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The Bose-Einstein condensation mechanism is shown to be
capable of accounting for the existence of separate hydrodynamic
velocity fields for the normal and the superfluid, provided suitable
assumptions are made with regard to the single-particle energy
spectrum. We consider the effect on the microcanonical gas dis-
tribution of imposing a nonzero value of the total momentum P.
For an ordinary gas the effect is trivial, the whole distribution
being merely shifted in momentum space. However, in the case of
a degenerate Bose gas whose single-particle energy spectrum has a
sharp minimum (gap or cusp), only the excited part of the gas
(normal fluid) participates in the imposed motion, the condensate
(superfluid) remaining “frozen” in momentum space. This rigidity
of the condensate in momentum space plays the same role as the
vigidity of the superelectrons on imposition of a magnetic field in

the London theory of superconductivity. P acts as an additional
thermodynamic variable, states with P20 being macroscopically
metastable and corresponding to the existence of a relative ve-
locity between normal and superfluid. The basic hydrodynamic
assumption of the two-fluid model is thus reduced to an assump-
tion concerning the form of an effective single-particle energy
spectrum, and the parallelism between the theories of supercon-
ductivity and superfluidity is clearly exhibited. The present theory
permits, in particular, the introduction of the mathematical form
of Landau’s phonon and “roton” spectra within the framework
of the Bose-Einstein condensation picture. The statistical-thermo-
dynamic formulas are derived and are shown to lead to charac-
teristic two-fluid equations derived previously from a variational
principle. .

I INTRODUCTION

HE characteristic properties of liquid helium,

which distinguish it from all other fluids except

the “electron gas” in superconductors, may be classified
phenomenologically into two types.

(1) purely thermostatic equilibrium properties. The
most significant are the stability. of the liquid phase
apparently down to absolute zero, and the A transition
within the liquid phase.
£+ (2) the dynamic “superfluid” properties of the liquid
below the A transition (liquid helium IT). These may
be summarized by the statement that reversible—or,
at least, almost reversible—transport processes exist
within the liquid.

In contrast to the case of superconductivity, where
the existence of strictly reversible transport processes
(persistent currents) is definitely established, the stricly
reversible character of the ‘‘superfluid” processes in
He IT is still to some extent a matter of dispute, since
the persistence or decay of a current of neutral helium
atoms is much more difficult to establish by direct ob-
servation than the persistence or decay of a current of
charged electrons. Nevertheless, such experimental
evidence, direct and indirect, as exists, as well as the
very suggestive and probably quite fundamental paral-
lelism with superconductivity'—about which more later
—favors the assumption of strict reversibility under
suitable conditions. We shall, moreover, attempt to show
that, just as in the case of superconductivity, strict
reversibility in the case of He II is less difficult to
understand theoretically than the alternative assump-
tion, which involves the necessity of explaining why
dissipative interactions which are very strong in other
fluids, including liquid helium I, should be extremely
weak, though qualitatively present, in liquid helium II.

A successful molecular theory of liquid helium has to

1See F. London, Superfluids (John Wiley and Sons, Inc.,
New York, 1950), Vol. 1,

account simultaneously for both the thermostatic
properties (1) and the dynamic properties (2), presum-
ably on the basis of quantum statistical mechanics.
Such a theory, again as in the case of superconductivity,
does not yet exist. However, a basic point of view from
which attempts at building such theories may proceed,
has been expressed by London.! According to this
point of view both superconductivity and superfluidity
result from quantum statistical mechanisms producing
condensation into a more or less rigid lattice in mo-
mentum space.

Attempts at developing this point of view into
complete theories have led to a peculiar contrast
between the status of the theory of superconductivity,
on the one hand, and of liquid helium, on the other.
In the case of superconductivity, the concept of a rigid
lattice in momentum space leads almost directly to a
generally satisfactory phenomenological theory of the
dynamical properties of superconductors (the London
theory). The question, however, of what is the mecha-
nism producing this condensation of the electron fluid
into a rigid lattice in momentum space, and thus,
ultimately, the question of the statistical thermody-
namics of the superconductive state and the phase
transition into this state, is a very difficult one. Only
quite recently has any real progress been made toward
its solution.? ‘

The situation with respect to liquid helium is almost
exactly opposite. Here a mechanism which can account
at least qualitatively for the condensation in momentum
space, and thus for the existence of the A transition, is
provided by the Bose-Einstein condensation,® which
predicts for an ideal Bose gas the existence of a transi-
tion temperature Ty below which a finite fraction of all
the molecules condenses progressively into the lowest

2H. Froehlich, Phys. Rev. 79, 845 (1950); Proc. Phys. Soc.
(London) A64, 129 (1951). J. Bardeen, Phys. Rev. 80, 567
(1950) ; Revs. Modern Phys. 23, 261 (1951).

