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Nuclear Forces from P-Wave Mesons

Z. M. HENLEY AND M. A. RUDZRMANt
Collmbiu University, Eem Fork, Sew York
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The nucleon-nucleon potential from meson exchange is related to a matrix describing the scattering of
virtual and real mesons by nucleons. This meson-nucleon scattering matrix is calculated for p-wave mesons,
using the model of Chew, which approximates experimental phase shifts for real mesons. The corrections to
the g~ and g4 perturbation theory nuclear forces are evaluated. States involving the simultaneous existence
of three or more mesons, none of which are absorbed by the same nucleon that emitted them, have been
omitted in this treatment. Comparison of these and other results implies that this neglect is unjustified.

and (—ys, Es). The standard Feynman-Dyson rules
give a power series expansion of the matrix element
for the scattering of these nucleons into the states
(yi, Es). Let this scattering matrix (whose leading term
is proportional to g') be $,(yi, yo).

Since we shall be concerned only with nonrelativistic
nucleons, we have Es M+pss/2M——. The (it matrix is
calculated for a scattering from yo to any momentum
yi, but the same fourth component Es(PPWPss).

Let V(y', y) be the solution of

V(y', y) =i(R(y', y)

INTRODUCTION

N understanding of the nucleon-nucleon potential

~ ~

~

depends upon a correct description of the m-meson
nucleon interaction. The analysis of recent meson-
nucleon scattering experiments yields information on
the behavior of free mesons and nucleons. The scatter-
ing of virtual mesons, which enters in an important
way into nuclear force calculations, can be extrapolated
from these experiments only for a speci6c model.

Perturbation theory fails to account for important
features of the large p-wave real meson scattering. In
particular the observed dominance of the scattering in
the isotopic spin 3/2 state is absent. Chew' has sug-
gested an approach which gives a scattering of free
p-wave mesons in fair agreement with observation. In
the spirit of this calculation we have investigated the
nuclear force which results from the p-wave interaction
of virtual mesons.

Section I is a demonstration of a relation between a
nucleon-nucleon scattering matrix, which can be com-
puted by the standard Feynman'-Dyson' prescriptions,
and the nuclear force. In Sec. II we relate this nucleon-
nucleon scattering matrix to the scattering of real and
virtual mesons. Section III treats the scattering of real
and virtual p-wave mesons by nucleons. Section IV
gives the explicit results for the nuclear force calcula-
tion. The difference between these results and those of
Watson and Srueckner' are discussed.

dy"V(y', y")„.&(y", y), (6)P'"-P+'3
and g(y, E) a solution of

(P'
I

—~ l&(y &)= ~y'v(y, y')0(y', &).
&M J

A solution of P) for Z= ps'/M is

4(y) = &(y—yo)+, , i&(y, ys).
p' po'+&3—

I. RELATION OF POTENTIAL TO NUCLEON-NUCLEON
SCATTERING MATRIX

It is convenient to work with a scattering matrix
for the two nucleon system which can, in principle, be
calculated by the I'eynman-Dyson techniques. In this
section we derive a prescription for calculating the
nuclear potential from this matrix.

We consider two free nucleons in the center-of-mass
system, whose momentum energy vectors are (ys, Es)

*Frank B. Jewett Fellow.
t National Science Foundation Postdoctoral Fellow, on leave

from the University of California, Berkeley, California.
' G. F. Chew, Phys. Rev. 89, 591 (1953).
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The spin indices have been suppressed for initial and
final states, but introduce no complication. (R(y, ys)
has been constructed to give the correct amplitude for
the scattering when p'=pss. Therefore, for a given
angular momentum state the solution (8) has the
asymptotic form in coordinate space:

f(r +co) Y, (—0, g) (kr) 'Lexp f —i(kr —(1+1)s/2}
+S(k, i) exp(i(kr —(1+1)s-/2) g. (9)

S(k, l) is the Heisenberg S matrix' for the angular
momentum l. l

If the spin indices are included Eq. (9)
holds for singlet states, and there is an analogous ex-
pression in terms of m, J, and S(k, J) for triplet
states. ) If S(k, i) can be analytically continued as a
function of k to the negative imaginary axis, bound
states correspond to zeros of S.' When S=O,

4(r~~)-(lklr) 'exp( —lklr) (10)
'W. Heisenberg, Z. Physik 120, 513, 673 (1943); C. Mgller,

Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd. 23, No. 1
(1945).

6 C. Mufller, Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd.
22, No. 19 (1946).
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NUCLEAR FORCES FROM I' —WA VE MESONS

Therefore, where a zero of 8(—ik', t), k')0, corre-
sponds to a bound state, solutions of Eq. (7), which are
asymptotic to r ' expt —r(M~X~)&j, give the energy
levels of the bound system. ' The Schrodinger Eq. (7)
then gives a correct description of scattering and bound
states when V(p, p') is a suKciently short range po-
tential. In the following the nucleon-nucleon potential
is, therefore, taken to be V(p, p') as defined by Eq. (6).

