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The complete speci6cation of the spin states of a particle of spin i resulting from a nuclear reaction requires
a knowledge of all irreducible spin tensor moments Tp(

~
c

~

&g &2i). A general calculation is made of the spin
tensor moments arising from a nuclear reaction initiated by an arbitrarily polarized initial beam. All sums
over magnetic quantum numbers are performed by the use of the S matrix and Racah formalisms. The
results are expressed in terms of the G function which is related to the Fano X function. All selection rules
follow from the properties of the G function. In particular, a generalization of the Eisner-Sachs selection
rules are given. The problem of the detection of polarized particles is.considered.

The S-matrix formalism is extended to include the possibility of gamma-rays in nuclear reactions. Anal-
ogous formulas to those of Blatt and Siedenharn are given for the angular distribution of gamma-rays. A
simple recipe yields a general result for the polarization and angular distribution of radiation from aligned
nuclei. Finally, the theory is extended to include the possibility of an arbitrarily polarized target nucleus as
well.

I. INTRODUCTION

'HE spin state of a beam of particles of spin i may
be speci6ed by giving the elements of its density

matrix. The density matrix, however, can always be
written as a linear sum of the irreducible spin tensor
moments T„&, where q is the rank of the tensor and K

is its component ( ~
k

~
&q &2s). In a previous paper' an

expression was given for the spin tensor moments
arising from a nuclear reaction initiated by an un-
polarized beam; i.e., one in which all initial tensor
moments other than q=~= 0 vanish. It is the purpose of
this paper to generalize the result to the case of an
arbitrarily polarized initial beam.

In Sec. II an expression is obtained for the expecta-
tion value of a spin tensor operator resulting from a
nuclear reaction. The complete dependence of the
expression on the magnetic quantum numbers of the
initial and final states is contained in Clebsch-Gordan
coeS.cients. All sums over these magnetic quantum
numbers are performed in Sec. III, and the Anal result
is expressed in terms of the S matrix and a geometrical
function for the initial and final states. Several general
selection rules, including the generalization of the
Eisner-Sachs selection rules, are listed in Sec. IV.
Applications of the general result to the problems
of the angular distribution and polarization of particles
in nuclear reactions, detection of polarized particles,
and radiations from polarized nuclei are made in Sec. V.
Section VI discusses the extension of the formalism to
include gamma rays in nuclear reactions. Section VII
indicates the modi6cations which must be made if the
target nuclei, as well as the incident particles, are
polarized.

This paper can properly be regarded as the generali-
zation of the results of Blatt and Biedenharn' to include

*This paper is based on work performed for the U. S. Atomic
Energy Commission at the Oak Ridge National Laboratory.

'A. Simon and T. A. Welton, Phys. Rev. 90, 1036 (19S3);
references to this paper will be designated by I.

~ J. M. Blatt and L. C. Biedenharn, Revs. Modern Phys. 24,
258 (1952); references to this paper will be designated by BB.

the observation of the spin polarizations of the initial
and final states of a nuclear reaction. It should be
pointed out to the reader that there is a complete cor-
respondence between this theory and the theory of'

angular correlation. ' In this regard it should be noted
that, although the X coeKcient of Fano is the natural
function to use in angular correlation problems, the
geometrical G function introduced below seems to be
more convenient for the problem of nuclear reactions in
which the initial state is a plane wave. This same eGect
is apparent in the results of BB where the Z coefficient
is a more natural function for the angular distribution
than the Racah coefficient. The 6 function is the
generalization of the Z coeKcient and bears the same
relation to the Pano X function as the Z coe@cient
does to the Racah function.

II. NOTATION AND GENERAL EXPRESSION
FOR THE POLARIZATION

As in Sec. I, we consider the reaction

a+X +F+b, - (2 ~)

in which particle u collides with nucleus X. Particle b

emerges at an angle 8 to the direction of the incident
beam, and I' is the residual nucleus. All quantities are
measured in the center-of-gravity system. It is assumed
that the spin polarization measurements in the 6nal
state are made upon particle b.

The system before collision is described by the
channel spin s, the relative orbital angular momentum
l, and the channel index n which defines the type of
incoming particle (neutron, proton, etc.) as well as its
energy and the state of the target nucleus. The channel
spin s is the total spin angular momentum in the
entrance channel and is formed by the vector addition
of the intrinsic spin i of the incoming particle and the

~ U. Fano, National Bureau of Standards Report 1214 (un-
published). The author wishes to take this opportunity to thank
Dr. Fano for permission to see a manuscript by Fano and Racah
in advance of publication.
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spin I of the target nucleus. The state of the system
after the reaction will be described by primed quantities.

A convenient expression for the asymptotic form of
the outgoing wave is provided by the use of the S-matrix
formalism. If the colliding system, which is taken to be
a plane wave along the s axis, has the initial quantum
numbers o., s, and m„ the corresponding 6nal wave
function in the staten's'm, ' has the form Lsee BB (3.12))

(e q &exp(ik r .)
i'(nSm„n'S'm, ', 8y) i)t.

~

—
~)

X@ q(nsm„n's'm, ', 8$)x(s'm, '),

where e and k are the relative velocity and wave
number, respectively, in channel n: P,. is the product
of internal wave functions of nucleus P, and particle b,
corresponding to the specification n'; X(s'm, ') is the
final channel spin wave function and

q(asm„n's'm, '; 8&)
oo J+e J+8'

i' '(2l+1)&
J.M l=( J—e ) l =)J—s'

) m =+1

X (l s 0 m.
~

i s I m, ) (i' s' tt' m, '
~

i' s' I m, )
XR( sl, 's'i'; I ) 7't „(8$). (2.3)

The quantity (i s 0 m,
~
i s I nt, ) is the Clebsch-Gordan

coef6cient de6ned as in Condon and Shortley. 4 The
R matrix, which is related to the scattering matrix S by
E.=—j —S, is evaluated in the representation specified
by the quantum numbers O.s)Jm, and x. Here J is the
total angular momentum of the colliding system, m, is
its orientation, and x is the parity. It has been assumed
that no external forces are acting on the system. As a
result, then, 5 must be diagonal in J and m and must be
independent of m; as has been made clear in the nota-
tion. In this representation the 5 matrix is symmetric
and unitary. The summations over l and i' in Eq. (2.3)
are to be extended only over those values which satisfy
the parity condition. For pure elastic scattering S is
related to the phase shift 8 by 5= exp(2ib).

