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The Hyperfine Structure of Hydrogen*
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The two-body formalism of Schwinger is modified to consider the case of the hydrogen atom. The proton's
anomalous Inoment is treated by adding a Pauli-type term to the Lagrangian. A perturbation theory based
upon the Green s function is developed and the first-order correction to the Fermi hyperfine splitting of
the ground state is calculated. The method of calculation used is that of Karplus and Klein in their posi-
tronium work. Aside from the usual renormalizations encountered, an extra infinity appears in the calcu-
lation associated with the assumption of a point anomalous magnetic moment for the proton. On the hy-
pothesis that the proton s moment is actually distributed, cutoffs are inserted. The modified hyperfine
formula leads to a new value of a'. 1/n= 137.0378 for a cutofF at the meson length and 1/+= 137.0374 for
a cutoff at the proton length.

I. INTRODUCTION
'
~)URING the past two years, several derivations of

relativistic two-body Green's function and wave-
function equations have appeared in the literature. '
The derivation of Bethe and Salpeter followed the
methods of Feynman while that of Gell-Mann and Low
followed those of Dyson. The approach that we shall
use here is the one given by Schwinger, where use is
made of the technique of variational derivatives with
respect to external sources and the formalism developed
in Schwinger's "Theory of Quantized Fields. I.'"

The specific problem in which we shall be interested
is the reduced mass corrections to the Fermi hyperfine
splitting of the ground state of hydrogen. To obtain an
adequate two-body equation for hydrogen, certain
modifications must be made in Schwinger's derivation.
First, we are here dealing with two distinguishable
particles rather than with two particles of the same
field. Second, account must be taken of the proton's
meson anomalous moment. The latter is accomplished
phenomenologically by adding a Pauli type term,
,'p'o„.F„.(wher—e p' is the anomalous magnetic moment),
to the Lagrangian. The net eGect is to allow the proton
to interact with the electromagnetic field via its normal
current and its spin current.

Aside from the usual infinities of quantum electro-
dynamics, two others appear in these calculations. The
first is an ultraviolet divergence in certain of the Pauli
moment terms. This is due to the fact that the Pauli
moment introduces a point dipole. On the assumption
that the anomalous moment is due to a meson-nucleon
interaction, one may postulate that the moment actu-
ally has the extension of the order of the meson Comp-
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ton wavelength and cut off all divergent integrals
accordingly. Fortunately, the results depend upon the
cutoG only logarithmically and hence the calculation is
not sensitive to its precise value. The second difhculty
involves an infrared divergence and is due to the fact
that we have assumed free particle intermediate state
Green's functions in the perturbation theory. The
appropriate method of treating this difhculty for a
hyperfine splitting has been shown by Karplus and
Klein. ' Since the spin-spin interactions are all high
frequency, the infrared divergences will cancel if one
makes the free particle approximation consistently
throughout the entire calculation. As the actual calcu-
lations are similar to the ones .done by Karplus and
Klein, they will only be sketched here.

II. THE ELECTRON-PROTON TWO-BODY
GREE¹SFUNCTION

For the system of coupled electron, proton, and
photon fields, the Lagrange function may be taken as4

I.= sLP, vr. ( s~—. etA. )4+—mrna—j+sLW, n]
——,'(y, q,„( sa„e—,A„)p-

s' o'spy(rfsAv rfvAp)/+ms' j
+stL&, i]+Herm. conj.+sF„„F„„

,'{F„„,B„A„B—„A—„)+1„A„,—(2.1)

where f and p are the electron and proton field variables
respectively. Subscripts "1"and "2" refer to electron
and proton quantities. ri and f are the prescribed
external source for the electron and proton fields and J„
for the photon fields. ri and 1 (and their variations)
anti-commute with all fermion field variables. The
equations of motion obtained from (2.1) are

h ts( sa„e,A—„)+m—,fg=rf,

(ys„( sB„esA—„)—
s fs 0'ss p (cisA p ci pA s)+ms((j& = t )

BvFsv= Js+Jts+ &spy Fpv= BsAv civAsq

' R. Karplus and A. Klein, Phys. Rev. 87, 848 (1952).
4 Natural units are employed throughout: A= c= 1.
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In the Lorentz gauge, this obeys the equationwhere
jls=s~ll4 71Aj

jss= 2~2I:4 Vss@j 2P r)~C4'
(2.3) —~28,.(*,*)

=8„,5(x—x')+~'el trpls(&/&A(x'))Gl(x, *)

+zes tres„(b/5J„(x'))G2(x, x)

ip'8—1 tr(rs), „(5/bJ „(x'))G2(x, x) ~ (2.12)