3 F. London, Nature 141, 643 (1938) ; Phys. Rev. 54, 947 (1938),
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LIQUID He II

energy level. While liquid helium is not, of course, an
ideal gas, there is good reason for believing that the
qualitative features of the Bose-Einstein condensation
remain valid for a liquid with such a large specific
volume and such small intermolecular forces as liquid
helium.* In particular, Guggenheim’s smoothed poten-
tial model of a liquid® exhibits a Bose-Einstein con-
densation very similar to that of an ideal gas, except
that the properties of the phase transition approach
more closely to those actually observed in liquid helium.

While, however, the Bose-Einstein condensation has
provided at least a qualitative understanding of the
thermostatic properties of liquid helium, it has not, until
now, served as a convincing basis for an understanding
of the fwo-fluid dynamic properties. It is true that,
historically, Tisza’s development of the “two-fluid
model”,® which furnishes a generally successful phe-
nomenological theory of the dynamic properties, sprang
from ideas suggested by the Bose-Einstein condensa-
tion. With its division of the gas into two parts—the
entropiless condensate in momentum space, and the
remainder of the gas distributed statistically among the
excited energy levels—the Bose-Einstein condensation
indeed furnished a basis for some features of the two-
fluid model. But the crucial hydrodynamic feature of
the model, that is the existence of separate hydro-
dynamic velocity fields for the condensate (superfluid)
and the excited part (normal fluid), appeared as a very
questionable assumption which could be justified only
a posteriori by the success of the model. It seemed to
be necessary to assume a completely unintelligible
absence of collisions between the atoms constituting
the superfluid and those constituting the normal fluid,
in order to account for the apparently frictionless flow
of the two fluids relative to each other. At the same time,
collisions are, of course, necessary to establish local
thermal equilibrium within the liquid, without which
the application of thermodynamic reasoning, a very
essential feature of the two-fluid theory, would be quite
without justification.

The key to the only way out of this dilemma would
seem to be the hypothesis put forth by London, that,
under given macroscopic boundary conditions, a state
of relative motion between the normal and the super-
fluid is macroscopically metastable, in the same way
as a supercurrent is macroscopically metastable in the
presence of a given external magnetic field. This means
that the superflow is truly reversible; it is maintained
not by the absence of collisions, but—under the given
conditions—is the thermodynamic equilibrium state
established by the collisions.

It is the purpose of the present paper to show that,
under suitable assumptions with regard to the single-

4 F. London, Superfluids, Vol. 2 (to be published). See also R. P.
Feynman, Phys. Rev. 90, 1116 (1953).

(1; 313) A. Guggenheim, Proc. Roy. Soc. (L.ondon) A135, 181

8 L. Tisza, Compt. rend. 207, 1035 and 1186 (1938) ; Phys. Rev.
72, 838 (1947).
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particle energy spectrum, a degenerate Bose ‘“gas”
below its condensation temperature behaves in accord-
ance with London’s hypothesis. We shall see that the
imposition of nonzero total momentum on the degenerate
Bose gas plays here a role analogous to that of the im-
position of a magnetic field in the London theory of
superconductivity. If one calculates the microcanonical
gas distribution under the condition of fixed (nonzero)
total momentum as well as fixed total energy and
number of particles, the equilibrium distribution turns
out to involve relative motion between the condensate
and the center of mass of the excited part of the gas.

In this way we find that -the Bose-Einstein conden-
sation mechanism can furnish at least a qualitative
kinetic insight into the existence of two distinct hydro-
dynamic velocity fields, as well as into the thermostatic
properties of liquid helium II. The general features of
the two-fluid- hydrodynamics can thus be put on a sta-
tistical basis within the framework of the Bose-Einstein
condensation picture. This is significant especially in
view of the apparent absence of supérfluidity in pure
oHe?, which obeys Fermi-Dirac statistics. The present
treatment, further, exhibits in a new light the paral-
lelism between superfluidity and superconductivity.