The Feynman-Dyson prescription gives R(pl, pp) as
a power series in g', where g is the meson-nucleon coup-
ling parameter. In practice this series is approximated
by including only a finite number of terms. If (R in-

cludes terms up to g'~ only, it is not sensible to solve
for V in Eq. (6) to a higher power than 2))s.

(Pf,Fi)

(Po,Eo)

(K„~,)
I

/

(Ko i(t)o )

PO,EO)

(4)

(P(),Ep)

(e)

(b)

(-PO, EO)

(c)

II. NUCLEON-NUCLEON AND MESON-NUCLEON
SCATTERING

The range of the nucleon-nucleon interaction de-

pends upon the number of Inesons exchanged between
nucleons. Ke shall consider only those terms in the I,
matrix where at most two mesons are exchanged al-

though a meson may be scattered an arbitrary number
of times by each nucleon. In general, these scatterings
have only a slight effect upon the range of forces. The
correction to the nuclear potential from these multiple
scatterings can be expressed in terms of the matrix
element for meson-nucleon scattering:

r ((r El pi +0 pp, wl kl wo kp), '(11)

see Fig. 1(a), where (kp, wp) and (kl, wl) are the 4-
momenta of the incident and scattered meson, re-
spectively. (Eo, pp) and (8,, p,) are the 4-momenta of
the incident and scattered nucleon, and e is the Pauli
spin operator which acts on the incident nucleon spin
wave function. Four-momentum conservation gives

K=+0+wo —wi
(12)

pl ——p,+k,—k, ,

but none of the 4-momenta are assumed to be those of
free particles.

In terms of Eq. (11) the $,(0) matrix for the exchange
of two mesons t see Fig. 1(b), (c)j is

(pl po)
~ ( I

r((r Eo pl +0 pp
2&2~) &

w, k; w, Pl —Pp+k)(r((rs', Zo, —Pl, Eo, —Pp,
'

—
woe,

—k; -W, p,+pO k)—+r(es, Z—
O,

—p, ;

Ep, —pp, w, pl —pp+k; w, k)}(w'—k' —)i'+Q) '

XLw' —(pi—po+k)' —ps+i8$ 'dkdw. (13)

6t(')(Pl, pp), the nucleon scattering amplitude when

only one mesons is exchanged between diGerent nu-

cleons, can also be expressed in terms of Eq. (11).
However, it is necessary to give an explicit form to the
coupling between meson and nucleon fields. If, for

~ R. Jost and W. Kohn, Phys. Rev. 87, 977 (1952).

FIG. 1. {a) Representation of meson-nucleon scattering matrix;
(b) and (c) contributions to the nucleon-nucleon scattenng matrix
in terms of {a); (d) lowest-order meson nucleon interaction;
(e) and (f) all corrections to (d) expressed in terms of (a).

example, this is taken to be (g/p) J')P~(r VP is@,r;)Pdr-
for symmetrical pseudoscalar mesons, then

(it ' (Pl, Pp) = s(g/)i)—(r, ko& 'ffo
I

—(g/)i) (20r)
—') dw'dk'o. k'~.

Xr((ra j &a j &Op pl j &Op po j W
&

k
y P j 0y kpi $0)

X (w"—k"—)u'+05) '(Po"y"+}4"y"—k'"y"—M) '

XLas above, with a—&t), kp~ —kp, pp—&—pp, pi—&—piJ
X(4'+~')-', (14)

where kp ——pl —pp, and ff is a unit vector in charge
space, specifying the charge of the meson.

The simple meson-nucleon interaction Fig. 1(d) is
corrected in Eq. (14) by terms represented by Fig.
1(e). Contributions from Fig. 1(f) have been omitted
since they are the interactions of a free nucleon (Eo
=M+Pos/2M) with its own meson field, which should
be cancelled by a proper renormalization program for
the free nucleon properties. Similar terms from Fig.
1(e), which are included in Eq. (14), will also be can-
celled. (Appendix II.)

From Eq. (6), the potential is given in terms of Eq.
(13) and Eq. (14) as

V(l)+ V(s)

V(i) —s@(l)(pl pp)

V")=0(R")(Pl po)

M
+ dp(R"'(Pl, P), , (R"'(P, Po) (15)

4 ps p 0+0$

In general, for infinitely heavy nucleons, V(') is real
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and 6nite although (R&') is infinite, even for a renor-
malized meson theory. V&') and V(.") are series con-
taining all powers of g', but correspond, respectively, to
the exchange of only one and two mesons between two
nucleons.

g o kio kp%
r= —$—

p 'Rp

gso kpo krg Pox Pi
2—,(16)

p,

where 0 p and Pi are unit vectors in charge space specify-
ing the charge of the incident and scattered meson.
Equation (16) is valid for virtual mesons, where wi2

Nkis+fzs and WpsNko'+pP. ImpOrtant higher-Order
effects can be computed by treating Eq. (16) as the
Born approximation scattering from a meson-nucleon
potential. The higher-order terms which are then in-

cluded involve intermediate states which may have
energies close to that of the incident meson and so can
give large contributions. The sum r of all order scatter-
ings from this potential satisfies the integral equation:

T(e;~;yi, wi, ki, pp, wp, kp)

III. SCATTERING OF REAL AND VIRTUAL MESONS

In this section we derive an approximation to the r
matrix for the scattering of real and virtual mesons in
the limit of in6nite nucleon mass.