For any operator F(x), one may define the quantity

(F(x))= (0(rll F(x) IOo.s)/(Oo. , I
002), (2.4)

where 01 and 02 are two space-like surfaces and 0
signifies the vacuum state. The one-particle electron
and proton Green's functions are defined by the
equations'

G.(",.,')=(~/~. ( .»(~(")n.„..
(2.5)

G2(X2) X2) (~/~f(X2))(4(X2))]r, 2~0

By use of the fundamental dynamical principle, ' the
one-particle Green's functions may be expressed by

The two-particle electron-proton Green's function is
given by

G12(xix2 xl X2)

= (~/~r)(»'))(&/m'(X2'))((0'(»)0'(X2))+)1. , r «(»»)
~l X2 Sl $2 + 6 Xl) Xl 6 $2~ X2

Xe(xl, xs)e(xs', xl')e(xl) xs')e(x2, xl'), . (2.13)

and obeys the equations

Gl(xl xl) $((f( lx)4'( lx))+)e(X1 xl)
(2.6)

G2(X21 X2) 2(($(X2)$(X2))+)e(X21 X2) ~

51G12 ~(xl xi )G(X21 X2 ) y

@152G12 ~(xl xl )~(X2 X2 ) ~

(2.14)

From the equations of motion (2.2) and the defining
equations (2.5), it can be seen that

5K1——ml+ielyl
5J(xl)

5K2 2222+i——esses +ip'os„„8„'
hJ(xs) u„(*'),. ,

(2.8)

Py,„( ia,„—e,(A—„(x,)))+5K,jG,(x„x,') =S (x, x,')—,

I Vls( i~2 e2(As(X2))) P +2 ~2s(A (X2))+5K2] (2.7)

XG2(*„x,') =&(X2—x,'),

wliei e

(x I v. (5) I
x') =v.&(x—x')~(k —x)

(xl~„„(g)IX')= „„s(x—x')s(g —x).
(2 13)

The 5's are the functional operators on the left of (2.7).
Due to the fact that we have been considering vacuum

states on o-1 and a2, the Green's functions defined above
have all been outgoing wave Green's functions. It is
convenient, then, to set the surfaces ol and o2 at + oo

and —~ and introduce the "matrix" notation of
Schwinger, ' x and p being used for particle operators,
$ and k for photon operators. We also introduce two
quantities which are photon vectors and particle
matrices, y„($) and o.„„($),such that

For the photon field, the equations of motion yield By use of the vertex operators,

(2.16)

where

—8 2(A„(x))+B„B„(A,(x)) I'1, 2($) —
I 5/8(81, 2A($)) JG1, 2

&(x)+(»&(x))+(&2&(x))~ ( ) the variational derivatives in 5K may be re-expressed as
an integral operator M:

(Jis(X))=gl trVlsG1(Xy X)y
(2.10)

(j2„(x))=k2 trys„G2(x, x) ip'81 trosl„G2(x—, x),

the symmetric limit being understood on the right of
(2.10). In analogous fashion, the one-particle Maxwell
Green's function may be defined by

g„„(x,*')
= (8/D„(x'))(A„(x))
= il ((A„(x)A„(x'))+)—(A„(x))(A„(x'))$. (2.11)

5K1G1——(2N1+iel' TpylG11" lb)G1 ——M1G1,

5K2G2 ——(2122+ie2' TpysG21'2g)G2 ——M2G2, (2.17)

Vs(t) =V2($) —i(P'/es) (& ~2) (5).

In general, the one-particle proton operators are
identical to the electron in form with y replaced by
The variational derivatives in the Maxwell Green's
function may also be eliminated in favor of the integral
operator P:

' The variational derivatives with respect to g and g here
(and elsewhere) are right variational derivatives, i.e., if B„F
= J'F(x)by(x)dx, then bF/by =F(x). A convention is necessary as
F (x) and by(x) need not commute.