The theory is still phenomenological in that it con-
siders the liquid in a single-particle approximation,
neglecting correlations between the molecules and cop-
sidering intermolecular forces only to the extent that
they are assumed to modify the effective single-particle
energy spectrum. To obtain statistical results corre-
sponding to the two-fluid behavior, it is further neces-
sary to assume that this effective single-particle energy
spectrum, as a function of the single-particle momen-
tum, has a sharp minimum—either a cusp or a gap. In
particular one may use, for example, the mathematical
forms of Landau’s phonon or “roton” spectrum.” The
present treatment, further, is confined to a discussion
of the statistical aspects of two-fluid theory. No attempt
is made to solve the fundamental quantum mechanical
problem concerning the dynamic behavior of the pure
ground state of an ideal quantum liquid.

Some of the statistical-thermodynamic formulas of
the present theory will be seen to be similar to some of
those given by Landau,” and by Dingle® and Temperley?
in further elaboration of Landau’s approach. However
the significance and interpretation of these equations
will be very different.!

7L. Landau, J. Phys. U.S.S.R. 5, 71 (1941).

8 R. B. Dingle, Phil. Mag. Supplement 1, 111 (1952).

(1;?5 N. V. Temperley, Proc. Phys. Soc. (London) A65, 490
2).

10 Tt should perhaps be pointed out that, in adopting here the
approach from the gas-like Bose-Einstein approximation, I do
not wish to maintain that thisis the best available approximation
at all temperatures. It seems very likely from the experimental
evidence that at the lowest temperatures (below about 0.6°K)
the excitations in He II are better described by Landau’s Debye-
type phonon picture. There seems to be little doubt, however,
that in the region of the A transition and down to about 1°K the
gas-like picture is more nearly adequate, and is the only one of
the two which can account for the existence of the A transition
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II. PRELIMINARY THERMODYNAMIC
CONSIDERATIONS

The thermodynamic system under discussion will be
taken to be a unit volume of fluid. For a simple one-
component system such as liquid helium (neglecting
the irrelevant complication of a small admixture of the
isotope oHe? in natural helium) the specification of a
thermostatic equilibrium state requires two variables
of state, for which we shall take the entropy .S and the
number of particles & in the unit volume. However,
we wish to consider the effect on the system of imposing
and adiabatically varying certain external conditions—
which we may call, somewhat loosely, ‘“boundary
conditions.” In the language of statistical mechanics,
these boundary conditions correspond to constraints or
inhibitions imposed on the assembly representing our
thermodynamic system. The thermodynamic descrip-
tion of the system then requires at least one additional
variable or parameter suitably specifying the effect of
the imposed constraint. Without enquiring at the
moment what the physical significance of this variable
might be for the case we are interested in, we shall
denote it by V.

The First Law of Thermodynamics for reversible
processes, including adiabatic changes in the imposed
constraints, then reads

' dE' = TdS+udN-+ odY, (2.1)

where E’'(S, N, V) is the total energy. The temperature
is given by

T=(0E'/3S)n.v, (2.2)
the chemical potential by

u=(0E'/oN)s,v, (2.3)
and the quantity ¢ is defined by

¢=(0E'/3Y)s,N- (2.4)

It is clear that the quantity ¢ must be such as to
represent a generalized force and d¥ the corresponding
infinitesimal displacement, so that — ¢d¥ is the infini-
tesimal work done by the system against the yielding
constraint.

If, then, in the two-fluid model, the states of relative
motion between the normal and the superfluid are
metastable equilibrium states resulting from the appli-
cation of suitable macroscopic constraints, it follows
that the thermodynamic functions occurring in the two-
fluid model must depend on at least one additional
variable beside the usual two. In an earlier paper! it
was found from a detailed analysis of the two-fluid
hydrodynamics that such must indeed be the case, if
both the requirements of reversibility of superflow
and of conservation of total energy and momentum are
to be met. The variable which appeared in that discus-

itself (see F. London, reference 4, and also H. N. V. Temperley,
reference 9).
1P, R, Zilsel, Phys. Rev. 79, 309 (1950).
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sion was the relative density of the normal fluid, x=p./p,
and it was shown that the internal energy per gram U
depends on x through the relation

U/ 3%)s, ,=1/2, (2.5)

so that
dU=Tds+ (B/p®)dp+ (v*/2)dx. (2.6)

Here s=.5/p is the entropy per gram, ‘P is the pressure,
and v is the relative velocity of the two fluids.!?

