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A conjecture made in a previous paper concerning the non-convergence of the series of adiabatic nuclear
potentials for meson pair theory obtained by means of perturbation methods is shown to be incorrect.
The correct series is derived and summed and is in agreement with a result given previously by Wentzel.
The same methods sufBce for the derivation and summation of two additional series of potentials of the
pseudoscalar theory with pscudoscalar coupling. One of these has as its leading term the one-pair potential
of fourth order, and the other begins with the leading term of sixth order. Each series has the same radius
of convergence which is determined by the condition xe'&2n, where x is the separation of the nucleons in
units of the meson Compton wavelength snd o.= (gs/4x)(ls/2M). With (gs/47r) =15, perturbation theory
converges for x&0.85; with (g'/4x) = 10, for x&0.57. The convergence for x&1 is in any case very slow
for these values of the coupling constant. The possibility remains that for substantially smaller values of
the coupling constant, as are suggested by the inclusion of radiative corrections, perturbation calculations
of adiabatic potentials may yield a meaningful erst approximation when used in conjunction with a suitable
cut-off.

I. INTRODUCTION

'N a previous paper, ' a qualitative discussion of the
~ ~ behavior of the series of adiabatic potentials of the
Ps-Ps theory was presented on the basis of the calcu-
lation of the leading terms through eighth order in the
coupling constant. There appeared to be a definite
indication of non-convergence of the series for @&1,
where x=IJ,r is the nucleon separation measured in units
of the meson Compton wavelength, p '. The attempt
was then made to infer a general result for the leading
pair term of the potential of order 4e. The result put
forward, without full proof, was that the perturbation
series is catastrophically divergent. This result is, in
fact, incorrect. The purpose of the present work. is to
demonstrate that it is possible to obtain, in the adiabatic
limit, the general term in a few well-defined series of
potentials, to investigate the convergence of these
series, and to sum them.

The potentials to be investigated are the leading pair
terms of order 4e, considered in I; the potential of
order 4rt with one pair fewer, prototypes of which (one
pair term of fourth order and three pair term of eighth
order) were given in I; the leading terms of order 4m+2.
The latter can be characterized diagrammatically by
open meson-line perimeters with end points at each of
the nucleon positions. Thus the leading term is a sixth-
order potential in which each nucleon undergoes one
pair and one gradient interaction. The contribution of
the sixth-order term has been previously computed' by
means other than are contemplated here. The calcu-
lations are carried out in Secs. IIA, 8, and C, respec-
tively.

*On leave for the summer of 1953 from, the Society of Fellows,
Harvard University, Cambridge, Massachusetts.

'A. Klein, Phys. Rev. 91, 740 (1953), henceforth referred to
as I.

s A. Klein, Phys. Rev. 90, 1101 (1953).

For the purposes of this presentation it is simplest to
use the form of the theory which results from the
Dyson' or Foldy' transformations,

5C'(*)=gk(~) Ver'4 (*)4'(*)~(g'/2~) A4'
+(g/2M)lter;ip p'p;+higher order terms. (1)

By computing the irreducible interactions that Eq. (1)
contributes to the kernel of the relativistic two-body
equation, ' ~ it is a straightforward matter to verify
that the method proposed in I for the computation of
the leading pair terms in the adiabatic limit is indeed
applicable. The argument given there was that the,
restriction, in obtaining the leading contributions, to
matrix elements with at most one nucleon pair at a time,
as suggested by the original pseudoscalar coupling, ' '
could be lifted; it was sufhcient merely to demand that
the requisite number of nucleon pairs be associated
with the motion of each nucleon. This argument is
indeed tantamount to carrying out the transformation
of Eq. (1) term by term in the interaction function.

The potentials will be computed from an expression
which is a trivial modification of Eq. (10) of I:

V(r, r') = et '~ dttdts—dtt'dts'dR'

XexpfsM(tt+ts —tt' —ts') jI(xt, xs, xt'xs'). (2)

Aside from the use of individual time coordinates, we
have added, for reasons of symmetry, an additional
time integration and correspondingly divided by a
"large" time interval t.