(02+Pl+Ps) /=1,

~ .(4 e)= ie'»7 —(k)GI' (e)G
(2.18)
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Turning to the two-body equation, one wishes to
recast it into the form

{[72(p2 ~2(+2)) p o 2 rl2 (+2 )+M2J

X I 71(pl—el(&1))+~1J—I12}612=1112. (2.19)

On comparison with (2.14), one sees that the interaction
operator I» is given by

I12G12 62 (~1 ~1)G12y

which may be rearranged to

I12G12 ie1~2 TPVlr2QG12

ie,—Tpvlgl (8/8J) (I12G12). (2.21)

The integral operators discussed in this section may
all be expanded in a power series in e'. The lowest-order
interaction is

I"'=ie2 Tp7172bo

the factor exp(iP„»X„) may be separated from 1P»,

where P„~ is the Qeld energy-momentum eigenvalue. In
general, we may set the momentum part to zero. For
the equal-times situation, ti ——t2 ——t) t&'= t2' ——3', the
Green's function becomes

G12(rlr2~ rl r2 ~ )
= —P» P»(rlr2) exp (—iPo»To) P» (rl'r2'), (3.3)

where To= t—t'.
The eigenvalues, Po~, are infinitely degenerate. Such

a set of eigenvalues (and eigenfunctions) may be re-
placed by a discrete set (for the bound states), Po .
The Po„are complex, the real part representing the
energy of the two-body system, the complex part
representing the possibility of decay (via the emission

of photons and pairs). Thus, Eq. (3.3) may be replaced

by

G12(rlr2E rl r2 f )
= —g„rP„(r,r2) exp( —iPo To)g' (rl'r2'), (3.4)

The superscript 0 means zeroth-order function. In
these perturbation expansions for Ii2, etc. , the free
particle intermediate state assumption has been made.

III. PERTURBATION THEORY

Salpeter' has presented a perturbation theory based
on the two-body wave equation. We present here an
alternate form based upon the Green's function. From
Eq. (2.13), for the case tl, i2) tl', t2', the Green's func-

tion may be written as

(«ll (4(~1)4(»))+2(», ») Ii ~)

(o~, la~)

(1~l(4(»)4'(»'))+2(» &1') lo~2)
X

(oa ID~2)

= —Z»A(»»)A(»' »'), (3.1)

where 1 is some complete set on surface o. including the
total 6eld energy. Introducing the center-of-mass and
relative coordinates

(2121»)/ (2121+2222)+ (22222 2)/ (2221+2222)

=pl»+ p2»& (3.2)
S—Xi X2)

' E. E. Salpeter, Phys. Qev. 87, 328 (1952).

In general, the interaction operator is symmetric in the
proton and electron indices. Thus, to second order it
may be shown that

I12—(Se' Tpplro'g)second order

+ (io ) TPY1G1 (Tp 71 Y2 g )G2 72/ (2 23)

where P„(»,») presumably obeys the two-body wave
equation. The situation is very similar to that of
radioactive 0, decay. There, the continuum of positive
energy eigenstates is replaced by a discrete set with

complex eigenvalues, the complex part of the energy
representing the possibility of decay of the 0. particle
out of the nuclear well (in analogy to the decay of the
two-body system via emission processes).

Equation (3.4) may be used as the basis of a pertur-
bation theory for the eigenvalue I'0. Before doing this,
however, it is best to extract out the various infinite

constants implicit in electrodynamics. The Green's
function equation, in the absence of an external field is

I (vlpl+~1) (72p2+~2) I12]G12 1112 (3 5)

It may be shown, to order o., that

vlpl+~1 (1+~1)(vlpl+tnl'+%1 '), (3.6)

where eel is the renormalized mass, A~ is an infinite

constant and 3f&&"& is a finite residue. Similarly, I'&

may be shown to equal

(3.7)

where I'1&"& is finite. Referring to Eq. (2.23), one sees
that to order n, the factor 1+21 may be extracted
from all terms of the bracket in (3.5) and be absorbed
into the amplitude of Gi2. A similar result holds for the
proton quantities, ' completing the mass and Green's
function renormalizations. The remaining renormal-
ization is that of the charge appearing in the interaction

'The actual calculations of the proton's mass and vertex
operators appears to run into diKculties due to the extra dipole
divergences mentioned earlier. However, one may show from
general invariance considerations that equations analogous to
(3.6) and (3.7) hold for proton quantities. 3f2(") and F2(") are
infinite but we may assume such integrals have cutouts. These
difhculties produce no net eGects on the finite parts of the calcu-
lations.
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function. It may be shown that the Maxwell Green's
function, to 6rst order, can be written as

the coe%cients of each phase the wave functions. To
obtain the phases, one need only consider terms in the
second sum where e=n'. These terms are

e"=e'(1+8), (3.10)

all the charges appearing in I» may be written in terms
of e', to the desired order. Having completed the
renormalizations, we will drop the prime notation and
assume that in all future equations, the quantities
appearing are the renormalized ones. As will be shown
in the Appendix, M~' and g" produce no energy shifts
to the order desired and hence may be neglected. F~&"'

produces the correction to the hyperfine formula corre-
sponding to the first order anomalous magnetic moment
of the electron. F2&"~ would produce a similar eGect for
the proton. As the first case has been included in
previous calculations, ' and the second eGect may be
assumed to have been included in the experimental
value to be inserted for the protons's magnetic moment,
these terms also need not be considered further.

