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The nuclear forces in pseudoscalar meson theory are evaluated using a nonrelativistic approximation to
the relativistic interaction. The potential is obtained in a form which allows explicit evaluation of the
contribution due to the multiple scattering of the virtual mesons between the two nucleons. An approximate
expression for the potential, including the multiple scattering of a single meson, is obtained in closed form.
For r(0.5h/pc, the multiple-scattering terms predominate and a power series expansion of the potential
is non-convergent. On the other hand, for r&0.5h/pc the potential obtained can be approximated by the
second- and fourth-order terms as obtained from perturbation theory. With these latter two terms and a
phenomenological "repulsive core,"quite satisfactory results are obtained for the low-energy properties of
the two-nucleon system.

expansion in the coupling constant. The successive
terms in the potential are modified from the usual
expansion in that for a given term in the potential
series, the energies of the virtual mesons are modified
by the interaction with the nucleons which results from
the terms in the potential of lower order. The eGect is
to take into account at all times, in evaluating a given
contribution to the potential, the interaction of the
meson which is already given by previously evaluated
terms in the potential series. This form of the potential
expansion shows that in the S-matrix expression almost
all of the terms of high order in the coupling constant
are associated with the multiple scattering of the virtual
mesons between the two nucleons. For example, in the
potential term which if expanded in a power series in g
has as leading term the usual g4 contribution, the virtual
mesons are not emitted into and absorbed from plane
wave states but rather from the multiple-scattering
state which results from the g' interaction of the mesons
with the nucleons. This contribution to the potential
also is more general than the usual g4 result in that it
includes an important subset of the g' contributions
together with a subset of all contributions of still higher
order. Evaluation of the two leading terms in the
potential therefore includes not only all g', g', and the
important g' contributions but also indicates the eGects
of a variety of additional terms of higher order.

In Sec. II we shall summarize the results of the
calculation of the potential and of the low-energy
scattering parameters; in Sec. III we shall obtain the
formal expression for the first two terms in the potential;
in Sec. IV the single and multiple scattering problem
for the virtual mesons will be evaluated; in Sec. V the
explicit form of the potential will be obtained, and
finally in Sec. VI we shall consider the non-adiabatic
corrections to the potential. Some concluding remarks
will be made in Sec. VII.

I. INTRODUCTION

ECENT experimental results' on the scattering of
pions by nucleons have led to a considerable

improvement of the understanding of the nature of the
pion-nucleon interaction. At the same time the approxi-
mate techniques of computation in field theory have
been greatly improved over the weak- or strong-coupling
approximations previously used almost universally.
These developments are particularly apparent in the
study of meson-nucleon scattering where the experi-
mental results have been given a qualitatively correct
interpretation by Chew' and Bethe and Dyson, ' who
considered pseudoscalar meson theory. In the theory of
of the scattering, it was found that only a slight im-
provement over the weak-coupling perturbation theo-
retic methods of calculation was necessary to give a
very considerable improvement in the results. Con-
siderations of the photomesonic processes' also seem to
indicate that a fairly good agreement between theory
and experiment exists.

As a result of this clarification in the experimental
and theoretical aspects of some of the problems of
meson physics, it has seemed worthwhile to re-examine
the meson theory of nuclear forces to see to what
extent previous results need to be amended or extended.
Although we shall consider the pseudoscalar form of
the coupling in pseudoscalar theory, it will become
apparent that in this problem the pseudovector form of
the coupling can be used to give approximately the
same results.

The potential which we shall evaluate has been
constructed by methods recently considered by the
authors. ' It divers from that obtained by the S-matrix
method or by the usual techniques of perturbation
theory in that it does not result from a power series
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II. SUMMARY OF RESULTS

3 The considerations of Secs. III, IV, and V indicate
that the potential given by pseudoscalar theory is
represented to a fairly good approximation by the
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second- and fourth-order potentials calculated through-
out in the adiabatic limit using the nonrelativistic
limit to the pseudoscalar coupling. In obtaining this
result, the following procedure has been used: first,
the relativistic coupling has been reduced to the. well-
known nonrelativistic form' in which the leading term
in g is the usual pseudovector coupling and the next
term is a pair coupling of the meson field. Previous
estimates of radiative effects' ' on the pair formation
of nucleons which is associated with the meson-pair
term indicate that the terxv. is probably considerably
overestimated in the perturbation calculation; this
eGect is indicated by multiplying the pair term by a
parameter which is estimated to h've a value roughly
(1+g'/4a) ' but is left arbitrary in the potential
evaluation. The calculation is then made treating the
nucleons adiabatically. The qualitative fe'tures of the
potential are the following: the contributions to the
potential which arise from the meson pair term acting
once or twice nearly cancel for r) 0.8k/pc and give a
repulsive core to the potential for r(0.8k/pc, the exact
strength and range depending on the extent to which
the radiative eGects are taken into account. ,Higher-
order contributions from the pair term alone are also
small if the pair damping is 'taken into account, in
agreement with the exact nonrelativistic evaluation of
the pair term by Wentzel. ' The remaining contributions
to the potential, which do not involve the pair term
(or nucleon pair formation), then include all g', g', and
g' contributions together with a subset of all higher-
order terms. The evaluation of this potential in the
adiabatic limit and the estimate of the terms of higher
order than g' center about the calculation of the
matrices for the scattering of the virtual mesons oG
the energy shell and the solution of the multiple scat-
tering equations for the propagation of the meson
between the two nucleons between emission and absorp-
tion. This calculation shows that the scattering by the
nucleons individually is very weak oG the energy shell
and is fairly well described by the Born approximation,
this result contrasting markedly with the scattering on
the energy shell where the well-known resonance eGects
occur. '' Using this result, an approximate evaluation
of the multiple-scattering equation shows that the
eGect of higher orders so taken into account is attractive
and sets in strongly only near the repulsive core radius
(r=0.3k/pc) and is less than a 30-percent correction
outside r=0.6k/pc, decreasing very rapidly for in-

creasing r. It seems fairly clear from this result that
the potential is rather uncertain near the core since the
higher-order terms set in so strongly; it is also this
region where radiative eGects can be expected to start
to modify the gradient-coupling terms appreciably.

