+expt (e;(H)—i)/kT) I ', (2.3)

the sum being taken over all single electron states. On
the other hand, the free energy is given by

Il =37) kT g; lnI 1+e—xpE(l ~;(H))/kTj I, (2.4)
'6 H. Brooks and F. S. Ham, Technical Report No. 169 of Cruft

Laboratory, Harvard University, March 10, 1953. This report
was published under contract with the Once of Naval Research
and has been distributed to the usual recipients of the Cruft
Laboratory Reports. The authors have a few extra copies which
they will be glad to send upon request. This report has, moreover,
been deposited as Document No. 4099 with the ADI Auxiliary
Publications Project, Photoduplication Service, Library of Con-
gress, Washington 25, D. C. A copy may be secured by citing the
Document number and by remitting $7.50 for photoprints or
$2.75 for 35-mm. micro6lm. Advance payment is required. Make
checks 'or money orders payable to: Chief, Photoduplication
Service, Library of Congress.

and since by (2.3) (BIi/Bi )='0, (2.1) and (2.2) give the
same result, provided the limits of summation in (2.4)
and the degeneracy of states with a common energy
(if we should use the index i to label a collection of
states with the same energy instead of a single state)
do not depend on H.

However, for a system confined by a cylindrical box
of cross section 2 with its axis parallel to the uniform
magnetic field, the energies of states unperturbed by
the walls are, if we neglect the moment due to spin,

e(n, k,) =k'k '/2m+ (2m+1)PH, v=0, 1, 2, (2.5)

where eh/2mc=p is the Bohr magneton, and the elec-
tronic wave function depends on the position coordinate
s along the axis only through the factor exp(ik, s). The
degeneracy of each such (m, k, ) level is to first approxi-
mation'8 eHA/kc, if we neglect spin degeneracy. As
remarked by Van Vleck' and Osborne, ' if we use only
these energy states (2.5) and this degeneracy in (2.2),
we find a large negative total moment of magnitude
greater than XP, whereas (2.4) and (2.1) yield the
usual Landau result (for PH«|)
M = —(4reP' V/k') ()Vs'/9 V) '*H

~P'H/2t-= :(i-)P—'H—, (2 6)

plus the periodic de Haas van Alphen terms. Here N(i')
is the density of states (including spin degeneracy) in
the energy scale at the Fermi level i, and the second
expression shows (2.6) to be much less in magnitude
than cVp. Our first problem is, then, to show that the
diGerence between these methods is removed when we
include the positive moments of the boundary states
in our summation (2.2).

III. THE BOUNDARY STATES IN THE WEB
APPROXIMATION

We consider the Schrodinger equation satisfied by
the wave function of a single electron state in a cylin-
drical box of length I.and radius R with its axis parallel
to the uniform magnetic field, in which we neglect all
interaction between electrons

—(&'/2~) L(BW»')+r '(BV/B4')
+r '(a/ar) (rap/Br)] ipH(W/By)—

+ (e'H2/Smc2) rQ =Ef, (3.1)

for «8, and the boundary condition p(g)=0. On
separating in cylindrical coordinates, we put

f= f(r) exp(ik, s+isy),
e'=E (h'k, '/2m) PHs, s=—0,—~1, ~2,
and get as the equation for f(r)

(3 2)

—(k'/2mr) (B/Br) (ra/Br) f(r)+ $ (k2s'/2rrir')

+ (e'H'r'/Smc') jf(r) = e'f (r). (3.3)

We now make the substitution r = e*, f(r) =g(x), which
puts (3.3) in a form suitable for the WKB approxi-
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mation, '~

(Bsg (g)/Bgs)+ (2m/A )Le'os*—(As$s/2m)
—(e'Hs/8mc') e4*)g (x)=0. (3.4)

This determines ~' in terms of s and e through the phase
integral condition (after transformation back to r)

p rs -
~

As@2 s2H2r2 q
——',

2ml e' — —
~

dr= (is+ s) Air, (3.5)
2mr' 8mc' I

I I

where r& and r2 are the two positive zeros of the quantity
under the square root, provided r&&E. This condition
yields