The problem now before us is to determine whether
it is possible to express the conditions responsible for
the appearance of a relative velocity in liquid He IT in
terms of a physically meaningful statistical constraint
on the distribution of a degenerate Bose gas, and what
the nature of such a constraint might be. For this
purpose it will be useful to consider the analogous situ-
ation in the London theory of superconductivity.

The physical constraint responsible for the appearance
of a supercurrent is the application of a magnetic field,
H, and the term corresponding to our ¢d¥ in Eq. (2.1)
is (1/4x)H-dB, where B is the magnetic induction per
unit volume. The electric current per superelectron is
— (e¢/mc)A. The vector potential A is determined in
the present case by curlA=h, divA=0, where h is the
local value of the magnetic field. These relations are not
very useful for our purpose in their present form. They
can, however, be re-expressed in such a way as to
provide a clue to the corresponding situation in liquid
helium.

The momentum of a charged particle in the presence
of a magnetic field is given by

pi=mvi+ (e/c)A(rs),

and the corresponding electric current by

Ji=evy
where v; is the velocity of the particle. Consider now a
gas of free electrons in statistical equilibrium. In the
absence of a magnetic field both the total momentum

P =Zi Pi
and the total current
J=2%i7i
will be zero. If a magnetic field is applied, however,

the total current will classically®® still be zero, but there
will now be a total momentum given by

P=3".(e/c)A(r)).

Thus, for a free electron gas, the application of a mag-

12 The treatment of x as a thermodynamic variable and, in
particular, Eq. (2.5) has been criticized as inconsistent by H. N. V.
Temperley, Proc. Phys. Soc. (London) A64, 105 (1951), and by
Dingle (reference 8). We shall see, however, that both the treat-
ment and the equation follow directly from the statistical consid-
erations of the present paper. Moreover, Eq. (2.5) can easily be
shown to follow from Dingle’s own equation (116) when the latter
is interpreted correctly.

13 There is a small quantum effect, the Landau-Peierls diamag-
netism, which is irrelevant to our present purpose.
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netic field is equivalent to the imposition of a total
momentum.

Now the basic assumption of the London theory is
that in the superconducting state a finite fraction of
the electron gas is “frozen” into a rigid lattice in

momentum space, so that the momentum of this -

fraction is unaffected by the application of a weak
magnetic field. Only the “normal” electrons then con-
tribute to the net total momentum of the gas in the
presence of a field; the average momentum of the
superelectrons remains zero, and there results a super-
current

Jo=—=>""(e&/mc)A,

(the summation extending over the “super”-fraction of
the electron gas).

Guided by the analogy between superconductivity
and superfluidity we will, then, consider the effect of
imposing a nonzero value of the total momentum on
our system. The variable we have called ¥ will now be
the total momentum P in the unit volume, and the
quantity ¢ will be a velocity defined by the relation

v=(0E'/oP)s . 2.7
In this case Eq. (2.1) becomes
dE'=TdS+udN+v-dP, (2.8)

the infinitesimal work done in increasing the momentum
of the system being v-dP. The Helmholtz free energy,
defined as

F'=F'—ST,

satisfies the equation
d(F'/T)=— (E'/T?dTH (u/T)dN+v-dP/T.