' F. J. Dyson, Phys. Rev. 73, 929 (1948); L. L. Foldy, Phys.
Rev. 84, 168 (1951).-

' S. Drell and E. M. Henley, Phys. Rev. SS, 1053 (1952).
G. Wentzel, Phys. Rev. S6, 802 (1953).

93rueckner, Gell-Mann, and Goldberger, Phys. Rev. 90, 476
(1953).

These uncertainties are rejected in the partially phe-
nomenological insertion of a repulsive core of radius
only roughly given by the theory; an increase in the
potential strength near the core can of course be
compensated by a small increase in the repulsive radius.
The conclusion of this investigation into the higher-
order multiple-scattering eGects is that the potential is
given to a fairly good approximation outside r =0.6k/pc
by the g'+g' contributions from the gr'adient coupling
and inside this radius the strength is somewhat arbi-
trary and must be obtained phenomenologically by
adjustments of the core radius.

A further estimate of the validity of the potential
can be made by determining the errors of the adiabatic
treatment. This has been done by evaluating the expec-
tation value of the non-adiabatic corrections to the g'
potential using the wave function obtained from the
solution to the potential problem, as discussed in Sec.
VI. This is a valid procedure if the nonadiabatic
potential is a small perturbation. The result confirms
this assumption since the expectation value of this
correction is only about yp M,ev compared to 20 Mev
for the static potential itself.

The final evaluation of the problem has been made
using the g'+g' potentials which, as discussed above,
are a good approximation to the more general potential
consider;. d in Secs. III and IV outside r=0.6k/pc.
Inside this region the arbitrariness in the potential
strength is represented by an adjustable core radius
which is expected to lie in the range 0.3—0.5k/pc. The
remaining arbitrary parameters of the theory are the
coupling constant and the strength of the pair term in
the meson-nucleon coupling. These two parameters
cannot, however, be regarded as completely unspecified
since the analysis of meson-nucleon scattering indicates
that g'/4a. 14—15 and the estimate of radiative sects
on the pair term suggests the pair coupling is quite
weak. The results of the evaluation are given in Table I
for the deuteron ground state and for the singlet low-

energy scattering. The evaluation in the triplet state
was done for us by Professor j. M. Blatt and Dr. M.
H. Kalos at the University of Illinois using the Illiac
(Illinois Automatic Computer); the results for the
singlet state are those of Taketani et a/. ,

"who used a
potential very nearly identical with ours for the singlet
states. The results are given for two choices of the
strength of the pair-coupling term, first unmodi6ed
from the perturbation value, and second with the pair
terms negligible corresponding to the full strength of
the damping. The agreement with the experimental
values is considerably better in the latter case which,
however, cannot be regarded as significant since the
principal eGect of the pair terms comes in the very
uncertain region between r=0.3k/pc (the core radius)
and r=0.6k/pc where the multiple scattering terms
appear strongly.
"Taketani, Machida, and Onuma, Prog. Theoret. Phys. (Japan)

7, 45 (1952).
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TasLE I. Low energy parameters of the nucleon-nucleon system. The data for the triplet-even (deuteron) state is given for two
values of the parameter X which determines the strength of the pair coupling. 'A=1 corresponds to undamped pair formation; ) =0
corresponds to negligible contributions from pair formation. The singlet data (reference 10) is given for X=O; the results are quite
insensitive to the pair terms which give a net repulsive eKect quite weak compared with the very strong central attraction. The param-
eters are adjusted to give correctly the deuteron binding energy and the singlet scattering length. For comparison, the experimental
values are Q= 2 73+10 "cm', r, (triplet) = 1 71X10 "cm, and r, (singlet) = 2 7&05)&10 "cm.

Triplet-even
X=O

Singlet-even

g'/4s.
Qa
&n(%)
Effective range
Core radius

19.5
3.43X10-"cm'
7.54
1.93X10 "cm
0.300X10 "cm

15.4
2.83XiM' cm'
6.12
1.73X10 "cm
0.300X10 "cm

13.3

2.10X10 "cm
0.328X10 "cm

16.0

2.585X10 '3 cm
0.384X 10-"cm

a Due to the method of integration used, these values for the quadrupole moment are not accurate to better than 5 or 10 percent.

It is interesting to note that the coupling constant
which gives the correct Gt to the nuclear force data
agrees very well with the value of 1S deduced from the
.meson-nucleon scattering. The excellent overall agree-
ment results in part from our treatment of the non-
adiabatic terms as discussed in Sec. VI; other treat-
ments" "' have estimated these using the wave func-
tion given by the g' potential (therefore corresponding to
an infinite expectation value of the kinetic energy) and
found an effective fourth-order static potential which
was very strong and repulsive, changing the sign of the
central triplet even state interaction. The treatment of
the nonadiabatic terms is not unambiguous; it is felt,
however, that a correct estimate must be based at least
on a reasonable wave function which rejects approxi-
mately the known properties of the deuteron ground
state.