The initial spin state of the colliding system in
channel n is most conveniently speci6ed by the use of
the density matrix. For our purposes this inay be
defined as follows. The initial system may be described
as a statistical mixture of channel spin states x&, and
the results of any physical measurement are obtained
by performing a suitable average over the elements 7
of the statistical ensemble. If we now expand the sta-
tistical spin states in terms of the basic channel spin
functions x(sm, ), we have

x&= P a&(sm, )x(sm, ).
8, tOg

An element of the density matrix is then defined as
I

p(simi, ssms) = (a'(stmt)*a~(ssms))» (2.4)

where the brackets denote an average over y and where

4E. U. Condon and G. H. Shortley, The Theory og Atomic
Spectra (Cambridge University Press, Cambridge, 1951).

for simplicity m. & is replaced by m&, etc. It is clear that
the measured value of any operator 0 in the 6nal channel
0.' is now given by the average over the elements p of
the initial ensemble of the expression

(slml) a (ssm2)(4 (ctslml cr sl ml 8Q)

X!0~$(nssmg Q ss m's, 8y)),

where the sum is over s~m~s2m2s~'m~'s2' and m2'. Hence,
by Eq. (2.4) the resultant expression, after averaging,
becomes

Q p(simt' , ssms)(lp (ctstmt cr si mt ' 8g)
X ~Ojf(nS2msy cr Ss ms j 8$)).

If it is assumed that the operator 0 corresponds to a
measurement upon the spin i' of particle b at an angle 0,
we have

0—=0(i')r 'dQ

where dQ is the solid angle. This expression, combined
with Eq. (2.2), yields the following result for the
measured intensity (note that normalization is to unit
incident Qux)

(0(i'))=)1 ' p p(Simi, Ssm2)q*(ns, mi, n'St'm, ', 8&)

Xq(nssms, n'ss'ms', 8&)
X(x(si'mi')

~

0(i')
~

y(ss'ms')). (2.5)

Complete statistical information on the spin states
of a particle of spini may be obtained by specifying the
elements of the density matrix or alternatively by
specifying the values of the irreducible spin tensor
moments T„' (~tc~ (q(2i) Note .that there are (2i+1)'
independent elements in each description. It is especially
convenient to use the tensor moments since the low-
ranking tensors correspond naturally to such physical
quantities as the differential cross section and polari-
zation and since these elements transform covariantly
under rotation. As in I, all tensor operators are de6ned
so as to agree with the definitions given by Racah' and
are so normalized that

&s =I'.(i*'/2" (i'+1)3') (2.6)

A partial listing of these operators is given in Sec. V.
Since the tensor operators and the elements of the
density matrix form complete sets, it should be possible
to expand the density matrix in terms of the initial
tensor moments. This expansion is performed in
Appendix A. For the case of an unpolarized target
nucleus the result is

L (2si+ 1)(2ss+ 1)3'
p(s,mi j ssms) = ( 1)warn- i+I

(2I+1)
(2i)!(2q+1)'

Xg (StSs—mtm,
~
Sissq —x)

'iL(2' —q) '(2'+q+1) 3'
W (istiss, Iq) r„, (2.7)

&e(l:i/(i+1) 0')
' G. Racah, Phys. Rev. 62, 442 (1942); references to this paper

will be denoted by R.
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where the tensor moments T„& are with respect to the
incoming particle of spin i. Note that a= vs~ —m2. Hence,
for a definite input tensor moment, all dependence on
the magnetic quantum numbers is contained in a
Clebsch-Gordan coeKcient.

The operator O(i') will now be chosen to be any spin
tensor operator T„&'. The reduction of the resultant
spin matrix element (X(st'zl1')

~
T„.&'

~ X (ss'zrzs')) has been
performed previously in Appendix A of I. It was shown
in I (A.2) that

(X(sl zzzl')
~
T""

~
X(22 zzz2 ))

= (-1)' "' """(2q'+1) 't:(2') ] '

X[(2st'+1) (2s2'+1) (2z' —q')!(2z'+q'+1)!]&

X W (z'st'z'ss j I'q') (st'ss rizt zzz2
~
$1 $2 q K )

XI'. (9'/(2+ 1)]') (2.8)

If we combine Eqs. (2.3), (2.5), (2.7), and (2.8), as
well as Eq. I (2.8) for the product of two spherical
harmonics, the following result is obtained:

(zr) &X '(2z)!(2q+1)&L(2i' —q')! (2i'+ q'+1)!]&
(T"')=

2(»+ 1)(»') '(2q'+ 1)'t (2z —q) '(»+q+ 1) ']'

X (2lt+1) (2ls+1) (2lt'+1) (2ls'+1) (2st+1)

X (2s +1)(2s '+1) (2s '+1)/(2r'+1)]'*

X+(crllsl) cr ll ~1 j +lzrl) +(&l2~2y ci l2 ~2 j ~2zr2)

XW (zstzss, Iq) W (2'st'i'ss', I'q') (l1'ls'00
~

l1'ls'r'0)

X 7„., „„(ep)T„gg t (stss —zrztzrzs
~
stssq —ic)

X (st'ss zrzt'zzzs
)
st'ss'q &')

X (l1 l2 —p 1 zis
~
l1 ls r K —K) (lts10nzt

~

l 1stJtzzzt)

X (lqs20rN2
~
lsss Jsrns) (lt'st'zit'ztzt'

~
l1'st'Jtznt)

X (lp'ss'Zis'212'
~
ls'ss'J22222)]) (2.9)

summarized in a review paper by Biedenharn et al. ' In
particular, the identities BBR (1), (14), (18), (19), and
the properties of the Fano I coeKcient Lreference 3 and
also I, Appendix 8] are needed. The details of this
procedure, which is laborious but not illuminating,
will not be given here, since the speci6c steps for a
similar reduction were given in I.

The magnetic sum can be shown to reduce to the
following expression

Q(—1)'2' ' 2+12+ 1(225 +11)(2J +21)$(2q+1)(2q'+1)
r, I

X (2r'+ 1) (2r+ 1)]&(ltl200
~
ltlsr0)

X (rq0a! rqLrc) (r'q'a 1I'a'! r—'q'LK)

XX(Jtltst, Lrq; Jsl2$2)X(Jtlt'st'', Lr'q'; Jslg $2) (3.1)

where X is the codFicient de6ned by Pano, ' and I. and
r are auxiliary variables. This expression is the generali-
zation of I (3.1).

If Eq. (3.1) is substituted in Eq. (2.9), there results
an expression for the final tensor moment T„&'. The
tensor moment T„&', however, is measured with respect
to the coordinate system with s axis along the direction
of the incident particle. A more convenient and sym-
'metrical form results if the final tensor moment is
measured with respect to a coordinate system along the
direction of the anal particle. If the incident beam direc-
tion is denoted by k and the scattered direction by k',
let us choose a new coordinate system with s' axis along
k' and with the y' axis along kXk'. The Euler angles of
this rotation are then (P, 0, 0) relative to the original
coordinate system.