For a closed system the total momentum is a constant
of the motion. Thus the state resulting from the im-
position of a total momentum different from zero is
not subject to internal dissipation into the absolute
equilibrium state characterized by P=0, but is indeed
macroscopically metastable. _

Note that, since the total momentum is an extensive
variable, the chemical potential is no longer equal to
the Gibbs potential per particle G’/N, where

G'=E'—ST+P, (2.11)

and the volume £ is unity in the present case. Instead
we have

(2.9)

(2.10)

p=(G'—P-v)/N. (2.12)

Of course, for an ordinary thermodynamic system
the imposition of a total momentum is trivial. It results
simply in the total system being put into motion, with-
out significant effect on its statistical properties, and is
equivalent to a Galilean coordinate transformation. The
velocity v, defined by Eq. (2.7), is then the resulting
center-of-mass velocity of the system as a whole and
satisfies the relation

P=pv. (2.13)

1109

We shall see in the next section, however, that in the
case of a degenerate Bose gas with a suitably generalized
energy spectrum, an effect can occur which is quite
analogous to the “freezing” of the superelectrons in
momentum space which is assumed by the London
theory of superconductivity.

III. THE DEGENERATE BOSE GAS WITH FIXED
TOTAL MOMENTUM

We proceed to derive the most probable distribution
in a Bose gas with a generalized energy spectrum
e;=¢(p;), under the conditions of fixed total number
of particles IV, total energy F’, and total momentum P,
that is,

2in=N, Yinje=E, X ;np;=P. (3.1)

The entropy corresponding to a given distribution
(occupation numbers #;) is" *

Sp=22;S;=2; k[ g; In(14n;/g;)
+n;In(14+g;/n;)], (3.2)

where g; is the degeneracy of the j'th energy level.

The most probable distribution is the one for which
Sp is a maximum subject to the restrictions (3.1). It is,
then, determined by the condition that for all ¢

(9/0n)[S/k—a 32 n;—B X nje;—x-2 7,9;]=0, (3.3)
that is,

In(1+4-g;/n;)—a—Be;— - p;=0. (34)
Thus we have for the most probable occupation numbers

n;=g;/[exp(a+Bei+y-p;)—1]. (3.5)

This distribution differs from the usual one, deter-
mined without specifying the total momentum, only
through the presence of the extra term +y-p; in the
exponent.!s

The Lagrange multipliers a, 8, ¥, are determined by
the conditions (3.1). @ and B have their usual sig-
nificance,

ka=—u/T, (3.6)

k3=1/T, 3.7
and v is given by ‘

ky=—v/T, (3.8)

where v is the velocity defined by the thermodynamic
relation (2.7).

Equation (3.8) plus, incidentally, Eqgs. (3.6) and (3.7) may be
obtained quickly, though somewhat nonrigorously, by a slight
extension of a method used by Mayer and Mayer:* we consider
the gas as consisting of two parts, a particular energy level § and
the remainder, denoted by 7. For the most probable distribution
the total entropy, S=3S;4S;, is stationary under the transfer of

“4See ]J. E. Mayer and M. G. Mayer, Statistical Mechanics
(John Wiley and Sons, Inc., New York, 1940), p. 124.

15 A similar result was obtained by Temperley (reference 9) for
an gsiembly of Debye modes in connection with Landau’s phonon
model.
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a small number of particles,
onj=—0n,, ()

into the state j from the remainder of the gas. This transfer has
to be such as to conserve not only the total number of particles,
but also the total energy and momentum, so that we have, in
addition to (i),
SE, = —8E; = —eidn;; OP,= —oP;= — pion;. (ii)
The condition that the entropy is stationary gives
0=5S5= (dS;j/dn;—8S,/on,)én;. (iii)
From (3.4)
dS;i/dni=k In(14-g;/n;) = ka-+kBej+ky - p;. @iv)

To evaluate 8S,/6n, we assume that the part 7 is so nearly the
whole system that we can apply to it the thermodynamic formulas
valid for the gas as a whole. Thus

8S;/6n,=08S/0N-+ (0S/9dE")SE, /sn.+(3S/0P) -6P,/6n,. (V)
Equating (iv) to (v), making use of the relations (ii) and the
identity

(3S/0P) g, n=—(8S/E")p, N(OE'/dP)s,n=—vV/T, (vi)
we obtain the desired result.

Equation (3.5) for the most probable distribution
thus takes the form

n;=g;/{exp[(e;j—v-p;—n)/kT]—1}. (3.9

To consider the properties of this distribution function
it is convenient to introduce a quantity e/, defined as

(3.10)

The distribution (3.9) is the same function of ¢ as the
usual Bose distribution without imposed momentum
is of e. Condensation will set in at the temperature at
which u becomes virtually equal to the minimum value
of ¢, and the condensation will be into the energy
level ¢, determined by the condition that

,— — . .
€; =€;—V-Pj.