III. CONSTRUCTION OF THE POTENTIAL

A. An Ayyroximate Nonrelativistic Reduction
of the Pseudoscalar Couyling

The pseudoscalar coupling term which we shall
consider is

H„,=iyfysr, fy, . (1)

This interaction is dominated in the weak-coupling
approximation by nucleon-pair formation for which the
matrix elements of the relativistic operator ys are of
the order of unity. This feature of the coupling can be
made more explicit by a variety of transformations
which exhibit more clearly the nonrelativistic features
of the theory; the leading terms in powers of g which
result are, in nonrelativistic approximation,

(2)
where

h= (g/2M)e V(~ P)p(r), h„= (g'/2M)qPp(r) (3).
Here p(r) is the nucleon source density. The first term
is the usual nonrelativistic approximation to the pseudo-
vector coupling; the meson-pair term arises from the
creation and annihilation of a nucleon pair and appears
to dominate the interaction since F15.

"' A. Klein, Phys. Rev. 90, 1101 (1953).

H~,~h+ $1+3g'/16rr' j 'h—(2')

These results suggest very strongly that the eGects of
nucleon pair formation are overestimated in the weak
coupling treatment of pseudoscalar theory and that
they may in fact play a rather unimportant role in the
nuclear force problem, at least in the nonrelativistic
region. It is felt that the various considerations (1 to 4
above) which give the strong pair damping can be used

It is evident from the observed interaction of pions
with nucleons and scattering and production, which is
predominantly in I' states, that the strong S-state
interaction which would appear to arise from the pair
coupling term of Eq. (3) is rather unimportant. This
suggests that for these phenomena at least the nucleon
pair formation which gives rise to the pair-coupling
term is suppressed. The explanation of this result has
been given in a variety of ways:

1. In the scattering of mesons the potential which
arises from the pair term is strongly repulsive and of
rather short range, ' with the result that it gives rise to
quite weak scattering.

2. Drell and Henley' have shown that in a nonrela-
tivistic treatment of the pseudoscalar coupling, a ca-
nonical transformation leads to a form of the theory in
which the meson-pair term is very strongly damped so
that the effective coupling is quite weak.

3. Wentzel' has obtained exact solutions considering
only the meson-pair term and has found that its contri-
bution to both nuclear forces and meson scattering is
strongly damped, the coupling constant g' of the pair
term being reduced approximately by a factor
L1+gs/4s j-'

4. Brueckner, Gell-Mann, and Goldberger' have con-
sidered the relativistic pseudoscalar theory and shown
that the nucleon-pair formation is strongly damped by
reactive eGects associated with the strongly bound
meson Geld. This divers somewhat from the results of
the nonrelativistic theories in that the correct renormal-
ization of the radiative eGects shows that terms which
do not involve nucleon pair formation are damped only
weakly. The consequence of these considerations is that
the coupling terms of Eq. (2) are better approximated
by
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to estimate the effective pair coupling, %e shall for the
present leave the effect unspecified by writing the pair
term as

Js, = X (g'j2M)y', (4)

where P expresses the eGect of the damping and is
accordingly probably rather small.

B. Formal Derivation

(6)

The first term of hp contributes only to meson scat-
tering; the second term gives both a nuclear force and
a meson scattering contribution in which the virtual
mesons emitted or absorbed by the linear coupling
term h can be scattered by h~. The notation "D.P."
means taking just that part of the operator which is
diagonal in meson occupation numbers; h and h„are
defined by Eq. (3). Following again the notation of I,
we define Uo(e) and U0(o) to be the nondiagonal parts
(in terms of occupation numbers) of 60 which produce
or absorb an even and an odd number of meson pairs,
respectively.

The second term in the potential series is

V,=D.P.LU, (o) (E—H, —Vo —U, (e)) ', U, (o) 5
—

(7) . .

To make the evaluation of Eqs. (5) and (7) manage-
able we shall now adopt one further approximation;
that is, we shall consider h„ to be a small perturbation
and develop the potential

V= Vo+ Vi

in powers of h„. In particular, we shall keep only terms
linear and quadratic in h„. The validity of this pro-
cedure depends on the assumption of strong damping
of the pair term; i.e., on the parameter X of Eq. (4)
having a small value.

The two-nucleon potential is obtained by using the
methods recently proposed by the authors. ' The eGects
of nucleon recoil on the potential will be neglected in
the first approximation. The corrections due to this
effect (i.e., nonadiabatic corrections) will be considered
at a later state (Sec. VI).

Using the methods of I, the potential is given as an
infinite series of terms. The successive terms may each
be classified according to the maximum number of
virtual mesons present at once. YVe shall restrict
ourselves to only those terms for which at most two
mesons are simultaneously present in an intermediate
state. This is a well-defined approximation and receives
some justification when it is recalled that the "energy
denominators" are larger when more mesons are
present.

In terms of the interaction of Eq. (2), the first term
in the potential series is

Vp= D.P.hp,

~, —h (—) h (++)
8

1
v (1p)= h(—)-h„(+-)-h(+)+h(-)-h(-)-h, (++)

(10)

and

+hv( '—h'+& —h(+), (11)

where

- —I

~,=h&—) ~—h(—)—h&+) h&+),
8

(12)

(13)

The symbol a will be frequently used for brevity in
what follows. The terms v(1p) and v(2p) of Eqs. (10)
and (11) can be easily interpreted since they have the
usual form given by perturbation theory; v," has a
more complex structure and will be discussed in more
detail in the next section. It is seen to depend only upon
the gradient coupling term in the original interaction
of Eq. (3).