The spin tensor operator T„&' in the new system is
then related to the spin tensor operators T„&' in the
original coordinate system by the relation~

„T'-g D;„«'&(y e 0)T"

where D„,„«'~ is an element of the three-dimensional
rotation group. The complete dependence on ~' of the
expression for T„&' is now contained in the factors

(—1) "'(r'q's —AY
~

r'q'Lir) F„., „. „(8,P).

where the 6rst sum is over l~)2t'~'l2'sys2sy's2'J iJ2~gr2 and
the auxiliary variable r'.

It has been assumed in this expression that there is

only a single input tensor moment T„s. (The effects of
several input moments are additive. ) Note that only
two magnetic quantum numbers are still independent,
since ~=m~ —m2 and ~'=nz~' —m2'. The remaining geo-
metrical sums are eliminated in the next section.

III.ELIMINATION OF MAGNETIC SUMS AND GENERAL
EXPRESSION FOR TENSOR MOMENTS

The sums over m~ and m~' may be eliminated by the
repeated use of some Racah identities which have been

Hence, the new tensor moment contains the transformed
factors

I

P(—1)-"'D;,„«'&(y, e, 0) (r'q's KK ir q LK)—
zt'

X I", .. .(ti, 4).

The sum over ~' may be performed by expressing
P„,„„asa D function and, using a relation for the
product of two D functions Lsee the paragraph in I

63iedenharn, 31att, and Rose, Revs. Modern Phys. 24, 249
(1952); references to this paper will be designated by BBR.

7 E. signer, GruppentheoHe (I". Vieweg, Braunschweig, 1931),
p. 165.
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following I (6.5)j. The transformed factors become

( 1—)"(r'q'Of 'tr'q'Lf ')D., '"'(0 e 0)C(2r'+1)/4 l'.
The complete expression for the final spin tensor

moment T„&' (measured with respect to the scattered

axis) resulting from an initial spin tensor moment T„s
(measured with respect to the incident axis) is obtained
by substituting Eq. (3.1) in Eq. (2.9) and making the
transformation described in the previous paragraph.
The result is

lt '(2i)!C(2i'—q')!(2z'+q'+1)!J&(2q+1) I';(Ci'/(z'+1)) )
(T„.s')=, P R*(nlisi, n'li'si'; Jizri)

4 (2I+ 1) (2i') !C (2z—q)!(2z+q+ 1) !$& (2q'+ 1)&P,(Cz/(z+ 1))&)

XR(nl s, , n'l, 's, ', J~,)W(zs, zs, ; Iq)W(z's, z's, ', I'q') ( 1)'z+'—s'+' '+" '-+"'D—
„,„.is&(y, 0, 0)T„s

X'R (Jl'lsil L q) J2~2ss)'R'(Jill sl y
L q y Js'2 ss )1 (3 2)

where the sum is over /~321~'Vsy$2$y's2 JyJ2x'yx'21. , and
where the G function is defined in terms of the X func-
tion as (note that this definition has been changed
somewhat from that given in a previous communica-
tions):

'R(Jlllsly L qi Jslsss)

=C(2li+1) (21~+1)(2si+1) (2ss+1)]&

XC(2Ji+1)(2Jz+1) (2q+1) (2L+1)J&

Xi"+'& P„(lit~00~ lilsr0) (qLs —s
~
qLr0)

XX(Jilisi, Lrq, Jslzss). (3.3)

Equation (3.2) is the most general result derived in
this paper. All selection rules are contained in the
G coefEcient. These selection rules are discussed in the
next section. A short summary of the properties of the
G. function is contained in Appendix B. In addition,
two alternative expressions for G are given in Eqs.
(8.7) and (8.8). Although these expressions are less
symmetric than Eq. (3.3), they are much simpler for
computational purposes and for many algebraic reduc-
tions, such as occur in changes of representation.

IV. SELECTION RULES AND DEGREE OF
ANGULAR COMPLEXITY

The selection rules for any nuclear problem, corre-
sponding to specific choices of q, q', K, and K', can easily
be read oG from the properties of the G coefficient.
Some of these are mentioned in the next section. A few
general statements may also be made.

(a) If the subscripts 1 and 2 are interchanged in Eq.
(3.2), the resulting expression may be restored to its
original form by the use of the symmetry properties of
the G function and BBR (14). The only new factor
appearing after this process is the phase factor (—1)s+&'.

Hence, if q+q' is even, the elements of the R matrix in
a calculation can always be written in the form
R*(1)R(2)+R(1)Re(2).If q+q' is odd, an interference
term R*(1)R(2)—R(1)R*(2) always results.

It was pointed out in I (footnote 13) that the elements
of the S matrix resulting from the use of perturbation

.'A. Simon, Phys. Rev. 90, 99j. (1953). Equation {1) of this
letter has a misprint in it. The phase factor should be (-ll"
rather than (-1)"'.

theory or the Born approximation are all real. Hence,
in these approximations, there will be no contribution
to a process in which q+q' is odd.

(b) If both s and s'. are zero, Eq. (8.4) along with
conservation of parity requires that q+q' be even. Thus,
for example, there can be no transitions from q=0,
K= 0 to q= 1, K= 0. This is the reason why the polariza-
tion produced in a nuclear reaction lies along the
tangent plane.

(c) The maximum complexity of the angular de-
pendence is given by the largest permissible value of I..
If there is a largest incident orbital angular momentuml, total angular momentum J, or final orbital
momentum l', the largest value of I. is given by the
simultaneous conditions

. 2l +q I

2l .„+q 1(s'=O—, s WO, q+q'odd)
L&q2J

2l msx+q
2l' +q' —1 (a=0, s'WO, q+q' odd).

These rules are easily seen to follow from Eqs. (8.2),
(8.3), and (8.4).

V. APPLICATIONS TO SPECIFIC PROCESSES

An expression for a given reaction measurement is
obtained by a particular choice of q, q', K, and K' in Eq.
(3.2). For example, an initially unpolarized beam is
specified by T,&=1 for q=K=O and zero for all other
values. It is convenient to list the values of some of the
simpler tensor moments in terms of spin operators s:

Tss = 1, Ts' ——ss/Cs (s+ 1))&,

T~ii W(s &is„)/C2s(—s—+1)j&,

Tos=C3s, s—s(s+1)]/C2s(s+1) J,

T+'= ~(v'6/4)C(. ~',) .+s*( *+,)0/C (+1)J,
T~ '= ( v'6/4) (s.+zs.) (s ~zs.)/Cs(s+ 1)J.

Angular Distribution of Nuclear Reactions

The angular distribution resulting from an unpolar-
ized initial beam corresponds to q'=q=K =K—0. The
result given in BB (3.16), (4.5), and (4.6) is obtained
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from Eq. (3.2) by use of Eq. (B.9) and BBR (30).

do'

Q (—1)" 'R*(ns/i, n's'li', Jiiri)
dQ 4(2i+1)(2I+1)

XR(ns/2) n s /2 j Jpirp)Z(/1J1/2Js) sL')

XZ(/i'Ji/s'Ji, s'L)Pz(cos8), (5.1)

where the sum is over ss'l~l~l~'12'J~J2x~x2 and I..
Polarized Particles From Nuclear Reactions

The result given in I(3.2) for the polarization result-
ing from a reaction initiated by unpolarized particles is
easily obtained by setting q'=1, ~'=&1 and q=~=0.
Note that I(3.2) is the expectation value of the operator
i'/Li'(i'+1) jl. This is related to f, the percentage
polarization in the final state, by

dl p
I
=9'/(i'+ 1)3'fdo, (5 2)

where do- is the differential cross section for the reaction.