(3.11)

In general the identity of this level will, of course,
depend on the value of v, which means, ultimately, on
the value of the imposed momentum.

€OI= €— V- Po= min(e’).

Ideal-Gas Energy Spectrum

Consider in particular the case where the energy
spectrum is that of an ordinary ideal gas,

6j=?j2/2m.
In this case
e/ =p/2m—v-p;= (1/2m)| pj—mv|*~m*/2,

so that, by Eq. (3.11), the condensation occurs into
the level

€= mv2/2

with momentum
Po=mV.

The effect of imposing a total momentum on the gas is,
then, what we should expect for an ordinary system:
the whole distribution in momentum space is merely

ZILSEL

shifted by the amount mv. The total momentum is
P=Nmv=pv,

in agreement with Eq. (2.13), and the velocity v has
the significance of the center-of-mass velocity of the
gas as a whole.

Energy Spectrum with Cusp or Gap

If, on the other hand, the energy spectrum e(p) is a
monotonically increasing function of the magnitude of
p with a finite slope at the origin, such as

ej=c|p;|+c'pi+ -, (a)

or, a fortiori, if there is a finite energy gap separating
the state of zero momentum from the other levels, e.g.,

e=p7/2m+A, p;=0, (b)

the situation is quite different. For sufficiently small v
the minimum of ¢ remains at the level with zero
momentum.

=0, p;=0;

«=¢(p=0),

so that with this type of energy spectrum, only the excited
part of the gas contributes to the total imposed momentum.
We thus have, in this case, an actual model of a macro-
scopically metastable state involving relative motion
between the excited part (normal fluid) and the con-
densed part (superfluid) of the gas. As long as a finite
fraction of the gas is condensed into the level with zero
momentum, that is as long as we remain below the
condensation temperature, the ratio of the total mo-
mentum P to the velocity v is less than the total mass
p in the unit volume of gas, since only the excited part
of the gas is accelerated when the momentum is in-
creased. If, following Landau,” we define the effective
density of the normal fluid as this ratio of the total
momentum to what is in his treatment the “drift
velocity” of the excitations,

P=p,v=pav, (3.12)

the velocity v takes on the significance of the relative
velocity between the normal and the superfluid.!¢

The distortion of the equilibrium distribution by the imposition
of a total momentum is shown schematically in Fig. 1 for the
case of the energy spectrum (b). In this particular case

P=mN.v,
so that, by (3.12),
pn=mN,
where
N e= N —no

is the number of excited particles. Note that N, is an increasing

16 The statistical formulas of Landau (reference 7) and Dingle
(reference 8) refer to assemblies of “excitations” moving with a
drift velocity v relative to an unspecified rest system. These
authors assume that this rest system is the one in which the
“ground state” of the liquid (superfluid) is at rest. But since the
ground state is not part of their statistical system, it is not clear
in their treatment whether v is in fact a relative velocity between
the assembly of excitations and the superfluid.
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Fic. 1. Effect on the equilibrium distribution of imposing a
total momentum on a degenerate (7'<T7,) Bose gas, with energy
spectrum ¢;=0, for p;=0; ¢j=p2/2m+A, for p;><0 (schematic).
A: energy spectrum as a function of p; the circle at the origin
indicates the lowest level. B: equilibrium distribution, # as a
function of p, for zero total momentum; the occupation number
no of the lowest level (condensate) is indicated schematically by
the broken bar. C: quantity ¢/=¢—v-p;, which governs the
distribution for the case of nonzero total momentum. D: equlib-
rium distribution for nonzero total momentum. The average
momentum of the excited particles is mv, whereas the condensate
(n0) has zero momentum. The relative velocity between normal
and superfluid is v.

function of 2. For the energy spectrum (b) the dependence is
N.(*)=N.(0) exp[ms?/2kT].