If we were to expand the operator La—h& ) (1/a)h(+)5 —'
and keep only the first two terms, then

v ~Ii(—) Ii(+)+li(—) h(—) h(+) h(+)
8 8 6 8

These represent the so-called second- and fourth-order
contributions to the nuclear potential, as obtained from
the gradient coupling. The terms given by Eqs. (10),
(11) and (14) are evaluated and discussed in detail in
Sec. IV. In the rest of the present section we shall
consider corrections to Eq. (14) which result from a

I

" This modified fourth-order potential is identical with that
derived in the Tamm-Dancoff method, restricting the maximum
number of mesons present to two. (Added in proof. )

To facilitate a symbolic description of the terms in
the potential we shall denote the creation of a single
meson by an operator with a superscript "(+)"and
the annihilation of a single meson by a superscript
"(—)." Thus h(+) and h& & represent the respective
matrix elements of h for creation and absorption of a
meson, respectively. h~ is bilinear in the meson-field
variables, so we employ

h (++) h (+—' h (—'
) P 7 P

to denote the creation of two mesons, etc.
Then we may write Eq. (8) as

V= v(1p)+v(2p)+v, .

These terms are classified according to the degree to
which hv occurs. Expanding Eqs. (5) and (7) in powers
of h„and retaining only g' and g4 contributions in the
small terms depending linearly and bilinearly on h~,
we easily obtain:
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more careful analysis of Eq. (12). The reader who is
not interested in the rather involved mathematical
details of these corrections (which have been qualita-
tively discussed in Sec. II) may turn immediately to
Sec. V.

t&g=h' &w(1/a)h&+',

where m satisfies the equation

w = 1+(1/a)uw,

(16)

(17)

which describes the multiple scattering of the virtual
mesons by the two nucleons. The form of the "po-
tential" I can be made more explicit if we make use
of the form of h, which is

C. Derivation of the Multiple Scattering Equations

Returning to Eq. (12), we observe that

u =-h &-& (1/a) h &+&.

may be interpreted as a "potential" for the scattering
of the meson which is produced by the first h(+' in Eq.
(12) and absorbed by the last I&:& '. Indeed, t&, may be
rewritten as

which allow us to evaluate t~ and t2 in terms of N~ and
u2, since we have from the definition of the scattering
matrices

Wi= 1+(1/a) 4, Ws= 1+(1/a) ts. (21)

Equations (20) and (21) describe the scattering of a
meson by either nucleon and so represent a two-body
problem (i.e., one meson and one nucleon). The solution
to Eq. (17) is reduced to a solution of Eqs. (19) and
(20). Having found ti and ts, the treatment of Eqs. (19)
is made by the methods previously used by one of us."

IV. SOLUTION OF THE MULTIPLE SCATTERING
EQUATIONS

A. Determination of the Matrices f& and f2

%e need consider only one of the two sets of equations
in Eqs. (20) and (21) since these differ only by an
interchange of the nucleon indices "1"and "2." We.
shall therefore attempt to solve the equation referring
to nucleon "1." In a momentum representation,

g
(&I

~
ui

~
&I) = — (2s) ' exp[i(q —q')»)[w, w, j

83P

hi+hs, (18) X[wq+ws'$ [&rl' &Io1' q']'ei U, 'si U, +. (22)

where h; contains the field variables g evaluated at the
position x; of nucleon "i."Vile then have

+hi&—&-he&+&+he&—&-hi&+&. (15')

The last two terms contribute negligibly to the scatter-
ing if the two nucleons are not close together, since they
correspond to the absorption of the meson at one
nucleon and the emission at the other. The erst two
terms of Eq. (18) we shall call ui and us, respectively;
they are the potentials for scattering the meson at
nucleons (1) and (2). Dropping the last two terms,
which will be discussed later in Sec. IV, we have

w=1+(1/a) (ui+us)w,

which has the solution"

w = 1+(1/a) (tiwt+tsws),

wi ——1+(1/a) tsws,

we =1+(1/a) trwi.

(17')

(19)

Equations (19) represent a system of simultaneous
integral equations to be evaluated in terms of the
scattering matrices t~ and t2 for mesons from nucleons
"1"and "2," respectively. We can obtain t& and t2 by
solving the auxiliary equations

Wi —1+(1/a)uiWi, Ws ——1+(1/a)usWs, (20)

n K. M. Watson, Phys. Rev. S9, 575 (1953).

Here w, = (q'+ p') l, etc. , and &r& and ~t are the spin and
isotopic spin matrices, respectively, for nucleon "1."
U, is the absorption operator for the meson with
momentum q and U, +, the creation operator for the
meson with momentum q' (these quantities are vectors
in charge-space). We have neglected the energy of the
nucleons in Eq. (22). We shall also neglect it in solving
Eqs. (19) and (20).

N~ is diagonalized with respect to states of total spin
and isotopic spin by means of projection operators.

E~= s[i~i U,XU, ++2j

E,*=—
—s,[iei U,XU, +—1)

(23)

represent the projection operators on to states of
isotopic spin ~ a,nd —'„respectively, for the single-
meson single-nucleon system. When the meson is in an
orbital I' state with respect to the nucleon,

1—[~,.qXq'+2q q'j,
qq' 4~

1. 1
F;=— —[ier qXq' —q' q]

qq' 4m

(24)

represent the respective projection operators on to
states of total angular momentum —,

' and ~2.