In perturbation theory, the r matrix for the scattering
of p-state mesons symmetrically coupled to nonrela-
tivistic nucleons is

1

I

y I
I
I

(c) (e)

Fio. 2. (a), (b) Feynman diagrams for meson-nucleon scatter-
ing in lowest order perturbation theory; (c), (d), (e) higher order
terms included in Eq. (17).

Eq. (17). For this purpose it is convenient to separate
the matrix Eq. (17) into four integral equations for the
scattering amplitudes rJr, with J=1/2, 3/2 and I= 1/2,
3/2 giving, respectively, the total angular momentum
and isotopic spin for the meson-nucleon system. Then

r= (Ao k,o ko+Bo koo ki)(~i Pr~p Pp)

+ (Co kio kp+Do koan ki) (sp Poli' $r)) (1g)
where

A = rss/12+To'/6+rip/6+ri'/3,

8=Ts'/4+T, '/2,

C =T,s/4+r, r/2,

D= 3rss//4.

From Eqs. (17), (18) and (19)

g o '. kio' ' koan ' P 2'2 ' Pp—$——
p 'Ro

g o ' kpl7 ' k i'p ' P o'e ' P t
$—
p VVy

4gs 4gs( 1 qs
Ts (wi, wo)=z +

3W,P2 3 fzs &2~&

. g' ( 1 q
'

t o.kio. 4 Pi~ P
dk

Zz (22r& ~ 2(dwp (wp —op+ z5)

XT(a'' g' p rd k' pp wp kp)+
~ ~

dk
Zs&2~& ~

o"ko" k i'e ' P'e ' P i

2'(wp —od —wi+zb) (wp —cd+zan)

Xr(o; s; P, oi, k; 4o, wo, ko) (17)

Since the nucleon is fixed in space, the dependence of
r on p and E is suppressed. The dependence of r on the
charge of the mesons and nucleon, omitted from Kq.
(11), is included in Eq. (16). Wi and wo are fixed pa-
rameters unrelated to ko and ki, but cds=ks+zzs.

The r matrix defined by Eq. (17) is the sum of the
scattering represented by Feynman diagrams (a) and

(b) of Fig. 2, and by arbitrary combinations of itera-
tions of (a) and (b) such as (c), (d) and (e) of Fig. 2.
Before a solution is attempted for all angular momentum
and isotopic spin states certain mass and charge re-
normalizations will be performed, which alter parts of

ksdk
X t'

rso(cd, wp), (20)
& 2o~ (wp —rd —wi+zb) (wp —o~+zb)

g2

Tl (Wl Wo) Ts (Wl Wo)
3 Kqy

2 g' t' 1 ) '
p ksdkrs'(o~, wp)

(21)
3 Zzs L 22r & ~ 2(d (wp —cd—wi+z5) (wo —rd+z~)

3g' g' |' 1 l '
rii(w„w, )= —i

wozs zs &2~&

ksdk g'
X " rii(oi, wp)+z

2oo (wp td+z8)w—p 3wizi

1 gs f 1 ~
2

t
ksdk

3 zzs E22r& J 2oi(wp —td+Q)(wp —cd —wi+z5)

Xri'(~, wp). (22)

The potential obtained from Eq. (16) is sufficiently
singular that Kqs. (20)—(22) have no sensible solution.
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If, however, Eq. (16) is assumed to vanish for k) k, ,
then solutions do exist. '

The quantities r3', r3', and r& contain contributions
from Feynman diagrams of type (b) and (c) Fig. 1
only. On the other hand, r&' arises from a variety of
different kinds of Feynman diagrams Leis, Fig. 2 (a),
(d), (e)j, parts of which involve nucleon mass and
charge renormalization.