3 F.J. Dyson, Phys. Rev. 73, 929 (1948).
4 Berger, Foldy, and Osborn, Phys. Rev. 87, 1061 (1952).
~ J. Schwinger, Proc. Nat. Acad. Sci. U. S. 37, 452, 455 (1951).
~ E. K. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951).
~ M. Gell-Mann and F. Low, Phys. Rev. 84, 350 (1951).

M. M. Levy, Phys. Rev. 88, 725 (1952).
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II. COMPUTATION OF POTENTIALS

A. Pair Potential of Order 4n

For the case under consideration, the interaction
function which enters Eq. (2) has the form'

I(xg, x2, x2~g) x2„)=+3(2)'"(—zX)'") dxz dxz„z

sum. In short the integrand as a whole is invariant.
On the other hand, the time integrations, previously
subject to the condition tj)t3). )t2„~ are now
subject to the. condition t~~)t~3& .&/a2 g. If we
carry out all possible permutations of the time coordi-
nates of the two particles independently and then
average over the resulting (zz!)' expressions, we obtain
the following form for the potential:

G(x)—ib (r)e-'~', t)0

t&0. (4)

As in I, there results immediately a local interaction
which is given by

fao

U4„(r) = it '3(2X)'"Q dt's dtzJ„
p &2n—3

X)l dtz„,)I dtz I dt4

&2n—2

dtz„&(r, tg —t'g)A(r, tg —t'z) ~ ~

XA(r, tz„y—t „)h(r, tz y
—t „). (5)

Equation (5) was also obtained by the methods of I.
The essential symmetry property required for its
evaluation was overlooked, however.

Suppose we permute the time coordinates of one of
the nucleons,

ty~tay ~ $2„-y~ta2n-z. (6)

Then in virtue of the deinition of the set of perimeters,
the integrand of each term of the sum in Eq. (5) is
transformed into the integrand of another term of the

'It is perhaps worthwhile to emphasize that the propagation
functions employed are those dered, for example, in reference 5.
We have been unconventional here and in references 1 and 2 in
omitting identifying subscripts on these functions.

X[G(xl xz) ' ' 'G(x2e-3 xzn 1)]

X [G(xz x4) ' ' 'G(xz„z—xz„)]&'&

X& (xx—x'g) b, (x,—x'z)

X&(x2 &
—x'„y)&(x,„,—x;„). (3)

Here i~, i2, . , i„ is one of the permutations of 2, 4,
~ 2m, the coordinates of the second nucleon, which
yields a closed meson-line perimeter; the summation is
over the zz! (n —1)!/2 such terms; X=g'/2M. Equation
(3) can be determined either directly from the inter-
action Hamiltonian of Eq. (1) or can be inferred term

by term from the form of the theory used in I. The
same statement can be made for the other interactions
to be used in this paper.

We insert Eq. (3) into Eq. (2) and immediately
carry out the reduction to the adiabatic limit by means
of the equation

U4„(r) = it—'3 (2X)'"(zz t)
—'P t dt,

Xdtz &(r, 4 t'&)A(—r, t, t;,)—
' X~(r t2, —1 t -1)+(r tz —1 t .), (6)

in which the integrations are now carried out over the
entire 2e dimensional space t~, 4,

The remainder of the calculation is straightforward.
Q'e Fourier-analyze the meson propagation functions,

A(r, t)= (2n) ' ' d'kexp[zk r iizot][x—' tzoz+zr—t] ~, (7)

interchange the order of momentum and temporal
integrations, and perform the latter. For each term of
the sum in Eq. (6) we then obtain 2zz —1 delta functions
of linear combinations of the meson energies ko, ~

. .ko, 2„
and one remaining time integral which cancels the
factor t '. lt is then possible to perform trivially 2e—1

integrals with respect to the meson energies, leaving
one such integral which we label with the variable ko.