Detection of Polarized Particles of Spin 1/2

The most convenient way to detect the polarization
of a spin- —,particle is to observe the angular distribution
of a subsequent reaction initiated by this particle. A
general expression for this cross section can be derived.

Let k& be the direction of an initially unpolarized
beam, which produces a polarized particle of spin i
(i=-,'). The intermediate particle i is taken o6 in the
direction kp, which is specified by the angles 8, P with
respect to ki, and allowed to bombard an unpolarized
nucleus of spin I. The final reaction product which is
of spin i is observed in the direction ki, which has the
angles O'P' relative to ks. The spin of the final residual
nucleus is I'. (Note that on/y the intermediate particle
i need be of spin ip.)

The initial system in state 1, being unpolarized, will
contain only the tensor moment q=o, ~=0. The inter-
mediate system then contains the three tensor moments
Tpo, Ti', and T i'. (Note that Tp' is excluded by selec-
tion rule (b) of Sec. IV; all tensor moments are measured
with respect to the beam axis. ) These tensors contribute
additively to the final angular distribution, which is the
expectation value of To' in the final state.

One component of the final measurement can be
written symbolically as Tp'(1)—+Too(2)~TpP(3), which
is clearly equivalent to do. (8)do. (8'). Here do(8) is the
differential cross section for the 6rst reaction, and
do (8') is what the cross section would be for the second
reaction if the intermediate beam were itnpo/arised. The
remaining components are simplified if one verifies that
by the symmetry properties of the E.matrix, the proper-

ties of the D function, r and Eq. (3.2)

T~i'(2)~TpP(3) =3(2i'+1) (2I'+1)/L(2i+1) (2I+1)]
X I:Tp'(3)~T+i'(2) J (5.3)

Now by Eq. (5.2) the last bracket in the above ex-
pression can be written essentially as

Li/(i+1)]*'f(3—+2)do. (3—+2), (5.4)

where f(3~2) is the percentage polarization which
would result if the second reaction were reversed in
time, with the system in state 3 being unpolarized. But
clearly

(2i'+1) (2I'+1)do (3~2)= (2i+1)(2I+1)do (2~3)
—= (2i+1) (2I+1)do(8'). (5.5)

If we combine Eqs. (5.2), (5.3), (5.4), and (5.5), the
second component of the final angular distribution can
be written as

Tp'(1) —+T~,'(2) ~Tps (3)
=ni nif(1 —2)f(3~2)do(8)do. (8'),

where ni kiXks and np ksXkp are unit vectors along
the indicated normals to the scattering planes.

The observed angular distribution has the complete
form

do(8)do(8')$1+ni npf(1-+2) f(3—+2)j. (5.6)

Hence, the polarization is directly related to the azi-
muthal asymmetry of the second reaction. A similar
result was given by Lepore' for the special case of the
double elastic scattering'of spin —, particles by spin zero
nuclei. With these restrictions f(3—+2) f(2 +3), and-
Lepore's result follows.

Radiations from Polarized Nuclei

The problem of the decay of an arbitrarily polarized
initial nucleus can be regarded as a special case of the
general result given in Eq. (3.2). If the radiating nucleus
is taken to be in the state designated by o,fm, the
specialization is made by the following recipe:

(a) Replace 5(n/isi, n'li'si', Jiiri) with

S(nOJ, n'li'si', Jpr)8(/i, 0)8(si, J).
(b) Set i=J and I=0.
(c) Divide Eq. (3.2) by irk '.

This recipe assures that there will be only a single
initial state of the entire system of angular momentum
J. In addition, the amplitude of this state is chosen to
be unity.

The application of this recipe to Eq. (3.2) results in
the following expression

(2J)!$(2j—q )!(2i'+q +1)!(2q+1))~Pp, (Li /(i +1)g-:)
—R*(nOJ, n'l, 'si', Jir)R(nOJ, 'l snsJipr)

4ir(2i')!$(2J—q)!(2J+q+1)!(2q'+1)$'P, (P/(I+1)]')
Xg (i'si'i'si', I'g')( —1)"'+"—'+"+*j),„.«&(y 8 0)g„.(J/i'si' g q' J'/s'sp')T„, (5.7)

P I. V. Lepore, Phys. Rev. 79, 139 (1930).
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where the sum is only over /j.'l2's&' and s2'. Here T„& is
a spin tensor moment of the arbitrarily polarized initial
nucleus. The final tensor moment T, &' of the particle i'
is measured with respect to its direction of motion k'.
The angles //, p relate k to the initial axis of quantiza-
tion of J.

Expressions for the angular distribution (q'=x'=0)
and polarization (q'=1, x'=&1) of the emitted par-
ticles are easily obtained from Eq. (5.7). Up to the
present time, chief interest has been centered on
gamma radiation by polarized nuclei. In this case, the
channel spin representation is not convenient; and,
instead, one must use a representation involving the
multipole expansions of the gamma-ray field. This point
is treated in the next section. It is worth noting that,
when the nuclear polarization has been accomplished by
magnetic or electric fields, the resultant cylindrical
symmetry requires that only initial tensor moments
with ~=0 appear. The angular dependence then sim-

plifies since

(o) (p 8 0) ( 1) ()~~—~)/2

XE(q—Ixl) ~/(q+ I.~) ~gV, (/),

where I'," is the usual associated Legendre function.

VI. GAMMA RAYS IN NUCLEAR REACTIONS

The S-matrix formalism may be extended to include
the possibility of gamma rays in nuclear reactions. In
this case, the vector potential A plays the role of the
"wave function" for the particle. A formal proof of this
equivalence which will not be given here requires the
procedure of second quantization. "

The vector potential field is customarily expanded
in terms of electric and magnetic multipoles, A(L, M, p) .
The total angular momentum of the multipole and the
s component are denoted by L and 3f. The "parity"
symbol p, which is defined to have the value 0 for
magnetic radiation and 1 for electric radiation, is
related to the actual parities in the vector field by

parity= (—1)z for P= 0, magnetic

= (—1)~+'
p = 1, electric.