To apply the renormalization prescriptions to r&',

Eq. (22) it is convenient to neglect the two terms with
coefFicient 3 next to those with 3 and later to introduce
them as a perturbation. The solution of the resulting
integral equation represents the sum of diagrams of the
type (a) and (d) of Fig. 2. LAfter renormalization this
sum corresponds to the replacement of Sp by Sp' in
Fig. 2(a).j

The self-energy of a free nucleon of infinite mass,
Fig. 3(a), is

g' ( 1 ~
'

t
k'dk

zz' E2~& & 2~'

Therefore, the nucleon mass 3f, in terms of the ob-
served mass M p is given by

3go ( 1 ) o pkodk
M= M,„,——

~

—
~

' . (24
zzo E2zr& ~ 2poo

If the Hamiltonian for the meson-nucleon system is
written in terms of M, p

—+~, then we also have a
contribution represented by Fig. 3(d) from M—M, o.
The matrix element represented by Fig. 3(c), when the
incident nucleon is free, is

got'1q'
t

k'dk 1—~ ko. (25)
zzo E2zr& ~ 2op(oo —wo —z5) wo

The sum of Figs. 3(b), (c), (d) thus gives

g g'(1)o rk'dk 9——&'(wo) e ko, (26)
z'E2~& ~ 2~' 2

o with
2 g' wp 1 (" * k'dk

~'( .)=, , (»)
3zr 4zr zz' 4zr~ o ~'(co—wo —9)

A further correction occurs when the self-energy part,
Fig. 3(a), occurs for a free nucleon before the inter-
action e'kp. When both nucleon legs are free (wp=0),
the total contribution of the self-energy part is included
by putting ge' keg&e' kp with

go) 1 ~
o t-k'dk~

g~=gl 1—6—
]
—

I
'

I (2g)
y,'E2~& ~ 2~o &

(b)

Fn. 3. Feynman dia-
grams. relevant to the dis-
cussion of mass and charge
renormalization. (c)

9 -n r 9 - —1

—-a'(wp) = 1+-a'(wo)
n=p 2

Insertion into Fig. 2(a) gives

3ig„'

wpzz' 1+ (9/2) 6'(wp)

Adding the two omitted terms of (22), we have

.g' gr 1—(9/4)~'(wo)i g'
r] ~$

3woL1+ (9/2) ~'(wp) j zz'wo(2zr)'

f k'dk

2op (wo cv) (wo o&+wc) L1+ (9/2) 6'(wo))

(29)

(30)

'Kp —
ZOy

+ . (31)
3&pwy

For a consistent treatment of the renormalization of
the rJ matrix it is also necessary to replace g by g„
and Sr by Sr' in Figs. 2(b) and 2(c). Otherwise self-
energy corrections would arise even from the free
nucleon legs.

After this substitution for g and S~ has been made
rJ~ can be written in terms of the two parameters g„
and k,„only. Insertion of the correction Eq. (29) into
Eq. (20) for roo gives

(e)

Hence, if the experimental mass, M, p, and coupling
constant, g„, are used in the Hamiltonian, then the
contribution of the self-energy part vanishes on free
nucleon legs. Furthermore, for virtual nucleon pro-
pagation we obtain a correction from successive self-
energy parts LFig. 3(e)], which is given by the factor:

4ig„' 9
roo(wg, wp) = 1+-a'(—w~)

3'Nqy 2

4 g„' ( 1 ) '
t

kod kl 1+ (9/2) 6' (wp —(o)) 'I 1+(9/2) 5' (wo —
op
—wg) j—'

rop (cu, wo); (32)
3 z' 42~& & 2to (wp —co—wi+ z5) (wp co+z5)—

'This is equivalent to the source considered by Chew (see reference 1).
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and is plotted in Fig. 4. Asymptotically, for
I
wp I-+00

g 2 &0 p "~x lsd+
Red'(wp) =

4x' 3' P

g 2 1 t'Opmax

4~3~ p2

(0)max+ ~max )—-', p,
' lnI (37)

4 )
For —w, &wp&p, (g„'/4or)h'(wp) is small and rqi is
close to the perturbation result.

IV. THE NUCLEAR FORCE

Pro. 4. Real part of 6'(zop) for cy =3.2p.

then, (appendix I)

rp (wy& wp)

4ig„' L1—2D'(wp —ws)]
(33)

3 "I:1-»(-.)]!1+(9/2)~ (--.»
Similarly

r&0(w„wII) = r, '(w&, wp)

2igy' ! 1—~'(wi —wp)]
(34)

3w&y' L1+6'(wp)]! 1+(9/2)6'( —wp)]

For the scattering of real p-wave mesons w& ——wp

= (kp'+ p )& and LV (w& —wp) =0. Equations (32) and (33)
are then almost the same as those of Chew' for
p&wp&w, „.However the factor L1+ (9/2)h'( —wp)] '
was not included by him in obtaining a best fit to the
experimental data, which occurred for

g~'/4or=0. 2 and w, =3.2p. (35)

(The neglected factor will increase rob, r&0, and rp' by
about 25 percent for free meson scattering and thus
necessitates a small change in g„'/4or and w,„.)

The function 6'(wp) is a measure of the departure of
the matrix rJ from that given in perturbation theory.
The real part of LV(wp) Eq. (27) is given by

v("=
I

—! Lim Z !e. v &~a*', e. v pr.']
(4or) *o "4I'.

(x(I+x&)Kp (exp+ px()
+!eb' v lo b, eb' v07 b ]

27lxox]p

(g')l'
! L&m 0.18{e.Vi, e. Vp}{eb.Vi, eb ap}

E44r) *0-*4

4-s(*o+s4)
~

go q
0 8 - 3

&& =
I
—p—e, eb Ep.(2II4x)!