'=(2 +(.~+1)PH, (3.6)

and the energies are given by (2.5). Electronic states
with these energy values are not significantly distorted
by the container from the free-electron form, and they
will be referred to henceforth as "bulk states. " If,
however, ri(E(rs, then the upper limit of integration
is E, and it is evident that for given e and s, e wi11 be
increased over the value (3.6).'s These states are appre-
ciably distorted by the wall and will be called "surface
states. " We note that the quantum numbers n, s, and
k, and the spin orientation completely specify a single
state, which according to the exclusion principle can
be occupied by no more than one electron.
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Fn. 2. Moment of surface states for g=o, 1, 2.
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Fzo. 1. Energy of surface states for n=O, i, 2.
"R. E. Langer, Phys. Rev. 51, 669 (193/).
's When the upper limit is R, the (e+$) in (3.5) is incorrect.

For the present we will continue to use (I+)) here. The necessary
corrections are discussed in Sec. IV.

Evaluation of e' in (3.5) for the surface states has
been carried out, and the resulting "transverse energy"
e=E A'A, '/2—m is plotted, in Fig. 1 for n=0, 1, 2.
Details of this calculation may be found in reference 16
In plotting the 6gure we have changed the labeling o
an electronic state from n, k„s to n, k„rp, where
ra= (2hcls~/eH)& is the radius at which the effective
radial "potential" ti(r)= (A' s'/2mr')+ (e'B'r'/8mc') ap-
pearing in (3.3) and (3.5) has its minimum. We notice
that for a given e, states with rp smaller than a value
depending on e and H are bulk states with energies
given by (2.5).

The moment of a surface state is given by

M, = —(Bc„,/BH),
(Be ./BH)ro (Be ~/Bra)rr(drp/dH)), (3.'1)

in which the second term is for surface states very much
the larger. Since (Be/Brs)lr is positive, as is seen from
Fig. 1, and (drs/dH) negative, the moment of a surface
state is positive and very large compared to the moment
of a bulk state. The relatively few surface states are
thus able very nearly to cancel the large negative
moment contributed by all the bulk states. M„, is
plotted in Fig. 2 for is=0, 1, 2. Here l s~ a=ed/Ac.

Calculation of the free energy and total moment
using these surface states has been carried out for a
container whose radius R is much larger than the clas-
sical orbit radius E,=(c/eH)(2m&)& of an electron
moving in a plane perpendicular to the magnetic deld
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TAaLE I. Numerical coeQicient of the surface correction term
Lsecond term in Eq. (3.8) of textj for various values of the
parameter a.

0.75
0.70
0.65
0.60
0.55
0.50

Coefficient

0.00763—0.00047—0.00770—0.01378—0.01896—0.02293

in (3.8) from 2(—0.02652) to 4(0.02652)—the usual
Pauli paramagnetism. The second term is unchanged,
spin corrections due to the surface states being small if

f »PH.
The expression (3.8) for 3f, agrees with the conclusion

of Osborne and Steele that the system should show a
surface diamagnetism which depends on container di-

mensions and magnetic field in the same way as the
second term of (3.8). A surface correction of this form
has also been predicted by Dingle, ' but he has found

that it shou1d be paramagnetic. The origin of this dis-

crepancy is discussed in the next section.

IV. CORRECTIONS FOR %'ALL THICKNESS

%'e remarked in a footnote" that for surface states
the use of (22+22) in (3.5) is incorrect, yet we have
used (n+ 2') in obtaini-ng (3.8). The phase integral

equation (3.5) with (22+—', ) is derived in WKB theory
from the requirement that the phase of the oscillatory
approximate wave function in the region between the

turning points rj and r2 be such that the wave function

connects smoothly to a damped exponential in the clas-

with energy equal to the Fermi energy f of the system.
The details of the work are given in reference 16. The
result shows that for E&)E., the oscillatory part of the
moment which accounts for the de Haas van Alphen
eAect for this model is correctly given by the usual
formulas, ' ' corrections being negligible. The steady
part of the moment is found to be