Introducing
g2 1

4x .3xM'
@K. A. Brueckner& Phys. Rev. S9, S34 (1953).
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and using Eqs. (23) and (24), we can write Eq. (22) as

u cd' exp'&(q —q') z&J
(q'l~ I q) = ——

4
t wqwq~7' 'wq+wqr

&& fCF;F;yF. F*—2E;F;—2E;F;$ (26)

This permits us to decompose the Eq. (20) for W~

into four separate equations for the four eigenstates of
spin and isotopic spin. The coeKcient of E~P~„which
we may call N~(p, -', ), in Eq. (26) is the strongest of the
four potentials. We shall consider this state explicitly.
The equation (20) for the ($, p) state is

n
(klW, (2, —',) lkp)= —6(k—kp)+ — g'dg

kp

&&, (el Wi(p l) I &p) (2&)
WZ&q K'Ig

To solve this integral equation, we shall make the
reasonable approximation of replacing wq+we by the
larger of the two variables m, and ml, .'4 The resulting
equation 'for W&(-,', —,') is

Xq
——pn'l Cp cosu~k —C4 sinn'kj,

X~
——Cp Lsinn*'k —kn'*cosn'k j

+CqLcosn&k+ knl sinnlk j,
(34)

where C3 and C4 are arbitrary constants. The solutions
which take proper account of the boundary conditions
and of the delta function discontinuity at kp can be
constructed from these. The two solutions for small and
large k are then joined at k=p where both limiting
forms have approximate validity. The resulting expres-
sions are very lengthy but they take on a simple form
in two limiting cases. If n& tan(n&k, ) is less than one,
or equivalently, if 0(g'/4qr(20, for k,„=M, then
the scattering matrix

also useful. A detailed comparison of the numerical
results with the approximate solutions shows agreement
to within the accuracy of the numerical calculations.
In the nonrelativistic limit, it is easily shown that
general solutions to Eq. (32) are

X,=C +C k'/Sts', X =C —X, (33)

where C& and C2 are arbitrary constants. In the rela-
tivistic limit, the solutions are:

(kl Wg(„-', ) lkp) =kp '6(k —kp)

nk Xg(k) Xq(k)
+— +

where

exp( —ik zg), (30)

Xg

(kl» lko) = —nk —+—exp( ek z—,)
Kg p

(35)

is fairly well given (to within a factor of two) by the
Born approximation result,

p~ q'dq
(k)= ~ (qlW&(p p)lkp) exp(itl zg),

~p

t
y) g~djIt

) &(k) =ts (pl W&($, $) l kp) exp(eq zg),
"a

and n is dined by Eq. (25). Differentiating these
expressions for X~ and X2 with respect to k and making
use of Eq. (30) for W~(p, —',), we 6nally obtain the
coupled differential equations:

dXg nk4 Ag X2 kp—+—+ 8(k—kp),
dk ZOIt; Wig p %Op~

(32)
nk'p, ) g X2 kpp—+—— 5(k kp), —

p- ~o

with the boundary conditions that A& vanishes at k=0
and that ) 2 vanishes at the cut-off momentum k,
which is introduced to approximate the recoil eGects of
the relativistic theory and which is necessary to give a
Gnite result. These equations can readily be solved
numerically; the following approximate method which

gives a closed expression for the scattering matrix is

'4A similar approximation is discussed by H. Bethe in Pro-
ceedings of the Third Aqsqtlal Rochester Conference ors Hegh ENergy
Physics.

kkp 1/wg, wy) wp
n — — expl i(kp —k) zi)X (36)

Lw gawp]~ 1/wp, wa (wp.

This dependence on m~ and mp results from our approxi-
mation to the energy denominator w&+wp.

If n& tan(n&k, „) is larger than one, then the largest
term in the scattering matrix is approximately

kkp—n n& tan(n&k, ),
RIsK p

(37)

which can be very large if n&k, ~qr/2 or, taking
k,„=3f, if q'/4qr=3m /4=23. 3. This value of the
coupling constant is considerably larger than is com-
patible with the observed pion scattering; in this case,
Bethe and Dyson have found that g'/4n 15 To verif.y
this result for our approximate methods of solution, we
have calculated the scattering of mesons on the energy
shell and found that for g'/4qr = 15, the resonance in the
scattering occurs at somewhat less than j.40 Mev,
showing that this value of the coupling constant is
consistent with our method of cutoG for high momenta.
Accordingly, we can conclude that the Born approxi-
mation result LEq. (26)g is not qualitatively a bad
approximation for the scattering. It is noteworthy that
for somewhat larger values of the' coupling constant
than appear to be indicated by the scattering experi-
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ments, the nuclear forces would show a remarkable
deviation from the perturbation theory results since the
scattering of the virtual mesons would then be very
strong.

1 1(1 1i
21&=1+-(4+4)+-l 4 4+&2 4 I+' —' '~

8 g(g a) (39)

is substituted into Eq. (16), characteristic terms such as

1 1
h, ~-)-t,-h, (+)

8 8
(40)

appear. These evidently describe a self-energy. On the
other hand, such a combination as

(41)

B. Evaluation of the Multip1e St:attering

We have found that to a fair approximation we can
take

(kitlikp) = (kiulikp), (38)

as given by Eq. (26). With this result, we shall return
to the multiple-scattering equations (19). These equa-
tions are de.cult to solve in general. Consequently, we
shall make a number of approximations by which, it is
felt, that we can obtain a qualitatively correct result.
The first approximation involves our choice of the
scattering matrices tj and t2. We have remarked that
Eq. (38) seems to be correct to within a factor of no
more than two over the momentum range, k, kp(M.
Actually, we shall not use Eq. (38), but another form
[see Eq. (49)) for the t's. This latter form seems to be
at least 22o zwrse an approximation than is Eq. (38).