44 xpxg ~44l ) ol p x

2 3 i (1 23
+I + !Iti(2~x) —~. ~b I

—+
&p'x' I44x') &px 4psx3~

3 23
&I"0(2I(Ix)+

I
+ !%(2)Mx)

& p'x' 4p4x4

The potentials, U(" and U&') can be found by sub-
stitution of Eqs. (31), (33), and (34) into Eqs. (18)
and (19) to yield r. From Eqs. (13) and (14), So) and
(R(') can then be found, and Eq. (15) gives V"&+V('&.
These calculations are performed in Appendix (II).
The potential is approximately (see reference 14)

V —V o)+ V(0)

e ~

C
1+0.07], (38)

p x

~maxP P P——cos '
max ~0 max

(Wp )(4 ) * (Wp 14 ) *~msx+WPopmax
R= ln

—R,

g 2 1 ( i4max+ 0)msx )
Rek ('wp) =— —wp lnI !+wpk

44r 34r p,
' I p )

(36)

30'~ ' xo'g ' x 3
e. eb —Ep(2px)

x p, x

12 12
+ + +

p, 'x' p4x4 p, 'x' p'x'

1 15 ) ('g
+I + Il~~(2») +I —

! 407
~ p'x' 4p4x4) &4~)

4 6

2p x

e-'s*. (39)

&4 (0)max Wp)

for I0'& p,',

for mo'+ p',
(p' —wpP)1 p' —wpp)

R= COS

P(ppmsx Wp)--

In Eq. (39), the subscripts 1 or 0 on the v'-operator
means that the differentiation is to be carried out only
with respect to x, or xp, respectively; L, ]is the commu-
tator bracket, and {,} is the anticommutator bracket.
These potentials are plotted in Fig. 5 for deuterium.
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The first terms on the right-hand side of Eqs. (38) and
(39) are the usual second- and fourth-order perturbation
theory potentials. The correction to V&'& has the same
shape and spin dependence as the perturbation result
with approximately 7 percent of its magnitude. The
dominant correction to t/'&') is independent of spin and
isotopic spin. It gives a short-range repulsion, about 20
percent of the perturbation theory central force in the
'S state. The large departure from perturbation theory
which is found for the scattering of real mesons is not
reQected in the nuclear force because of the very diAer-
ent behavior of real and virtual mesons with the same
momentum. '

The first term in Eq. (39) has also been obtained by
Taketani, Machida, and Onuma" Klein" Feynman
and Lopes, " and others, but divers in an important
way from that of Srueckner and Watson, 4 who have
analyzed this difference in detail. Its origin lies in the
treatment of states with at most one meson at any
time. The (R matrix, Eq. (13), has been calculated for
the exchange of two meson with any time ordering.
That part of it which is relevant to this discussion is
represented in Fig. (6a), when min(ti, t&))max(ts t4).
Substitution of this 6l into Eq. (6) gives a contribution
to the potential of

(g'l' 1
(3—2~. ~)

i4~J 4~4

o..ke, k'rrp. kep k'e'&"+~'& *

X . (40)
M GO

This term is the difference between the potential
V&'&, Eq. (39), and that obtained by Brueckner and
Watson. It is included in Eq. (39) and is big enough to
change the 'S attraction of Brueckner and Watson to a
repulsion. )Addition of a repulsive core nullifies the
effect of the very strong singular part of (40) at small x.j
Srueckner and Watson point out that, in the Tamm-
DancoG formalism, this is one of a series of terms that
comes from an expansion of the "velocity dependent"
part of the one meson interaction. When the entire
series of terms are included (no expansion), the con-
tribution is much smaller than (40), and, indeed, quite

'The perturbation result for V(2) was valid because the im-
portant values of wp do not lie between p and w where 6'iwp)
contributed significantly. However, the production of a real meson
in a nucleon-nucleon collision can be altered in an important way.
The simplest Feynman diagram for this process is the production
of the meson by one nucleon and the scattering of this meson
(with energy as well as momentum transfer) by the other. This
scattering can be expressed in terms of Eqs. (31), (33) and (34).
The w0 is that of the 6nal free meson in the c.m. system of the
meson and the nucleon from which it scattered. Since m
O'Ro) p, , the correction from 6'(F0) are not negligible. Scattering
is increased in the I=J=-', state, otherwise decreased. Therefore
~+ production from p-p collisions will be increased relative to x
production from p-e collisions as observed.

"Taketani, Machida, and Onuma, Progr. Theor. Phys. 7, 45
(1952).