JlI, = —(0.02652)LR2 (2222/hs) fP2Hf'
—(0.02293)I.R(2iri/52)P:H li 412, (3.8)

in which we neglect small temperature dependent cor-
rections. The first term is the ordinary Landau moment,
which dominates provided R»(f/PH)fR, . The second
term is a diamagnetic contribution due to the finite size
of the container. Other corrections are very much
smaller provided R&&E, The numerical coefricients in
(3.8) have been calculated for the simplified model of
spinless electrons (for which no spin degeneracy exists).
For a real electron gas we must multiply both terms in
(3.8) by two to account for the twofold spin degeneracy
of states even if we continue to neglect the contribution
by the spin to the total moment. Inclusion of this
moment further changes the coe%cient of the 6rst term

sically forbidden regions beyond the turning points. "
In the present problem we imagine our system bounded
by a sharp, impenetrable wall at E.—that is, we wish to
impose the boundary condition f(R)=0. If the phase
of the %KB wave function is chosen so that the wave
function vanishes at one of the turning points, theory
shows that (22+42) must replace (22+22) in (3.5); if the
condition must be satisfied at both turning points,
(n+1) must be used, with 22=0, 1, 2, 3, . as usual.
This last form of (3.5) yields the correct eigenvalues
for a one-dimensional electron in the potential V(x) =0
f» I*I«, V(*)=~ for I*I&~ The (~+l) f»m «
(3.5) yields the exact eigenvalues for a similar problem
with V(x)= oo for x(0, U(x)=km' for x)0. Conse-
quently, if we assume a sharp impenetrable wall in the
present magnetic problem [V(r)=0 for r&R, V(r) = ao

for r)Rj, then we should use (22+ ,') in -(3.5) when
calculating the energies of the surface states.

At first sight one would not expect this change to
make much di6'erence, since n is quite large for most of
our electron states. However, we have calculated the
magnetic moment by using the Poisson sum formula
(Dingle I, Appendix) to carry out the sums over the
quantum number e, and this formula depends critically
on the choice between (22+-,') and (n+4): with (22+-', )
we obtain (3.8); with (22+as) the correction term in
(3.8) becomes paramagnetic. Specifically, the. following
form of the Poisson sum formula is readily proved
if0&n&I,

00 m

f(22+&) g e saira f—(22)esainrd22 (4 1)
nM f'~00

In Table I we show the value of the coefficient of the
second term in (3.8) obtained using various values of n.
The value obtained using 0.= 4 agrees exactly with the
coefficient of the leading term in Dingle's result for the
surface correction (when our value is multiplied by two
to include spin degeneracy).

Thus, the magnitude and sign of the surface correc-
tions depend critically on the choice of e. The same is
true of the value of the susceptibility at weak fields,
R((R„calculated by Dingle, 4 for as may be seen from
his derivation the coefficient of this term depends on the
form of the Poisson sum exactly as does the coeKcient
of Table I. Using n=2, we should thus obtain a para-

- magnetism roughly three times the magnitude of the
diamagnetism Dingle reports.

For the idealized model using the sharp, impenetrable

wall, there is no question but what we should use e= 4,
as Dingle has done. However, for an approximate calcu-
lation of the susceptibility of the electrons in a real

metal, the choice is not at all clear: the rise of potential
at the wall is not infinitely sharp and is, moreover, of
finite height, so that it is far from obvious that n= 4

"L. I. Schiff, Qganfura Meehariies (McGraw-Hill Book Com-
pany, Inc. , New York, 1949), p, 186.
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is a good choice; yet the wall may be suKciently sharp
so that e=-', is not sufficiently accurate.