Our next approximation is connected with the fact
that the integrals occurring in Eqs. (19) must be cutoff
at high momenta if an unambiguous result is to be
obtained. Since we started with an approximate inter-
action [Eq. (2)j which treats the nucleons as infinitely
heavy, we cannot entirely remove these divergences
by renormalization. On the other hand, we can identify
and first remove the renormalization terms before
introducing a cutoG into the theory. This seems quite
reasonable and can easily be done.

We first note that if the power series solution for m,

and
1

G21 1+ ~1 ~2G21 ~

8 8

(44)

The solution of those equations of course involves no
renormalization difhculties.

When Eqs. (42) are substituted into Eq. (19) for 221,

there results

1 1 1 1 1 1
22' 1+ f '+ f2+ $1G11 32+ $1G12

8 8 8 6 8 8

1 1 1 1
+ ~2G21 ~1+ ~2G22 ~2 (45)

This form is particularly useful since, as required above,
the first and last scatterings which are the only points
at which renormalization eGect can occur, are isolated
from the rest of the multiple scattering.

On substituting this equation for 21& into Eq. (16) for
v„we see that the self-energies are of the form of Eq.
(40) and result from the second and third terms only on
the right side of Eq. (45). The only renormalizations of
g' are of the form of Eq. (41) and can be removed if
we express t& in terms of I& by using the identity

1 1 1
tl—hl&+& =ul—hl&+&+f1—ul —h, &+&

8 8 8 8
(46)

To remove the renormalization terms which can
occur only in association with the first or last scattering,
since the iteration t~u 't2u 't~- . itself contains no such
e8ects, it is only necessary to isolate the first and last
scattering from the remainder of the multiple-scattering
problem. For this purpose, we express m~ and m2 of
Eq. (19) as

u 1 1+Gll(1/rr)~1+ G12(1/12)~2)

u 2= 1+G21(1/a)tl+G22(1/u)t2.

Substitution into Eq. (19) shows that

G22 ——(1/a)tlG12 alld Gll ——(1/a)f2G21, (43)

where 6» and G» satisfy the uncoupled integral
equations

1 1
G12= 1+—

&2
—4G12

8 8

ul (1/a) hl &+&. (47)
Fxo. 1.Coupling-constant

renormalization. The emis-'

sion and re-absorption of the
meson with momentum k'
leads to renormalization of
the coupling constant for
the emission of the meson k
which is subsequently scat-
tered.

We return now to the general multiple scattering
problem. The potential

t' k
2&, =h& &w(1/a)h&+&

can be described as due to the emission of a meson by
h&+), its multiple scattering between the two nucleons,

and carry out standard renormalization procedures on
includes a renormalization of the coupling constant, as the divergent term
is evident from Fig. 1.
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and 6nally its reabsorption by h( &. After effecting the
coupling constant renormalization, it is evident that we
will obtain a similar expression, but one in which h&+'

and h& ) are modi6ed by radiative correctio'ns. Also
in this modified expression, a meson created, for
instance, at nucleon "1"must be 6rst scattered by
nucleon "2,"etc.

For simplicity in obtaining numerical results we shall
not include the radiative corrections to h(+& and h& &,

as mentioned above (although this would present no
particular difFiculties). These give somewhat shorter
range corrections and do not seem to be qualitatively
important.

We may next [see Eq. (45)7 divide v, into two types
of terms: those for which the meson is re-absorbed by
the same nucleon which originally emitted it and those
for which it is reabsorbed by the other nucleon. The
calculation of both types of terms is essentially the
same, since in any case the solution to Eqs. (44) is
involved, We shall 6rst calculate the terms of the latter
type and later return to those omitted. Then we must
evaluate

2 &' —=h, —(1/a)tlG12(1/a)t2(1/a)hi'+'
=h2&

—
&G2, (1/a) h, &+i.

(to which we must add the same expression with "1"
and "2" interchanged).

To determine Goi we must solve Eq. (44). Rather
than to treat the states of spin and isotopic spin in
detail, which is straightforward but exceedingly la-
borious, we shall set the t matrices for all the spin and
isotopic spin states equal to the largest one [i.e., that
for the (2, 2) state). This will presumably give us a
reasonable upper limit on the magnitude of the multiple
scattering effects. (We note that our final results would
not have been qualitatively aGected had we set all the
submatrices t equal to the smallest one. )

On the basis of the conclusions of Part 8 of this
section, we shall then set

In this equation, R=x&—x2 and

1 d e~~ df
I.=—,X=R

R, dE.. R . dR

Substituting Eq. (50) into Eq. (43), we obtain

27r%2
(k~G2, ~kp) =5(k—kp) — exp(ik. z,)

'NIt, 'P,

exp(iq z2)[kL+k RRR 2Ã)
Qfq

q(q ~
Gpi

~
ko) (52)

Deaning

I
exp(iq z2)

&=) q, (qlG2ilko)dog
'N q'

(53)

Since I.and Ã are functions only of R, the k integral
is readily evaluated in terms of the derivatives of
e &~/R. Solving Eq. (54) for A. and substituting this
into the right-hand side of Eq. (52), we obtain

exp[i(kp z2 —k zi)j
(kiG2itkp) =~(k—kp)+q

5)Ic'Ã0'

Here

(~L+X)x k.koLyk Rk, RR-2~
~

(ss)