"A. Klein, Phys. Rev. 90, 1101 (1953)."J.L. Lopes and R. P. Feynman, Notas de Fisica, No. 2 Centro
Brasileiro de Pesquisas Fisicas Rio de Janeiro (unpublished).
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FIG. 5. V('&+ V(') for the deuteron V,(')' is the correction to
the perturbation theory result. The central f'orces V, are repulsive.
Vg are the tensor forces.

negligible. In this sense, the potential without (40)
may be expected to be a better approximation than
that including it. On the other hand, for neutral scalar
mesons with fixed sources" a similar argument can be
presented, but the required cancellation of the g' po-
tential comes only when the term corresponding to Fig.
(6a) is included.

The neutral scalar theory contains certain features
similar to the case of interest, and we shall examine it
following the method suggested by Brueckner and
Watson. The Schrodinger equation, including the static
approximation to those parts of the potential arising
from two meson states, but treating the one meson
contribution without approximation is

i
—e iy(p) = V(k)y(p —k)dk

t'&'

)

f Ts+ Ts—~
+—, 4 (p—k)dk, (41)

4s J re (pe+ Ts+ Ts g e)

where T~=p' j2M, and V(k) is the Fourier transform of

g' g' 2Ep(2lix)
e s*1+-

4xx 4x
—repulsive core. (42)

In this case, the correct potential is obtained by omit-
ting the second term in (42). For sufficiently small
repulsive core, or for large g', the second term of (42)
contributes the major part of the attractive potential
[as is the case with the g' potential, Eq. (39), with the
parameters (35)].If the second term on the right-hand
side of Eq. (41) is expanded in powers of (Ts+Ts & e), —
then the leading term of this expansion exactly cancels'
the second term of (42). Since the leading term is large,
the expansion is, of course, suspect. On the other hand,
"This problem can be solved exactly and gives V= (g'/

4r)e "'/x.
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if Eq. (41) is solved without this second term of (42)
for a bound state (p&0), then the contribution to the
binding of the neglected term is

g' pdk i pi

~*(k) 1—
4'�" QP cp+Tp+Tp

4 (li —k)

g2 e JlS

&—' P*(x) P(x)dx. (43)
4m.~ x

This is less than the contribution to the binding of the
first term of (42). Therefore, for appropriate g' and core
radius, (43) may be negligible next to the second term
of (42), even though the first term in the expansion of
(43) is large. But, if the term giving (43) is neglected,
then the potential is given by (42), with the inclusion
of the second term, which, in this example, should be
omitted.

The entire term (43) includes contributions to V
from the exchange of more than 2 mesons, but only
one at a time [Fig. 6(b)).Since the inclusion of all such
terms almost cancels the e I"*Imp(2Iix) contribution
from [Fig. 6(a)j, these higher order terms are not

/

/

/
/

~j
/

/
/

(a) (b) (c)

FIG. 6. (a) Feyn man diagram for two meson exchange be-
tween space-time points 1, 2, 3, 4. (b) (c) Two types of meson
exchange giving a g' term in (R.

negligible. But for the neutral scalar theory, the (R from
all diagrams representing the exchange of 3 mesons in

any time sequence gives a zero contribution to the
potential. Therefore, when Fig. 6(b) contributes sig-
nificantly, then states with 3 mesons Fig. 6(c) will be
of comparable magnitude.

The trea tment of the neu tral scalar theory thus sug-
gests that states with three mesons which have been
omitted by both Brueckner and Watson and by our-
selves, are important enough to qualitatively change
both potentials.

CONCLUSIONS

Corrections to the usual second and fourth order per-
turbation theory results of the nuclear force arise in two
ways: (a) a virtual meson may be scattered an arbitrary
number of times by one of the nucleons before being
absorbed by it or by the other nucleon; (b) three or
Inore mesons may exist at one time, no one of which are
emitted and absorbed by the same nucleon.

The correction (a) is found to be small, but the
neglect of (6) is unjustified and probably changes even
the qualitative features of the usuali~" g'+g4 per-

turbation theory potential. With (g'/47r) adjusted to
give a satisfactory description of real meson-nucleon
scattering phase shifts, the calculated potential gives
unsatisfactory deuteron properties.
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' 9

rp'= i —1+—2 '(—wp) [1—2A" (wp)]
—'

3RD p, 2

where

k'dk2 gy wp 1 I'™*
d "(wp) =

3' 4' p 4' p pp (pi 'wp —z8)

1+ (9/2) 6'(—wp)
X

-[1+(9/2) ~'( o —. )jL1+(9/2) ~'(—)j'
6"(wp) differs from 6,'(wp) by the factor within the
bracket. Now 4"(wp) is large for wp 2p. Furthermore,
in the interval of integration for pp, 6'(wp —pi)((1 for
g~'/4pr=0. 2 [see Fig. (3)j. Also 6'(—p~) is small in this
interval [6'(—2p) = —0.06j. Therefore near the maxi-
mum for 6" the bracket is close to 1 so we shall approxi-
mate 6"=6'. This can be a bad approximation for

co, but these zoo do not play an important role
in the nuclear force for x)h/2pc. However, the prime
justi6cation for putting 6"=6' is that an appreciable
error in 6' does not greatly change the nuclear potential.
If we de6ne s3',

S3 = t'3 —T3 )

then the solution for s3' is

sp'(w, ) wp) =26'(wp —wi)rp'(wi, wp)

k dkwisp (p~, wp)

3 p,
' &2~» 2(o'(wp —(u+Q) (wp co w, +p—b)—

sp (wp, wp)
8 g,' ( 1 ) ' rk'dkA'(wp —cp)

pl
—

I rpp(w„wp)
3 pP (2~j J 2(gP(wp —(g)

In the region —2p, &m 0(2p, which is important for
the virtual scattering contribution to the extra-core
part of the nuclear force, sp'(wp, wp) is less than 0.1r,'.