To investigate the question of the best choice of o.,
we may compare the exact eigenvalues of certain one-
dimensional problems with the eigenvalues obtained
from a modified WKB phase integral in which 0,

replaces the usual -', and is determined for each eigen-
state such that the WKB eigenvalue agrees with the
exact result. First, we consider the eRect of having the
surface potential barrier of finite height. For the
potential

x& —L
U(x) =i 0, —L&x&0

.H', )0
(4.2)

where W'&&Ace.

t

-'duo'x', x)0

8',
(4 g)

the wave function for —L&x&0 is, apart from a multi-
plicative constant, f sin$k(x+L)], where

k= k '(2')*',
and E is the energy eigenvalue. For x&0 and E&$',
P~e "*, x= k 'L2m(W —E)$&. The eigenvalue E is
determined by equating the logarithmic derivatives
(1/P)(r)$/r)x) at x=O Thi.s yields the equation for E:

k cot(kL)= K. (4.3)

For the WEB result we integrate

0

J
(2') '*dx= (rs+-n)her, n=O, 1, 2, (4.4)

and obtain kL= (e+n)ir. We regard this as an equation
for o., substitute it in (4.3), and obtain

cot(i') = —x/k= [(W/E) 1j&. — (4.5)—
We thus obtain Table II. Here in addition to o, we
tabulate n'=a —-', . In (4.2) the potential suffers an
infinite jump at x= —L. Since in the problems men-

tioned earlier we reduce o. by ~ on replacing a sharp
barrier by a slowly rising potential, it appears that n'

would be a proper choice if in the potential (4.2) we

made gradual the potential rise at x= —L.
We have also investigated the problem with the

potential
x& —L

V(x) = ~ 0, —L&x&0. (4.6)
—moPx' x&0

The detailed calculations may be found. in reference 16.
The results are given in Table III.

Two other simple problems give further information
concerning the proper choice of n in diRerent situations.
Table IV summarizes the results for the potential

V(x) =, (4.7)
lO,

and Table V summarizes those for

TABLE D. Tabulation' of the parameters 0, and n' for the one-
dimensional potential V(x)= oo, x&—L; V(x)=0, —L&x&0;
V(x) = W, x)0, for various values of the ratio E/W.

—+1
3

1
2
1

—+0

1
2
2
3
3.

5
6

5/12
1

7/12

a a ls the parameter appearing in the WKB phase integral equation
which brings the value of the energy eigenvalue E obtained by the WKB
approximation into agreement with the exact value. Also r7t' =a —).

TABLE III. Tabulation of the parameter a for the one-dimen-
sional potential V(x)= 00, x&—I.; V(x)=0, —L&x&0; V(x)
= —,'msfx~, x)0, for various values of the ratio E/Aced. For definition
of a see footnote to Table II.

E/If, co

6
2
1
1

1/10
|/100

—+0

0.750
0.753
0.743
0.750
0.838
0.938
-+1

The results of Tables II to V suggest the following
behavior of o. in the WKB evaluation of the eigenvalues
of any diRerential equation which can be regarded as
the Schrodinger equation for a one-dimensional electron
confined by two potential barriers: if the barriers rise
sharply and are of height 8' very much greater than
the energy E of the eigenstate under consideration, then
o. is approximately unity; if one of the barriers is made
to rise more gradually, n will be diminished somewhat,
but it will not fall below roughly 4; if the other barrier
is similarly smoothed, o. can be diminished further to
about ~~; if the height 8" of one barrier is reduced so
that E/W approaches unity, n will drop further by as
much as about —,; if the second barrier height is similarly
reduced, 0, can drop by an additional —', . The eRect on
n of making any one of these changes appears to be
approximately independent of the other changes, so that
the changes in n from these various alterations are
roughly additive. It thus appears that if both barriers
are gradual and if E/W is only slightly less than unity
for both barriers, o. can be as low as ——'„provided, of
course, that the eigenstate is not the one of lowest

energy, since n must always be positive for this state
to yield a positive zero-point energy.