The specific definition of the multipoles which will be
used in this section is as follows:

A(L, M, p)= —v2 Q'(/1M —g gal 1I.M)
«, l

X(L1 —11iL1/0)P zu V( ir (g y)
Xexpt i (kr —/m. /2) j, (6.1)

where the prime on the summation symbol indicates
that only the term /=L is to be included in the sum if
p=0 and only the terms /=L+1 if p=1. The symbol
u„denotes an irreducible component. of the vector part
of A and is defined in terms of the unit vectors eieoe3

"See, e.g., J. A. Spiers, Directional Egects in Radioactivity
(National Research Council of Canada, Ontario, 1949), Appendix
II.

along the coordinate axis as

u~i ——W (ei&ieo)/v2, uo= eo.

Note that A(I., M, p) as written above consists of
outgoing spherical waves only. The incoming spherical
waves have the same definitions, but with a reversed
sign in the exponential.

The normalization of A(L, M, p) has been chosen so
that its absolute square integrates to unity over the
solid angle. The first Clebsch-Gordan factor has the
algebraic values:

(L 1 —1 1
i
L 1 L 0) = —1/K2;

(L 1 1 1
I
L 1 L+1 0) = ~L/2 (2L+ 1)

(L 1 —1 1~ L, 1 L, 10)= t (—L+1)/2(2I. +1)]'*;

and in this form the multipoles may be recognized as
essentially those given by Goertzel. "We prefer to keep
this factor in the form of a Clebsch-Gordan coef6cient,
since a single algebraic expression will then suffice for
all multipoles. The multipoles as defined above are
everywhere transverse to the radial direction, as may be
easily verified. The remaining longitudinal multipoles,
which are excluded in the case of the electromagnetic
field, are obtained immediately by replacing

(I. 1 —11~L, 1/ 1) ly (L100~I.1/0)

in Eq. (6.1).
The composite system consisting of a gamma-ray

and a residual (or target) nucleus of spin I is now
specified by the quantum numbers nJmzLp, where J
and mg are the total angular momentum and s com-
ponent of the entire system. This representation is very
similar to the representation in which the angular
momentum and spin of a bombarding "particle" (in
this case a gamma ray of spin 1) are combined to form
a de6nite j (which is the I. of the multipole), which
then combines with the nuclear spin I to form a total
state specified by J and mJ. Our previous formulas for
the particle reactions may now be extended to include
gamma rays by simply changing from the channel spin
to the multipole representation. I et us consider first
the case of a reaction in which a particle comes in and
a gamma ray comes out.

Partic1e In and Gamma Ray Out

For this reaction we wish to use a mixed represen-
tation for the R matrix in which the initial states are
still in the channel spin representation, and the final
states are in the multipole representation. By the usual
transformation theory,

R(nls, n'/'s', J7r)~ Q R(n/s, n'L'p'; Jz.)
L, /~I

X (L'P'Jn ill's'J~) (6.2).
Racah" has shown that the transformation matrix,

"G. Goertzel, Phys. Rev. 70, 905 (1946).
"G. Racah, Phys. Rev. 63, 367 (1943).
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which represents the recoupling of three angular
moments (/, 1, and I) must have the form of a Racah
function. It is easy to show that the exact relation is

(L'p'J~l~/'s'J~)

= —v2[(2L'+ 1)(2s'+ 1)7'W (/' 1 J I', L's')

X (L' 1 —11'L,'1/' 0)sL' '8 -(/', P'), (6.3)

where the 8 symbol vanishes if /' does not have the
proper parity corresponding to p' and has the value

unity otherwise. If Eqs. (6.2) and (6.3) are now sub-
stituted in the general expression of Eq. (3.2), the

, sums over s&', s2', lj', and l2' may then be performed
without any detailed knowledge of the R matrix.
(Note that i'=1.) The"sum over ss' is performed first
by the use of BBR (1/). Then this identity is used
again to obtain the sum over s~'.

Ke prefer not to do the sum on /~' and l2' explicitly
in order that a single expression be valid for all choices
of the multipole "parity. "The anal result is

M(2/) .L(2 —V') (3+&') i7'(2V+ 1)'*I''(V'2)
2 „,2'= p E*(n/, si, rr'Ll'pl', Jlir1)

12(2I+ 1)[(2/ —g) !(2/+ q+ 1) !(2g'+ 1)7»P» ([i/i+ 17&)

XR (nss2, n Ls P2, Jsm 2) (L, 1 —1 1!Ll' 1 /1 0) (L2 1 —1 1
~
L2 1 /2 0)/j (/1 & P1')8 (/2, P2 )

X[(2J+1)(2J + 1)7»jL» Ll +ll 1» (—1)J+»8»L+& +2 l+» I I +» gr(sg 2s Ii/)gT(J L J L I I)
XD», »' (t/00) 2» G» (Jl/1&1 j L 't/ j J2/2s2)G»'(Ll /1 1 j L g j L2 /2 1)y (6 4)

4+s Ts'

4/-s, T 2'

Ae ~& where A is the intensity of the
linear polarization, and P is its

Ae"& azimuthal angle relative to the nor-.mal to the scattering plane.

Where the Sum iS OVer /1/2S1S2J1J22rlirsL1'L2'pl'p2'/1' and
l2'. It is worth reminding the reader that the 8 symbols
signify that for magnetic multipole radiation, p=0, we
have /=L. For electric multipole radiation p=1, we
have l= 1.&1.

The meaning of the final spin tensor moments T, &'

for the gamma-ray case requires some clarification. It
is clear that a pure gamma-ray state requires only two
states U» and U ~, corresponding to right and left
circular polarization respectively for its description.
Hence the statistical density matrix will have only four
independent components, rather than nine as would be
the case for the usual particle of spin one. Since our
selection rules appear to allow all tensor moments up
to q'=2, it is also clear that only four of these moments
may be independent in the gamma-ray case.

A comparison with the listing of spin operators at
the beginning of Sec. U resolves the ambiguity. First
of all, it is easy to recognize that the tensor moments
T&', T &', T&', and T &'must be identically zero. To see
this, note that these four operators are proportional to
the spin operators s+ or s which have nonzero matrix
elements only between states whose magnetic com-
ponents diGer by unity. The only available states for
the gamma ray are V& and U & which differ by 0 or 2.
In addition, the operator Tp' is equivalent to Tp' since
both these states have s,'=1. Hence, the four inde-
pendent operators are Tp, Tp, T2', and T 2'. These
have simple relations to the physical measurements
which are listed below:

Tp' intensity

K2 Ts' circular polarization intensity

These parameters are essentially the Stoke's parameter
description of the polarization of a beam of light as has
been clearly pointed out by Fano. ' A more complete
discussion may be found in Appendix A of this reference.

The relations given above between the polarization
of a gamma-ray and its tensor moments allows several
selection rules to be read off from Eq. (6.4). These are:

(a) Circularly polarized light cannot result from a
nuclear reaction initiated by unpolarized particles (i.e.,
no Ts'~Ts'). This is a special case of the selection rule
given in Sec. IV (b).