It should be noted that the conclusions of the pre-
ceding paragraphs are valid only for sufficiently small
v, since for any energy spectrum with finite slope or
finite gap, a sufficiently large value of v will shift the
minimum of ¢ away from the state of zero momentum.
In this way the notion of a critical velocity arises in the
present considerations. A quantitative investigation of
this and other detailed features which depend on the
particular choice of the energy spectrum, may be left
to a later time. It may be pointed out, however, that
in particular the mathematical form of Landau’s phonon
or roton spectrum—the latter corresponding to our
spectrum (b)—may be used in the present model, and
that, in that case, our results are formally similar to
those given by Landau,” even though the point of view
is quite different.

We conclude this section by constructing the statis-
tical equation for the Helmholtz Free Energy. For this
purpose we introduce the function Q, which is the
logarithm of the Grand Partition Function:

Q=X ;g;In[1—exp(—a—Be;—y-p;)]. (3.13)

Considered as a function of «, 8, and ¥, Q has the
following properties, as is easily verified :

30/0a=N, 9Q/3B=E, 30/dyx=P. (3.14)

The free energy F’ is a function of T (or 8), NV, and P,
and can be obtained from Q essentially by a Legendre
transformation. We shall verify that

BF'=Q—aN—x-P. (3.15)
Taking the differential of Eq. (3.15) and using (3.14),
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we have
d(BF")=E'd3—adN—y-dP,

or, using Egs. (3.6)-(3.8),
d(F'/T)=E'd(1/T)+ (u/T)dN+ (v/T)-dP,

which agrees with the thermodynamic equation (2.10),
thus verifying (3.15) and, incidentally, the identifica-
tions (3.6)-(3.8) of the Lagrange multipliers e, 8, and #.

We thus have explicitly for the Helmholtz Free
Energy of a unit volume of the gas, as a function of the
temperature, the number of particles, and the momen-
tum, the following expression '’

F'=kT 3; g; In{1—exp[ (u+v- p;—¢;)/kT ]}
+ Nu+v-P.

IV. CONNECTION WITH THE TWO-FLUID MODEL.
DISCUSSION

(3.16)

In discussing the thermo-hydrodynamics of the
two-fluid model it is customary'® to consider the total
energy per unit volume, E, to consist of two parts: the
hydrodynamic kinetic energy of the two fluids, and the
“internal energy.” Thus

E=p0.2/24pv2/24pU, 4.1)

where
prn=2p, po=(1—x)p, (4.2)

are the densities of the normal and the superfluid,
respectively, and v, and v, are their respective hydro-
dynamic velocities.

The energy E’ considered in the preceding sections
clearly corresponds neither to E nor to pU': it is the
total energy per unit volume in a coordinate system in
which the condensate (superfluid) is at rest. To obtain
the thermodynamic properties of E or of pU, we have

to transform to a coordinate system in which the

superfluid has the velocity v,, that is a system moving
with the velocity —v, relative to the one for which the
statistical formulas of the preceding section hold. The
relation between E and E’ is then found to be

E=E'4-pv%/24-pav-vs,

pU=E'—p.?/2. (4.4)

Remembering the relation (3.12), whereby, in Eq.
(2.8) for dE'

v-dP=v-d(pxv)=x1’dp-} pv’dx+ pxdr?/2,
we obtain from Egs. (4.4) and (2.8)
dU=dE'/p— E'dp/p*— d(x?)/2
= Tds+ (ST+ pwv— E'+ Nu)dp/ o+ (1/2)0%dx. (4.5)

17 The corresponding formula given by Dingle [reference 8, Eq.
(116)] for an assembly of excitations is obtained by a Galilean
coordinate transformation involving a fixed velocity v, and there-
fore omits the term — - P in the Legendre transformation (3.15).
Hence Dingle’s expression really stands for the function F'—v-P,
which accounts for its being a decreasing function of 12,

18 See, e.g., reference 11.

(4.3)
so that
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Substitution of the expression (2.12) for u into (4.5)
yields the characteristic equation (2.6) of the two-fluid
model.

It will be well, in conclusion, to discuss briefly some
questions relating to the physical significance of the
formal statistical results we have obtained. We have
seen that a degenerate Bose gas with a suitable energy
spectrum exhibits the characteristic hydrodynamic
property of the two-fluid model of liquid He II, that
is the property of being able to sustain, under appropri-
ate macroscopic conditions, a stable relative velocity
between the condensed (superfluid) and the excited
(normal) part of the gas. It is significant, however,
that this result does not obtain for an ideal gas of

helium atoms (energy spectrum e= p?/2m), but requires

the existence of an energy gap or, at least, a finite slope
at the origin in the energy spectrum of an atom as a
function of the magnitude of its momentum.