In a real metal the energy diRerence between the
Fermi level and the bottom of the conduction band is
an appreciable fraction of the difference between the
bottom of the band and the top of the surface barrier.
We may crudely estimate the "sharpness" of the barrier
in terms of Table III by representing the barrier by
-', mo'(r —R)' and by delning oi in terms of the thickness

of the wall region (r' R) and—the Fermi energy l'.
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TABLE IV. Tabulation of the parameter 0. for the one-dimen-
sional potential V(x)=W, [s[)L/2; V(x)=0, [sj &I./2, for
various values of the ratio E/W. For definition of a see footnote
to Table II.

—+1
3

2
1
4~0

—+0
1
3
1
2
2
3

-', duo'(r —E)s r ~& E

0,
(4.10)

Using the usual WKB analysis (see reference 16), we
find that the ratio of this additional term to the usual
surface term Lthe second term in (3.8)j is roughly
(eH/orme) (('//3H)&. Estimating o& from wall thickness as
above, we find this to be about 10 ' or less for reasonable
values of the parameters. We may thus infer that for
any other form of wall potential confined to a su%-
ciently thin layer this contribution is negligible.

V. COMMENTS

The assumption has been tacitly made throughout
this paper that the %KB approximation determines
the energy eigenvalues with sufhcient accuracy for the
calculation of the surface corrections to the suscepti-
bility. This assumption might be questioned in so far
as it is well known that small errors in the eigenvalues
can lead to a tremendous error in the calculated value
of the susceptibility, and we have seen, moreover, that
surface corrections depend critically in their numerical

Setting —,'moP(r' —8)'= f', we obtain

(t'/ko~) = its
—' (r' —R) (-,'mf') l. (4.9)

Using 1~10 " erg, (r' —E) 10 ' cm, and the free-
electron mass, we find (f'/kit)~1/10. From Table III
we see that this gives us an intermediate value for n,
especially since most occupied states have energies
below f'.

It appears from these considerations that for a given
model of a real metal we might be able to satisfactorily
estimate o. as a function of the electron energy E. The
calculation of the free energy and magnetic moment is
not seriously complicated by the variation of 0. with E.
A derivation based on Dingle's work is sketched in the
Appendix, although no attempt is made to obtain a
numerical result for any model. A numerical result will
evidently depend on the details of the model chosen,
and such a calculation would be of especial interest
only when and if such size corrections to the suscepti-
bility are located experimentally.

Finally we should remark that we obtain an addi-
tional term in the moment of the system if the wall
potential is made gradual. To estimate this, we consider
the potential

value and sign (though not in order of magnitude) on
the choice of n in the WXB phase integral condition.
However, the %KB calculation of the eigenvalues is
very accurate when the quantum number e is large, as
it is in the present problem for the vast majority of
states. Moreover, although it is necessary to modify
the WEB phase integral condition by choosing the
value of n(E~) appropriate to the given form of the
surface potential, it appears from the one-dimensional
problems studied above that this choice can be made in
a consistent and predictable manner. It seems from
these problems and from the procedure outlined in the
appendix for calculating the susceptibility once n(E„)
is chosen that it should be possible to calculate the
susceptibility for a given surface potential with accuracy
of at least ten or twenty percent. Finally, it is reassuring
that with the sharp, impenetrable wall t n(E„)=4]
Dingle has obtained the same results for small systems
(E«R,) using perturbation procedures with the exact
zero-field wave functions' LProc. Roy. Soc. (London)
A212, 47 (1952)j that he has obtained with the WKB
method. 4
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was undertaken at Professor Brooks's suggestion, and
the work reported in reference 16 was done .in col-
laboration with him. The author would also like to
thank Professor J. H. Van Vleck for reading the manu-
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v+1=1—a(E )+
t m'PP)

&& E~ PHs—k's' e'H'r' &

dr. (A1)
2m~' 8m''

Here E„=E )s'k, s/2m, the upp—er limit of integration
is the smaller of r2 or E, and the eigenvalues are deter-
mined by the condition that e be a positive integer or

TABLE V. Tabulation of the parameter 0'. for the one-diDIensional
potential V(a)=~2'xs, s)0; V(x)=W, a&0, for various values
of the ratio E/8, where Ace((8'. For definition of 0, see footnote
to Table II.