(b) Linearly polarized light cannot be the product of
a nuclear reaction initiated by s-wave particles of
spin 2."To see this, note that the "tetrad" condition
on the first G function (/1/2 I q) requires that L, be either
1 or 0. However, ~'= &2 for linear polarization. Hence,
the second G function must vanish by Eq. (B.5).

Gamma Ray In and Particle Out

The derivation of this result follows in a manner
similar to the previous case. The only added difFiculty
is that one must recall that incident gamma-rays of
right and left circular polarizations, upon expansion
into multipoles, have opposite phases for the amplitudes
of the electric components. In particular, if one expands
a plane wave along the s axis of circular polarization I'
(P=~1) into multipoles, the probability amplitude
of the state of multipolarity L and parity p (=0 or 1)
is (I') "iL+'[(2L+1)irj27'jt, which differs from the par-
ticle case by the extra factor (I') r.

"This result was also obtained by Biedenharn, Rose, and
Arfken, Phys. Rev. 83, 683 (1951),by invoking Lloyd's theorem.
The use of Lloyd's theorem, which is only an approximate relation
Lsee F. Coester, Phys. Rev. 89, 620 (1953)j, is unnecessary in
this problem since the result is an exact selection rule. To see
this, note that the sums over m and M in Eq. (3) of Biedenharn
et al. can be performed and reduce the anisotropic term to zero
identically. The alternative proof of Lloyd's theorem given in
footnote 5 of this reference is then invalid.
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Now if the initial density matrix is expressed in terms
of the averaged amplitudes of the states of circular
polarization a(+1) and a(—1), we have:

D, =I (+1)I',
D I, I——~a( —1)I2,

Dl, i=a*(+1)a(—1),
D l, l——a(+1)a*(—1).

As we have just seen, however, the terms a(—1) will

have the factors (—1)" in the multipole expansion. In
addition, it is clear from the spin operator definition of
the tensor moments that

TO Dl, l+D—I, —ly

~0 D1 1 D—1,—1)

T2 D1;—1)

Hence, the proper initial tensor moments for the
gamma-ray case are:

T"L1+(-1)"-j/2,
To'L1 —(—1)""'*j/2
T2'( —1)"'

T 22(—1)».

In addition, the new expression must be multiplied by
-', to correct for the statistical factor. The final expression
for the case of a gamma-ray incident and a particle
emerging is then:

, &.'L(22' —q') '(22'+ q'+ 1) (2q+1)1'P'(9'/2'+1)')

2(2I+1)(2') L(2 —q).(3+q).(2q' 1)3'*P,(1/~2)

X (Ll 1 —1 1~ Ll 1/I 0)(L2 1 —1 1~L2 1 l20)8(l„p )8(l,, p )[(2J +1)(2J +1)J~ IL&—L2—'&+"

X(—1) '+"'+ '+' " ' +"'W(JILIJ2L2'IL)W(2'slV's2' I'q')D, „&L&(y 8 0)

X'R (Ll ll 1 j L q g L2 /2 1)G, (Jill'si', I q', J2l2's2') f(plp2q!I) T.', (6.5)

where

f(plp2q~) = I:1+(—1)"'+"3/2
= (1—(—1)»+n2]/2

= (—1)"
=( 1)»

for (=K=0)
q=1) K=0,

/=2) K=2)

/= 2) K= —2.

results for the special case of the angular distribution

(q =x'=0) resulting from a reaction initiated by un-

polarized beams (q=!l=0). The results are expressed in
terms of the Z coefficient defined in BB (4.3).

Particle In and Ganesa Ray alt

do.= ()i2/2) (22+1)—'(2I+1) '

Xp R*(n/ls& n Ll pl, JI2ri)

XR(l24s) l2 L2 p2 i J22r2) (Li 1 —1 1
I Li 1 ll 0)

X (I.,' 1 —1 1
i
L2' 1 /2' 0)8 (lI', pl') 8 (l2', p, ')

1
'L2' Ll'+4' ll' I 1 ) s I —L+Ll' —L2'+—I— —

XW(JiLi J2L2' )
I'I )Z (llJ,/2J2; sL)PL(8)

XZ (Ii'L, '/2'L2', 1 L)

XL(2JI+1)(2J2+1)]"dQ, (6.7)

Gamma Ray In and Gamma Ray Out

This expression follows immediately from the pre-
vious results.

)tv2h(2 q ) l(3+q ) l(2q+1)32P0'(1/v2)

6(2I+ 1)[(2 q)!(3+q)!(2q +1))&P0(1/v2)

XR (I2LIpi, n'Ll'pl', Jllrl) R (nL2P2, n L2 P2') J22r2)

X (Ll 1 —1 1
~
Ll 1 l l 0) (L2 1 —1 1

~
L2 1 4 0)

X (Ll' 1 —1 1
~

Ll' 1 /l' 0) (L2' 1 —1 1
~

L2' 1 l2' 0)

X 8 (/1Pl)8 (4P2)8(/1 Pl )8(/2 P2 ) (2Jl+ 1)(2J2+ 1)

XILy—L2 l&+l2—Lt'+L2'+ll' —l2'
( 1 )I I'+I x'+La+2+2'+x'—

XW (JlLlJ2L2, IL)W (J,Ll'J2L2',. I'L)

XD„,„' 'Q, 8, 0)T.'G„*(Li/21) L q; L2/21)

XGg (Ll ll 1 j L q j L2 4 1)f(plp2q&)q (6 6)

where f has the same de6nition as in Eq. (6.5).

where the sum is over /l4L' lL' 2/' I4' p' lPs2JIJ22lr2r2 and

Garflnsa Ray In and P'articLe Olt

do = (A'/4) (2I+1) ' Q R*(nLip) n'/l's', JIIIi)

XR (IIL2p, II'/2's'; 722I2) (Ll 1 —1 1
~
Ll 1 /i 0)

X (L. 1 —1 1~ L2 1 4 0)8(lip)8(l2p)

X[(2Ji+.1)(2J2/1)]kjL2-Ll+&l —i2

X (—1)" I +L' L2"'W(JILIJ2L2; IL)
XZ(/1L1/"L2 j 1 LjZ(/1 Jl/2 J2 j s L)

8)

Angular Distribution of Nuclear Reactions
Involving Gamma Rays

The most frequent use of the previous general results XPL (8)dQ, (6.
are in the analysis of angular distributions of nuclear
reactions. For this reason, it is convenient to list the where the sum is over LIL2/I/2JIJ22riII2/I'/2's'p and L
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Gamnza Ray le Oed Gamnsa Ray ONt

do = (lt'/2) (2I+ 1) ' Q R*(nLgp, n'Lg'p g', Jgm g)E (nL,p, n'L2'pg', J,~o) (Lg 1 —1 1
~
Lg 1 /g 0)

X (L2 1 —11(L21/20)(Li'1 —1 1~Li'1/i'0)(L~ 1 —11(L2'1/~'0)&(/yp)&(/2p)

Xl(/ '
p ')8(/2', p2')(2Jg+1)(2&+1)i ' ~' "+" "+~"+"' "'(—1)' '+~"+~" ~" 'W(J)L~JgL2, IL)

X8 (JiLg J2L2, I L)Z(/(L~ 2L2) 1L)Z(/g I g /g Lg ) 1L)PI.(0)dQ) (6.9)

where the sum is over LiL~Li'L2'4/24'/2'J J2~i~2ppi p~ and L.