Now it is quite reasonable to expect that a single-
particle approximation to the description of liquid
helium would involve a spectrum of this type.)® Such
a single-particle approximation, or the smoothed poten-
tial model of a liquid,® for which the essential parts of
the treatment in Sec. III are still valid, takes account
of the interactions between the atoms in an approximate
way by considering each atom to be moving in a poten-
tial obtained by averaging over the wave functions of
all the other atoms. The energy spectrum of an atom
in such a model therefore actually depends on the
states of motion of all the atoms; it is a function of the
statistical distribution. In our discussion we have
assumed, however, that the single-particle energy
spectrum is unaffected by the change in the distribution
resulting from the imposition of a total momentum.

Quite apart, therefore, from the limitations of any
model neglecting the correlations between the atoms
in the description of a liquid, our results can be expected
to have only limited qualitative validity as a basis for
understanding the actual hydrodynamic properties of
liquid He II. They will be valid only for situations in
which the effective single-particle energy spectrum is
not altered appreciably by the imposition of a total
momentum on the fluid. We may expect that this will
be the case if two conditions are met. First, the resultant
relative velocity v must be sufficiently small, so that
the distribution (3.9) is not greatly distorted by the
presence of the v-p; term. Second, the momentum must
be imposed in such a way that not all the atoms are
accelerated simultaneously, because otherwise one
would expect the minimum of the single-particle energy
spectrum to shift away from the state of zero momentum.

1 A spectrum with a gap has been proposed by Bijl, deBoer,
and Michels, Physica 8, 655 (1941) ; and by Toda, Prog. Theoret.
Phys. 6, 458 (1951). See also Landau, reference 7.
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The first of these conditions suggests that the reversi-
bility of superflow will probably break down at con-
siderably lower relative velocities than those one would
deduce from the statistical considerations which assume
a fixed energy spectrum. The second condition will bear
a closer look at this time. In Sec. ITII we have assumed
that the single-particle energy spectrum e(p) has its
sharp minimum at p=0. However, the interactions
between the atoms, which would be the cause of this
sharp minimum, can depend only on relative momenta,
so that in general we should expect the energy spectrum
to be a function '

e=e(|p—ps)), (4.6)

the particles of the condensate moving with a mo-
mentum p,. In this case the total momentum in the
absence of a relative velocity v would be not zero, but
Py=Np,. Clearly the treatment of Sec. III still holds
for this case, a relative velocity resulting now from the
imposition of a total momentum differing from Py. The
application of forces which affect all the particles simul-
taneously, however, such as for example the force of
gravity or body forces in general, would now be expected
to result not in a relative velocity v, but rather in a
change of p,, that is, a shift in the minimum of the
energy ‘spectrum (4.6). On the other hand, “forces”
which act statistically by collisions, such as viscous
friction between layers of the fluid or between the
fluid and a wall, will not affect the energy spectrum
appreciably, but will instead lead to the emergence of
a relative velocity between the condensate and the
excited part of the fluid. This, then, is the kind of
physical situation corresponding to the imposition of
the statistical constraint of a total momentum (dif-
ferent from Py).

The behavior of p, is presumably described by the
equation of motion of the superfluid velocity v, in the
two-fluid model. The problem of a rigorous microscopic
theory of this behavior is essentially the problem of a
rigorous theory of the ground state of an ideal quantum
liquid. It is, therefore, in the main a problem not of
statistical mechanics but of pure quantum mechanics,
and cannot be treated by the statistical methods of the
present paper. It’s complete solution must await the
development of a theory of the pure quantum states of
a liquid. We have seen, on the other hand, that the
statistical aspects of the two-fluid hydrodynamics can
be elucidated at least qualitatively within the frame-
work of the Bose-Einstein condensation picture.

I am greatly indebted to Professor F. London for
letting me see the manuscript of his forthcoming book
before publication and for several valuable discussions.
I am also indebted to Mr. H. M. Fried for assistance
with some of the calculations, and to the Research Cor-
poration for a financial grant.