[A. appears implicitly on the right hand side of Eq.
(52)j, multiplying both sides of Eq. (52) by
k exp(ik z2)[ioi,f l, and integrating over k, we obtain
an algebraic equation for A. :

ezp(ikp Z,) 22r242

+ A ~dok(kL+ Rk. RR—')
'Ro' p'

exp(ik R)
xk . (s4)

C kko
(h[ti[ho) = —— exp[i(ko —k)»j. (49)

ti [~F22'oj*
and

2m'C 2m% 2

1—- — 1.2
6 3p p

(56)

(
i
kt;t, k, i=-

a

2~'c'exp[i(ko z2 —k zi))

y[k. koL+ko Rk RR 2$7. (50)

The spin and isotopic spin matrices do not appear as a
result of our setting the 3's equal for the spin and
isotopic spin substates, as mentioned above. The func-
tional form in Eq. (49) is chosen as a compromise
between Eqs. (36) and (37), C is taken to be inde-
pendent of k and kp and will later be assigned a magni-
tude to correspond as closely as possible to the strength
of the t matrix for the (2, 2) state.

With the choice (59) for the t's, we can easily solve
Eq. (44) exactly. We first obtain from Eq. (49):

Z = 2~2&R2X[2L+ X$. (5&)

We obtain the nuclear potential e&'& on substituting
Eq. (55) into the second of Eqs. (48). The integrals are
easily done. For the central potential of the deuteron
state (i.e., the spin triplet, isotopic-spin singlet state),
we obtain Eq. (48) has to be multiplied by a factor of
two, since we must add to that equation the one
resulting from an interchange of the two nucleons:

g'( t l' t&
"'

v&'& = ——
( ) ti +22r22t

42r 42M) I tiR

e &a 1 )2NL+XL2+$2q
~(L+x) . (s8)

pR tio ( 1—.X )
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have been omitted in our calculation of Eq. (58).
Besides the terms (48) which we have calculated, there
are also terms of the form

v&" =hi&-&Gii(1/a)hi&+& hi& &(1/a)4Gp&(1/a)hi&+',

etc. The lowest-order correction to the curves of Fig. 3
which are obtained from this type are of O(g'). The
multiple-scattering corrections are the same as before,
since the same matrix G~~ again appears. Because of
the qualitative nature of our calculations of the multiple-
scattering effects, there seems to be no point in explicitly
calculating these latter terms.

We 6nally return to the two terms dropped in Eq.
(15') for the potential N. To estimate the importance
of these, we have set

N=Np=—hi& ~(1/a)ho&+&

and have calculated w $Eq. (17)$. Approximations
similar to those already used were made. The resulting
potential had a form very similar to that of Eq. (58).
It was somewhat smaller in magnitude, but probably
not signi6cantly so.

It seems safe to conclude that in no sense have we
obtained quantitative corrections to the fourth-order
potential. On the other hand, we have seen the eGects
of higher-order meson exchanges set in at progressively
small distances. It seems likely that in the region
pE&0.6 the power series expansion breaks down com-

pletely. Outside this region it is not unlikely that the
second plus fourth-order potentials may provide a
reasonable approximation to the two-nucleon potential.

V. EVALUATION OF THE g' AND g4 CONTRIBUTIONS
TO THE POTENTIALS

Neglecting higher-order multiple-scattering contri-
butions, as discussed in Sec. IV, we now evaluate the
potential U of Eq. (9) using Eq. (14) for v, . The terms
of order g' and g' in v, are denoted by vp and v4, respec-
tively. The diagrams representing these potentials are
given in Fig. 4; the explicit potentials are

eI e2 f e'"'
vp= —(g/2M)' I o, ko, .k d'k)

(2pr)'" w '

6X(g'/2M)'
I

d'kd'k'
v (1-pair) =- pi (h+ k') r

(2pr)' & w'w"

In these results we have not included the radiative
corrections to the g' potential since explicit evaluation"
shows that they are very small.

The evaluation of these integrals is straightforward;
details are given in the appendix to reference I5. We
find, with P=—@LE/2M j'g'/4pr

3+3x+x' e *
v2 pPvl'v2 oi'o2+1

g p (1+x)
v(1-pair)=P 6X—

~ ~
e '*,

4n-2M ( x' )

g 1 2
v (2-pair) =P —3X~ ——Ei(2x),

4x x'm.

g' )«' ( 1 q 2 4+4x+x'

Xe *Ei(x)+(2+2x+x')Eo(x)e *

&((3—2vi vp)+ (23+4x')Ep(2x)

23+ 12x'
+ Ei(2x)

x

6+4x'—2o, oz 6Eo(2x)+ E,(2x)

+-p'o, &r, (3—2vi vp) Ep(x)e (1+x)

2+2x+ x'
E,(x)e

45+ 12x'
+-pSip 36Ep(2x)+ Ei(2x)

3'A'(g'/2M)' t d'kd'k'
v (2-pair) =- &i (k+k') .r

(2)r)' " ww'(w+w'7

(g/2M)4 ) d'kd'k'
V4=- ~i(~+~ ).r

(2pr)' ~ w'w'

(3 2&i'vol
x (

—+ (x(k k')&
&.w' w+ w')

( 3 2si vp)
+o, krak'o, krak'~

&w+w' w'

(60)

5+Sx+x'
+ E'i(x)e *

i

x )
where Sip=3(oi rop r/r') &r, op The —result f.or v4 has
been previously obtained by Taketani, Machida, and
Onuma' who, however, used the S-matrix theory to
obtain the potential and did not include the terms in

Ep(x) and Ei(x). This result arises from a different
treatment of the nonadiabatic correction to the g'
potential; as discussed in detail in the next section.