Gamma Radiation from Polarized Nuclei

The general result for gamma radiation is obtained by applying the recipe given under the last subheading
of Sec. V to Eq. (6.4) .The result is

(25+1)!I (2—q')!(3+q')!(2q+ 1)]'P;(Q-,')
g„,Q Q R*(nOJ) n'Lg'pg', Jm.)R(nOJ, n'L2'p2') J7r)

12~L(2~—q)!(2J+q+1)!(2q'+1)]~P,(LJ/J'+1]**)

X(Lg 1 —1 1~Lr' 1/i 0)(Lg' 1 —1 1~L2 1/2'0)8(/g', pg')8(/2', p2')i~" ~"+'" "'

X (—1) " '+'+'+"+"'D.
. . "(P, &, 0)T.'W(JL 'JL ', I'q)G„(L '/ '1; q q', L,'/, '1), (6.10)

where the sum is over L~'L~'/~'/2'p~' and p2'. Note that
the polarized nucleus has spin J and parity vr. Its initial
tensor moments are T„&. If polarization is achieved by
electric or magnetic fields, only the terms with ~=0
are present.

If we specialize the above expression, we obtain
several results already given in the literature. '4

VII. POLARIZED TARGET NUCLEI

The previous results in this paper have all been
specialized to the case of a polarized beam of particles
of spin i incident upon an unpolarized target nucleus of
spin I. The more general problem is one in which the
target nucleus is polarized as well. (We assume, how-
ever, that the incident particle and nucleus are inco-
herent. ) The expansion of the density matrix in terms
of tensor operators is no longer that given in Eq. (2.7)
but rather has the form:

p(slml) $2m2)

P, (—1)" " &+"'(-sos-2 mgm2
~

—sgs2q —~)Zp, (7.1)

where

(2i) !(2I) !(2a+ 1)(2b+ 1)C (2$~+ 1)(2s2+ 1)]'*

L (2i—a)!(2i+a+ 1)!(2I—b)!(2I+b+ 1)!]'*

(—1)"(aha~ X!abq~)—
X

P.(Pz/z+ 1]')Pi (PI/I+ 1]l)

XX(/ai; sqqs2, IbI) Tq'(i) T„qi(I). (7.2)
'4 N. R. Steenberg, Proc. Phys. Soc. (London) 65, 791 (1952)

and 66, 391 (1953);H. A. Tolhoek and J. A. M. Cox, Physica 29,
101 (1953). These authors treat the angular distribution and
polarization of gamma rays from aligned nuclei for the case of
pure multipoles only. The correspondence to the notation of
Tolhoek and Cox is as follows:

To'=1& Tp =P$3/K2& T2'+T 2 = v'6Pgy/4&
i(T2' —T 2') =+6P/2/4.

p (slm1 ' $2m2) = (x (slml)x ($2m2))A ~ (A.1)

The channel spin wave function is deined in terms of
the spin wave functions for the incident particle i and
target nucleus I as

x (sm) =P (i I m; m m;!i I s m) x (im—;)x(I m m;)—
mi (A.2)

If Eq. (A.2) is substituted in Eq. (A.1) and if it is
assumed that wave functions of the target nucleus and
incident particle are incoherent, ene immediately
obtains

p (s~m~, s2m2) = P (i I m, m~ —m,
~

z I s~ m~)
mimi '

X(iI m m2 —m, '~iI s2m2)

Xp~(m', n&'') pr(mi m, , m2 —m, '), (A—.3)

This result is derived in Appendix A. Equation (7.2)
expresses the generalized tensor moment for the initial
system in terms of the individual tensor moments
Tq (i) and T„qi(I), defined in the usual manner, of the
incident particle and target nucleus respectively.

All previous results in this paper are generalized to
the case of polarized target nuclei by replacing T„& with

along with a change of normalization which is
obvious from a comparison of Eqs. (7.1) and (2.7).

The author wishes to express his thanks to Dr.
Theodore A. Welton for many valuable discussions and
suggestions.

APPENDIX A. EXPANSION OF THE DENSITY
MATRIX IN TERMS OF TENSOR OPERATORS

An element of the density matrix in the channel spin
representation may be written as an average of the
expectation value of an operator over the statistical
ensemble. If g(sm) is a channel spin wave function of
channel spin s and s component ns, an element of the
density matrix is
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where p; and p& are the density matrices for the indi-
vidual particles.

The general covariance properties of p may be ob-
tained directly from Eq. (A.1), however. If P„de notes
the operation of a rotation r of the coordinate system,
there follows immediately:

I „p(simi, s2m2) = p Di, mi (t)D1', m2* (t)

X(x(s li)X*(s 71')) „, (A.4)

where D is an element of the rotation group. By Eq.
(16a) of reference 7, the product of two D coeKcients
may be expressed as a single D coefFicient. If we use
this, Eq. (A.4) may be written

(—1) '(sis2mi —m2~sis2qmi m2)
X—X',q

XD) —X', mi-m2~2i (t)Z1—1'2, (A.s)

where the sum on ) and V has been replaced by a sum
on ) —A' and X', and where

X), 1'=P(—1)"'(s,s27 —7 ~s, s2q), —li')

It is now necessary to express the particle density
matrices in terms of their tensor moments. Once again
this follows from the operation P„upon the density
matrix for the particle i, say. The analogous result to
(A.7) is

p;(m;, m )=P(—1) ""
a

X(ii m; —m ~i 2 atl; —m)gm; m,'-', (A.10)

X;=p(—1)"'(ii), —l1'~ii a K)(x(k)x*(9.'))A, .

Since „ transforms as an irreducible tensor of rank a
under rotation it must differ from the usual spin tensor
operator T„, defined in Eq. (2.6), by a normalization
factor only. In order to determine this factor, let us
evaluate Z,' and T; for the special case of an ensemble
having only the single state X(i, i) and for 11=0. Then

X2' ——(—1)'(i i i i ti i a 0).—

From the definition of T2' given in Eq. (2.6),

T2 ——I', ([i/i+1]'*).