At this stage it is seen that all zz!(zz —1)!/2 terms of
Eq. (6) contribute equally to the sum, so that the
latter is most simply rewritten as"

U«(r) = 3i (2X)'"(8zr')
—'"(4~I)—'

X dkg dkz„exp[i(k, + yk„) r]

f.
X i dko[(t'zo' —a)P) ~ (kg' —cvz„')]—'

= —3tzgz&(2z&& —
&&/zz) (2/zr)it~(2zzx)/x» (8)

where n=(g'/4zr)(tz/2M'). Equation (8) can also be
inferred by expanding the exact solution given by
Kentzel"" for meson pair theory with stationary
sources. From the results of the latter author, one can

'OSee the appendix of reference 1 for the evaluation of the
integral."G. Wentzel, Helv. Phys. Acta 15, 111 (1942).

~ The agreement of the result with that of reference 11 demon-.
strates the correctness of the assumption made in reference 1
that higher-order pair diagrams which do not consist of single
closed meson perimeters are cancelled in the adiabatic limit by
the iterates of lower-order diagrams.
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obtain a closed expression for the sum

V(x)= P V4„(x)
n=l

3tl !
" kdk 1—(2ue'"'/x)2

log
4ÃZ~ 2 (1+k')l 1—(2ne '"n/X)'

344 I
" kdk

[
4422 sin2kx/x'

tan ' (9)
2w&, (1+k2)& l 1—4n2 cos2kx/x'

The integral of Eq. (9) is well-defined for values of x
which are larger than x„defined by

sc= 2o!

It is, however, possible to investigate the convergence
of the series per se, most simply by introducing the
asymptotic form of the function

(2/zr)E1(22ZX) e 'n*/(zrNX) l. (11)

A straightforward application of the ratio test then
informs us that the series converges provided tha, t
x&x„with x, here de6ned by

nucleon, etc. , and the summation is over zz!(22+1)!/2
terms.

The argument now proceeds precisely as in Sec. A.
The adiabatic limit is 6rst taken. The resulting static
potential has an integrand which is invariant as a whole
under independent permutations of the time coordinates
of either particle. Averaging over all possible permuta-
tions which is, in this case, zz!(22+1)!, we obtain the
potential

V4n'(r)=l. im(r~r) 3(2X)'n[ZZ!(n+1)!] 't '

XQ d"1' ' 'dtzn+1(421' V j) (421'Vl)

XA(rl, tl —t,,) A(r2„, t2„+1—t4„) . (14)

The integrals over the time variables now require that
2n linear homogeneous equations be satis6ed by the 2e
meson energy variables. Summing over the I!(22+1)!/2
terms, we are left with

&

(&)
— 3 (2)2n—lg2n (g~2)

—2n

x, exp(x, )= 242, (12)

a less stringent condition than Eq. (10).We shall prefer
for purposes of discussion the less accurate Eq. (12),
since it will be seen that the same condition of conver-

gence will obtain rigorously for the other series of
potentials to be derived below. %e therefore defer
numerical discussion of Eq. (12) until this has been
done.

Xdk2n ezp[Z(ki+ +k„).r]
Xk; kl[4012 (ui2 .a)P 402„2] '

—3~+2n(~/2M)22n 1(1+—X 1)2~ 2n-n/x2n- (15)

The sum of the series with Eq. (15) as general term is
obtained trivially:

B. Potential of Order 4n with One Pair Fewer

A typical diagram is shown in Fig. 3(a) of I. The
number of distinct diagrams in the general order can
be computed as the product of the number of ways of
choosing two vertices of one of the nucleons for the
gradient interaction by the number of ways of drawing
continuous meson perimeters beginning with these
points. The result is n!(22+1)!/2. There is actually
twice this number of interactions, since either nucleon
could have been selected to bea, r the gradient coupling.
This will be taken account of in the Gnal result. By
arguments previously mentioned, the interaction can
be shown to have the form

I(xlx2 x2n+1) xzn) =—+3(2)2n( —zX)2n(2M) —'

V'(X) = P V4n'(X) = 6tln2 (tz/2M) (1+X-')2e '*/X'
n=l

X[1—4~2'-2*/x2]-1

= V4'(x)[1 4nze "/x—'] ' (16)

It is thus seen that Eq. (12) determines the radius of
convergence of Eq. (16).