APPENDIX I

Since we shall primarily be concerned with r J i (wp, w, ),
it is convenient to first find the solution to Eq. (32)
when m ~=z 0. This is
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(1)41
&R"'= —

~

—
~

— (r+(kt, kp)+r-(kp, k,)).(r+(kp, k,)
&2~) 4~

APPEHDIK II

It is therefore neglected in the text and only rss is used Also, Eq. (13) may be rewritten as
in computing the nuclear force.

The potentials V(') and V(') will be found below by
the method outlined in Sec. IV.

In Eq. (14) the correction to the perturbation result
for V&'& contains r(wt, k, ;0, k). However, it is not
appropriate to use expression (18) for r. When intro-
duced into Eq. (14), the entire expression (18) includes
terms from Feynman diagrams which give no contribu-
tion after renormalization. In particular, that part of
rt' which arises from the I/t&&p term of Eq. (22) (re-
placement of Sr by Sr') is to be neglected. When sub-
stituted into Eq. (14), the only part of rtt which will
be kept is ig'/3ss&t&s' On. the other hand, r, ', rt', and
r3' are unaltered by these considerations.

%hen the integration over m' is performed in Eq.
(14), the term g~'6'(s&&' —st&p) of Eqs. (24) and (25) is
evaluated at s&&p=0 and w'= —(k'+&&4')'*, the relevant
pole of the meson Green's function. Since g„'6'(—(k'
+&tss)')«1 for all k, this correction term can be neg-
lected. Since furthermore, 6'(0)=0, rs', rs', and rt'
reduce to the perturbation theory result. Inclusion of
rl' then gives

g,' e. kpeo kp
V&'&(kp) =—~, ~o

~2 k 2+~2

1g„') 1 y' &
k'dk

&& 1+-—
I

—
I

' . (a)
3 p,

' E2~& ~ 2oos

In. coordinate space, this is

g2 e ~

V&&&(x)= —[1+0.07]~, ~s—e Ve V
4x p,'x

(b)

r(kt, ko)= P (&{e.kt, e ko}+F[e.kt, e ko]){r', r }

+ P (G{e kt, e kp}+H[e'kt, e'kp])[r„, r,], (c)
i, j=l

where {,} is the anticommutator and [,] the com-
mutator of the quantities enclosed. Also, we have

E=rs'/3+rts/3+rt'/12,

F=G= —rss/6+r&s/12+rt'/12,

H = r so/12 r to/6+r &'/12. —

which differs from the perturbation potential by the
numerical factor [1+0.07] in front of Eq. (b).

In evaluating V&'& it is useful to rewrite r of Eq. (18)
as

dkpdktds&&o&&(pt —po+ kt —ko)
+r-(kt,ko))s, (d)

('Rp —kp ls —+st&) (wo kt &2+$4&)

where r+=r(wp, s&&p) and r =r(—VJ&—o, —
s&&o) In writing

Eq. (d), use has been made of the fact that only terms
symmetrical in wo contribute to (R(2). Substitution of
(c) into (d) gives for &it&s&

t 1j41 &

&R&"= —
i
—

I
—

~ {[3(E++E)' 2(G+ G—)'~—
&2~) 4~

&& {e 'kt, eg' kp}{eo'k&4 eo'kp} —[3(F+—F )

—2(H++H )'s, ~o][e, kt, e, kp][es kt, es kp]}

dktdkodt&&o4& (pt —po+ kt —kp)

(wps —.kp' —&ss+ s5) (wp' —kts —&4'+ 9)
where E+=F(7»&p, sno—) and E —=Z(—

t&&p,
—t&&o). V&'& is

obtained by substituting &R&s& into Eq. (15). &R&s& is
first calculated for a large but finite nucleon mass. On
passing to the limit of infinite mass in Eq. (15), V&'& is
a 6nite and well-defined integral of the form

) {ns'(Xs'+~Xs'-)'+no'(Xt'+~Xt' )'+nP(Xt'+~X&' )'

+2nsno(xs'++xs' ) (xt'++xP )

+2nsnt(xs'+~xs' ) (xt'++xt' )

+2ntno(xP+~x& )(xt'++xt' )}
dktdkodwp5(pt —pp+kt —kp)

(f)
(s&op' kp' ass+

—st'&) (w—o' kss &4'+—sl&)—

where n, (i=0, 1, or 3) is a constant. In this form of
writing U&'&, the eGect of the second term of Eq. (15)
is to remove the infinities which occur from poles at
+0=0. The furiction x& is related to rJ by just the
proper subtraction of these infinities.