X(x(sll1)x (S2X ))av. (A.6) Hence, in general,

It is clear from Eq. (A.5) that Z1 1 2 transforms under
rotation as a tensor of rank q. Hence in the limit of zero
rotation, Eq. (A.S) goes into the desired expansion.

p (slm1 s2m2) 2 ( '1) ™M

X(sis2mi m2~sis2 hami m2)+tni —m2'. (A.7)

By the unitary property of the Clebsch-Gordon coef-
6cient, this may be written

gmi —m22=+( 1) (si s2 mi m2
~
$1 $2 g mi —m2)

m2

Xp(s, m, ; s2 m,). (A.8)

~ If we substitute Eq. (A.3) in the above, there results

Z 1,
— 2 —P (—1) '(si s2 mi m2~ si s2 q m, —m, )

X (i I m, mi —m, j
i I si mi) (i I m, '

m2m
~

2 I s2 m2)

Xp (m m, ')pr(mi —m; m2 —m ) (A.9)

where the sum is over m2, m;, and m .

(A.11)

If we combine Eq. (A.11) with a relation obtained from
BBR(1)and R(16),

(i i i —i ti i a 0)
= (2i)!(2a+1) '*[(2i a)!(2—i+a+1)!] '*, (A.12)

and substitute in (A.10), we have

(2i)!(2a+1)'*
p;(m;, m )=P(—1)'—""

a [(2i—a)!(2i+a+ 1) !]'
(iim, —m ~i iam, —'m )

X Tm, —m,' . (A.13)
&.([i/2+ 1]')

An analogous formula holds for pt. If Eq. (A.13) is sub-
stituted in (A.9), we have an expression for the gener-
alized tensor moment of the system in terms of the
individual particle tensor moments.

(2i)!(2a+1) '(2I)!(2b+1)' Tmf —mP (2)Tmi —m2 —m~+m~' (I)~ 1- 2'=2(—1)'"
[(2i—a)!(2i+a+1)!(2I—b)!(2I+b+1)!]'* I'~([i%+1]')I'1,([I/I+1]')

Xp[(ii m; —m ~ii am„—m )(i I m, mi m;~i Is—imi)

X (i I m m2 m~i I s—2 m2)(s1$2 mi m2~$1 $2' mi m2)—
X (I I m, m, m —m2~I I b m—i m2+m, ' —m, )), (A—.14)

where the 6rst sum is over u, b, and m; —nz . The
second sum is over m2 and m;.

The details of the elimination of the second sum will

\

not be given here since several similar reductions have
been illustrated before. The 6nal result is in the form
of an X function, as might have been anticipated. The
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Jab c)
X (fd x x~f d e 0)X—

I d e f I
~

(gh j
(3 1)

By the use of BBR (1), (5), and the symmetry
properties of the X function, it is clear that the inter-
change of the two outer rows of the G function or of
the two outer columns simply multiplies the G function

by the phase factor (—1)'+"+~~~+'.
The "triad" conditions for the nonvanishing of the

X function also immediately yield the condition that
the elements of each of the outer rows and columns of
the G function must form possible vector tria
order that G shall not vanish:

(abc), (adg), (ghi), (cfi) "triads. "

entire second sum becomes

= (—1)'~'+rf(2a+1) (2b+1) (2s~+1) (2s2+1))&
X (a b m; —m, ' mg —m.+m —m;

~
a b g mg —m2)

XX(i ai; s~ q s2, I b I). (A.15)

If we substitute Eqs. (A.15) and (A.14) in Eq. (A.7)
we obtain the result given in Eq. (7.2).

The special case of an unpolarized initial nucleus
corresponds to b=o Equ. ation (2.7) of the text then
follows immediately from Eq. (7.2) by the use of
I(3.1).

APPENDIX B. SOME PROPERTIES OF THE
G FUNCTION

The G function may be defined in terms of the Fano
X function" as

tab c)
GJ d f ~= f(2a+1) (2b+1) (2c+1)(2d+1)

(gh j
X (2f+1)(2g+1) (2h+1) (2i+1))4~"

XP, (bhOOtbheO)

it is also clear that d and f must satisfy the conditions:

d)K) f)K. (3 5)

Two alternative expressions for the G functions are
often useful. These are obtained by 6rst substituting in
Eq. (3.1) the expression for X in terms of Racah
functions. "The resultant expression is

G„(abc; d f; ghi)

= i'+ "L(2a+ 1)(2b+ 1) (2c+1)(2d+ 1)

X (2f+1)(2g+1) (2h+1) (2i+1))&
XPL ( 1)c+b+c+d+s+f++g+h+~ (2z+ 1)-',

e,z

XW(bdcg; za)W(dbfh; ze)W(gchf; zi)

X (b h 0 0
~
b h e 0) (fd x K~ f—d e 0)). (3.6)

For simplicity in printing, we have written the argu-
ments of G on a single line. The two expressions for G
are now obtained by performing the sum on e by the
use of BBR (18) in either of two possible orderings of
b, h and f, d. The two expressions are

G„(abc; d f; ghi)

= i~"L(2a+ 1) (2b+ 1) (2c+ 1) (2d+ 1)(2f+1)

X (2g+1) (2h+1) (»+1))'(—1)'+'+'+'+"

XP.t (—1)*(fh x 0
~ f h z ~) (d b ~ 0

(
d b z ~)

XW(bdcg; za) W (gch f; zi)], (B.7)
and

G„(abc; d f; ghi)

= i~"L(2a+1)(2b+1) (2c+1)(2d+1) (2f+1)
X (2g+ 1) (2h+ 1) (2i+ 1))& (—1)"+f+"

XQgf (—1)*(fb x 0
~ f b z ~) (d h K Q (

d h z g)

XW(hdia; zg)W(aibf; zc)]. (B.g)

The G function reduces to a simpler form when one
of the elements is zero. The following forms are ob-
tained from Eqs. (3.1), (3.4), and (3.5) by the use of
BBR (30) and I(3.1):

G.(aoc; d f; ghi)

=B„i"L(2i+1)(2a+1) (2g+1) (2d+1) (2f+1))l
X (fd x—~

i f d h 0)W(dahi; gf) (3.1Q)

G„(obc; d f; ghi)

= bb.bggi~"I (2h+1) (2d+1) (2f+1))&(—1)'+'

X(fi&—
&~ fib0)(dhxo~dhi ~), (3.11)

(d b f h) "tetrad. " (3 3)

In the special case of a= 0, this last condition becomes
more restrictive. By BBR (5) we must have b+h+e
=even integer and f+d+e=even integer. Hence,

(3.4)b+h+ f+d= even integer for a=o.

In addition, the two "triad" conditions involving e

yield a less restrictive condition on the G function
which is that the four central elements (d b f h) must =b.,(—1) '(2c+ 1)&i"Z (bahg; cd); (3.9)
form a possible vector "tetrad:"

From the properties of the Clebsch-Gordon coeS.cients,

, "For the properties of the X function see reference 3 and also
Appendix 3 of I.

where the Z coeKcient is de6ned in BB (4.3). The
remaining forms follow by the use of the symmetry
conditions.