E/W

1

2
3.
4

APPENDIX

It is quite easy to modify Dingle's analysis4 to take
into account the variation of n with E. Instead of
inquiring into the location of the zeros of the wave
functions, as Dingle does, we determine the eigenvalues
with the modified phase integral condition Lfrom (3.5))
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[e+1)=—-', + g
oo p

g2xixPdg (A2)

and. Z„(Er, H), the number of states in the two-
dimensional system with energies below E„, is then to
sufhcient accuracy obtained by inegrating over s and
multiplying by two for spin degeneracy. We then follow
Dingle exactly in transforming to three dimensions
and obtaining fPZdE.

When in (A1), for particular values of s and E~, the
larger turning point r2 is less than R, the eigenstates
with energies close to E„are what Dingle calls "ex-
ponential states, " or "bulk states" in our terminology.
For these values of s and E„, Ot, is then ~. For "surface
states" or "trigonometrical states" (Dingle) for which
which ri&R&r2, n(E„) will depend on the form of the
wall potential. It seems reasonable to assume that to
su%cient accuracy it will depend only on E„, and in
particular not on s.

Evaluation of terms in fssZdE for exponential states
is unchanged from Dingle's analysis. For the trig
states, we replace Dingle's Eq. (3.4) by (A3), where we
use his notation for ease of comparison except in re-
placing his PP&s'1 by [v+1), the same quantity,

t." {rPx/), (lax—)'I l
[n+1)= ', n(E„)+-~— Qx

2~x

exp(2msP[1 —n(E~)))gl
P=oo 2' P

t
"

I rPx/P (lax)'I:—
dx . (A3)

2g
&&exp 2sP~

g

zero. Temporarily confining our attention to two dimen-
sions, as in Dingle's work, we find that the number of
states with a given s, given spin orientation, and
energies below any arbitrary value of E„ is the largest
integer [m+1) less than the quantity {in general not
an integer) (n+1) defined for that E„by (A1). This
is obtained from the Poisson sum formula exactly as in
Dingle's analysis,

TABLE VI. Tabulation of S(E) as a function of the parameter
e(E}. Values of S(E}are in error by no more than 0.004.

a(B)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

3.678
1.254
0.204

—0.496
—0.986
—1.312
—1.516
—1.608
—1.612—1,522

a(E)

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

S(E)

—1.362
—1.126
—0.824
—0.456
—0.028

0.456
0.998
1.592
2.236
2.934
3.678

a 8(E) is defined in Eq. (A6) of the Appendix.

E„.Finally, defining Q'(rf) =S'(E), we obtain to replace
Dingle's (3.22) and (3.23),

4p

m O'Lrt"" t'2X
K! —,rt !,

2mR' 4 g )
(A7)

1

—-', ~'K(u, q) = Q'(~t) (t+a) ft*(1—ts)'dt
Jp

Q'(~t) (t—u)ftf(1 —ts) fdte. (AS)

We 6nally obtain for the low-temperature steady sus-

ceptibility [Dingle (6.S)) per unit volume

x= —(e'RiEsf/2&m'c'tt+') {K'(a, qs)+tie fJ'(u) t, (A9)

where

~1
K'(., ~o) = (4/3 ")— Q'(~.t) (t+a)-'t'(1 t')'«—

~p

p
l

Q'(got) (t a) &t&(1——t')ddt . (A10)

The important oscillatory part of the susceptibility
for R&R, is unchanged in this analysis since it arises
from the exponential states alone. For R&&R, the oscil-

latory susceptibility will depend on the choice of n(E,).
Finally, we give in Table VI the values of S(E) for

various values of n(E).

Dingle's calculations of the various integrals may now
be used, and we obtain to replace his (3.19), (3.20),
(3.21),

Z, (E„,H)=S'(E,)(~wB)f/qf, (A4)

S'(E )= (—l)!S(E )/ (12)', (AS)

S(E~)=2 P P 'Is cos(2~Pn(E„)+m/6) (A6).
P=1

The only change is thus to make S' and S dependent on