As a typical term of (f) consider nts[xt'+]s. The in-
tegration over mo can be performed exactly. "It is con-
venient to convert it to contour integration, choosing a
contour that does not contain the branch points and
poles of 1/[1+46'(wp)].

It can be shown, that the poles and branch points of
F(s&&p)—=1/[1+&oh'(wp)] always lie in the second and
fourth quadrant of the complex plane, close to the real

'4 In the computation of contributions of r4' to V'+, Eq. (31l
was approximated by rl'.

.8 g~ 1

3 gl Np 1+46 (R'p)
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axis. Thus, if wp=x+iy, then F(wp) is

F(wp) =—

1+(4&'(wo)

1
(g)

2 1 (g2 q 1 ).kpdk (x+iy)(oo x—+2y +i-f'))
1+a——

I
—f—

3~ 4~ (4~& q4 ~0 [(~—x)2+ (y+8)2]

integrals were estimated by approximating F (wp) in the
region —co, &zap& —

IM, , which contains all singularities
of F(—wp). It can be shown that a good approximation
to the integral obtains if the approximation is accurate
in this region. A best 6t to F(wp) of the form A+Bwp
+Cwop is used in this region. For —(o,„&wp& —p,
6'(wo) is a slowly varying function (see Fig. 4), and this
approximation should be sufhcient. The best fits with
the constants of Eq. (35) are

Necessary, but not sufficient conditions for F(wp) to
have poles is that the imaginary part of the denominator
be zero and that the real part of the integral be one.

'

Thus,

=0
~' [(~—*)'+(y+t')']

2 1 t'g2& 1 ( xo)—x2—y' —8y kpdk
8—— = —i. (h)
3~4 E4 )W» [(~—~)2+(y+&)2]

For negative (2 the conditions (h) are possible only if
x is positive and y is negative and small; for positive a,
both conditions may be satisfied if x and y have opposite
signs. In addition to poles, F(wp) has branch points at
wp ——p and o),„.For Chew's value of g~2/42r=0. 2 and

=3.2p, , the poles occur at mp~ar and only for
r~') r3' and ri'.

For the term (212[@)'+]2 of (f) all singularities of
F(wp) occur in the fourth quadrant, and can be com-

pletely avoided by choosing a contour which encloses
the upper half plane. Then

1+]2

(w 2—p2 —~ 2+i)) (wo2 —~12 @2+i/)

g' 32n1' 1

44 9(ko2+b4)*-&0 —& +i&

1
+a similar term

(1+4a'( —(k,2+ &') ~) )
with kp—4), k,—+kp. (i)

For the term 42,'[)c1' ]' of (f), the same result is ob-
tained by integrating around the lower half plane.
Most of the other terms in (f) cannot be integrated so
simply. Thus, for y~'+x~', it is impossible to avoid in-
cluding the branch points of F(wp), since they occur
symmetrically above and below the real axis. These

= 1.0165—0.0748Wo/p —0.0080W 2/)(42

1—2a'(wo)

=0.9885+0.0289wo/b(+ 0.0034wo'/y',
1+141'(wp)

1 1
=0.9477+0.0928wp/)(4

1+44'(wp) 1+ (9/2)6'(wp)
+0.0118wp2/F42. (j)

With this approximation, the integrals over wp, ko, and
k1 can be evaluated directly. The integral over wp

gives for the coordinate space representation of V(2):

g t' e'(&0.10+21 r1)dkpdk
V~"=constant —Lim

444 ro r1 J (Q 2+~2)a($ 2 P 2+@)
I

X[(E1 G)~a'&b){(ra'k1, o'a'kp}{(rb'k1, 0'b'kp}

—(F1—21%0' Cb)[(ra' kl, Pa' kp][(rb k1, (rb kO]]

+terms symmetric to above with kook), k)~kp

g4 (144()00'10+)01 11)dp dp
+constant —Lim

+4 ro~r1 J (p 2++2) (p 2++2)

X[(10—1.4ea sb) {(ra k1, (ra kp} {0rb k1, 42b kp}

—(2.2—1.5~. ~b)[(r. k1(r, ko][4rb k1, (rb ko]], (k)

where
E1——1.2(op/p+0. 68(dp2/p21

F,=40—0.45o)0/)(4+0. 02(oo2/p2

G1——60—0.67o)0/@+0.03o)02/442,

H1 0.67000/I4+0. 04——o)02/I42

with (op= (kp'+44')&. Integration over kp and k1 then
gives Eq. (39) for U(2). Only the dominant correction
to the perturbation result has been kept; o)02/p2 terms
are very small and have been neglected.