"M. Levy, Phys. Rev. 88, 725 (1952}.
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l6

which determines the wave function q(p) correct to
second order. If bV is treated as a perturbation, the
relation

P.+E~~ E34—(p k)—

~ V, "& (k') «(p —k —k') d'k' (67)
F?G. 7. The sum

of potentials for odd
states which do not
l.nvolve nucleon pair
formation. The or-
idnate is in units
of (g'/4n. )Q/2M)'p
=13.8 Mev.

can be used to eliminate the momentum dependence
from bV. One then finds

p' E—y(—p) V "& (k)y "& (p —k)d'k

~ V, &'& (k') —V, &" (k)@(p —k—k') d'kd'k' (68)

.8 l.6

~[V,&'&(k)+bV(p, k)) p(p —k)d'k, (66)
Fukudaj Sawada, 'and Taketani (private communication).

P-R
where the second term, arising from the velocity de-l.2
pendent bV, is now expressible as a static potentia.
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~ ~ ~
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ener and E& and E»—&' are the is a collapsed state wjth a,n infinite expectation value

nucleon ki etjc energies. An estimate of thenucleon kinetic energies for momenta p and p —
for the nuc eon ine ic ene

nonadiabatic terms in is poth' otential which app ar velocity dependent corrections ase on q.
us &'Ih the ex licit dependence on the nucleon mo- therefore probably erroneous.
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k) (63) this possi y incorrec e) h' 'bl '

rect treatment of 8V of Eq. (65), weV "'(p, k) = V, "& (k)+&&V(p, ),
have evaluated 'the velocity dependent terms makingwhere the static potential is

(64) order and phenomenological repulsiv
and the velocity dependent correction is

behaved; the expectation value of the nucleon kinetic
0ei k&r2 k E~+E~&, E—

energies is quite low so that velocity dependent cor-
ctions should be small. The procedure we have fol-
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d v to evaluate the problemorrect' '
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I
—E le(p)

ical solution of the deuteron problem is (for the S-state)



NUCLEAR FORCES I N PSEU DOSCALAR M E SON THEORY

alone)

=0 for r&ro,

for r) ro

(69)

where r, is the core radius and rD ——hLMZj '* is the
deuteron radius. In evaluating the velocity dependent
correction 8V of Eq. (65), we have not considered the
small D-state admixture. For the ground state of the
deuteron, explicit evaluation then gives

(8V)A„~—0.11 Mev, (70)

which is to be compared with a 20-Mev expectation
value for the static potential. The velocity-dependent
corrections therefore would modify the potential by
less than 1 percent, and presumably have little eGect on
the solutions.

VIL CONCI USIONS

We have seen that it is possible to derive a nucleon-
nucleon potential, working entirely with a nonrelativ-
istic approximation to the pseudoscalar meson theory,
which gives a quantitative description of the low-energy
properties of the two-nucleon system. The principal
difhculties of the analysis concern the closely related
questions of convergence of the potential expansions
used (8 matrix, non-covariant perturbation theory, or
the method used in this paper) and the treatment of
radiative corrections. We have depended rather strongly
on the suppression of nucleon pair formation by radi-
ative e6ects; the contributions to the potential from
pair formation in high order calculated without taking
into account such eGects otherwise tend to be so large
as to invalidate the power series expansions usually
used. " Radiative eGects associated with the low-
momentum components of the meson coupling are,
however, small so that they do not modify appreciably
the potential (which arises from the low-momentum
components) in the nonrelativistic region. In this region
tr) 0.55/ye) our investigations have also shown that
the expansion in powers of the coupling constant con-

verges fairly well in that multiple-scattering corrections
which start as g' are not important corrections to the
g'+g potential. We also have found that nonadiabatic
eQ'ects are small, principally because the mean kinetic
energies of the nucleons in the deuteron are low.

We have also concluded, however, that the potential
expansion breaks down quite rapidly as r becomes less
than 0.5h/pc as strong multiple scattering of the virtual
mesons sets in, the precise value of r depending on the
eGect that radiative corrections, for example, have on
the high-momentum components of the coupling. The
treatment of this region is probably best left phenome-
nological; the uncertainties are most simply represented
by the insertion of the adjustable core radius.

In most of these conclusions we are in qualitative
agreement with the comments of Levy" who also
considered pseudoscalar theory, although the potential
which he derived omitted several terms of importance
at least equal to those which he retained. Our work is
also closely related to that of Taketani et a/. ,

"which
diGers principally in the treatment of the nonadiabatic
corrections to the potential (which they found to be
very important), but also in that they considered
pseudovector coupling. Our conclusions are somewhat
more optimistic than those of Klein" who also con-
sidered pseudoscalar coupling, principally because of
the diGerence again of his treatment of the nonadiabatic
terms and because of his estimate of the predominance
of the contributions to the potential associated with
nucleon-pair formation in high order. This estimate is
very sensitive to the extent to which radiative correc-
tions are taken into account; these were, however, not
considered by Klein.

Finally, we would like to remark that it is at. least
possible to conclude that the nuclear potentials given
by pseudoscalar meson theory, with the only freely
adjustable parameter being the core radius (the coupling
constant being fixed to within a small range by other
experiments), give a remarkably adequate determina-
tion of the six parameters which characterize inter-
actions of nucleons at low energy.

The authors are indebted to Drs. S. Drell, E.Henley,
M. Ruderman, and A. Klein for very stimulating and
useful discussions of this and related problems.