C. Potential of Order 4n+2

Here one chooses a single gradient interaction for
each particle. The total number of diagrams in the
general order is easily found to be [(zz+1)!]2,and, the
interaction is given by

I (Xlf X2 j X2n+1) X2n+2)

X dx8' ' 'dx2n-1[G(xl xz) ' ' 'G(x2n-1 xzn+1)]
at

X [G(x2—x4) .G(x2 2
—x2„)]"1(421 V2;+1)

X (421' Vzl+1)+(xl »1) ' ' '+(xzj+1 x42i+1) ' ' '

X~(xzt+1—x', 21) ~ (x2~1—»n)) (13)

where V'2;+l operates on the variable r2~l for the Grst

= 22n~l ~2(—zh)2n+'(2M) 'Q dxz. dx2„

X[G(xl x2) .G(x2 1 xzn+1)] '&

X[G(x2 x4) G (x2 x2n+2) ]i2&

X (421 V2;+1) (e2 V'()6(xl —x'1)

X6(x2~1—x'~1), (17)
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V' (x)= P V4~s(x)
n=l

=-lu~r ~sns(p/23II) (1+x ')'e '*/x'
3

XLo'r o s+Srsf[1—4o.'e—'*/x'7 —'

= Vs (x)[1—4n'e —'*/x']-'. (19)
I

The same remarks about convergence as in Sec. 8 are
therefore applicable.

III. DISCUSSION OF RESULTS

Conclusions concerning the validity of perturbation
theory can be drawn immediately from the application
of Eq. (12). Thus for (g'/47r) (p/23II) = 1, corresponding
to g'/4s. =15,Eq. (12) requires x)0.85 for convergence,
for (g'/4s. ) = 10, x)0.57. For such values of the coupling

where the summation is over L(m+1)!j' terms and the
subscripts on the gradient operators are meant to
imply that they operate on appropriate members of the
set of coordinates for the first and second nucleon
respectively. The remainder of the calculation diGers
in no wise from that described in Sec. 3. It suKces
therefore to state the result,

V4~s(r) = p-s, ~r es2'"n'"+'(p/235)

X[or es+Srsfe &'~+'&*/x'"+' (18)

The series of which Eq. (18) is the general term has the
SuIl1

constant, it is clear that no plausible account of nuclear
jorces can be based on the leading terms of the series.
Moreover, as already indicated in I, the repulsive
potential V'(x) of Eq. (17) predominates numerically
over the other pair terms to such extent that were the
coupling constant as large as the above values, the
possibility of obtaining agreement with the low-energy
two-nucleon data from the ps-ps theory would effec-
tively be ruled out.

However, all treatments of the potential problem
which have taken into account radiative corrections' ""
have indicated that as a consequence of self-interactions
the pair coupling is strongly damped. If we take
(g'/4s. ),ff(p/2M) 0.1, which is probably as much of a
reduction as self-energy effects are likely to produce,
then our series converge for x&0.17. Under these
circumstances, perturbation theory is applicable for
distances as small as x= 0.5. Assuming that the gradient
interaction of Eq. (1) is undamped compared to the
pair coupling, one has from this result a good indication
of the domain of applicability of perturbation theory to
the former interaction for which the effective expansion
parameter is (g'/4s-) (p/2M)' 0.1.

A more direct attack on the applicability of pertur-
bation theory to the gradient interaction will be
presented in a subsequent publication. The author also
hopes to discuss in later publications the relationship
of the potentials computed in this paper to a possible
consistent model for nuclear forces.

"M. Ruderman, Phys. Rev. 90, 183 (1953); Brueckner,
Gell-Mann, and Goldberger, Phys. Rev. 90, 476 (1953).