Having completed the renormalization, one may
proceed with the perturbation theory. Separating out
from the interaction function a static, non-spin de-
pendent part Io,

I&2 =Io+I', (3.11)

where 8 is infinite and of order n, and c&&"& is finite (to
within the dipole infinities). From (2.23), one may
then write

I»=e'(1+Ii)Li TpI'&12(b'+g&"&) —e'I&'&], (3.9)

where I&'& is the second order interaction of (2.23).
Defining the renormalized charge as

g„P„'(r,r2) exp( —iPO„'To) P„'(xi",x,")

XI'P„'(xi"', x2'") P„'(ri'ri'). (3.15)

In combination with the first sum of (3.14), the bracket
may be viewed as the first order expansion of an
exponential, and hence to the required accuracy, the
right side of (3.14) can be written as

—P„P„'{rir2)exp( —iTp)

Thus the first order energy shift becomes

zE "&= —(i/To) "y'(xi, *2)

XI'(x,x„xi'x2')P(x, ', x2'). (3.17)

To obtain the second-order shift, one iterates twice,
giving, for the diagonal terms,

—Q„P„'exp( —iPO„'To)g„'+Q„P„' exp( —iPO„'To)

f
X p 'I'p'+ p 'I'GOI'p-' p-' (3 18)

one may define the Green's function, Go, by the equation Thus the second-order energy shift becomes

L(vipi+rei) (y2p2+m2) —Io)GO= 1i12. (3.12)

In the electrodynamical case, Io is proportional to the
Coulomb energy. A first-order expression for G» may
be obtained by an iteration procedure'.

Gi~ =Go+GOI'Go (3.13)

Considering the equal times situation where the sepa-
ration To of (3.4) is a large positive number, an expan-
sion such as (3.4) may always be made for Go, yielding

Gli(rlr2$ ri r2 5 )

= —P„P„'(r,r,) exp( —iP0„'To)g„'(ri'rg')

AE(2& = —(i/To) QOI 'GiG2I fpo, (3.19)

where, in concordance with our plan of treating the
infrared difficulty, we have replaced the intermediate
state Green's function Go by the free particle approxi-
mation, G~G2."

The energy shifts may be expressed in terms of
momentum integrals. In view of the center-of-mass
dependence, one may write (using a "box normal-
ization"):

P (xi, x2) = exp(iP„X„)V &(2') ' "e'i'*$0(p)dp. (3.20)

+P„, &&t„'(rir&) exp( —iPO„'t)~ g„'(xi", x2")

XI'f„'(x,'", x2"') exp(iPO 't') g„'(ri'rm'), (3.14)

where the superscript "0"means quantities related to
Go. We wish to rearrange (3.14) into a form resembling
(3.4). The phases then will be the energy eigenvalues,

8 R. Karplus and A. Klein, Phys. Rev. 85, 972 (1952).

9 The off-diagonal elements will give the 6rst-order perturbed
wave functions.

'0 In turning the expansion of (3.18) into an exponential one
really requires the presence of the term ~(ib,E&')T)' as the expan-
sion must be adequate to second order. This term is actually
present in the second term of the bracket of (3.18), as may be
seen by breaking the 60 there into its bilinear sum. Since e is a
bound state, this term corresponds to a low-frequency intermediate
state and hence, for the hyperGne problem, may be neglected.
In general, it would seem essential that the rigorous G0 be used
in (3.&9).
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Delning

II (p pI) (2 )
—4 e 4P(—x x')—e i pxe—ip'*'

7l

J
XI'(xix2, xi'x2') dxCx'd (X'—X),

one obtains

where p is the reduced mass of the electron and
P,=mi+m2 ——2'(2't4 is the energy of the ground state of
hydrogen. It is convenient in treating the erst order
perturbation shift to return to coordinate space for the
relative time variable via the equation

0'(P)I'(P P')4'(P')dpdp' (3.22)
4 (y, t) = (2~) '

~

' e '"V (P)dPo. (4.5)

The calculation of |P(y, t) is very similar to that done
by Karplus and Klein. ' We will only state the result:

E(y, t) = (4E1E2)
—'Lexp+{ (miE2+ m2E, )

X(2m, +42, y)(2m2 —422 y) —y'I (E2—E,)
x (2ml+ 421 y —2m2+422 y) —(mlE2+m2E1) j)

exp {(2E1E2'E(t)+mlE2 m2E1)

(2mi+42, y)(2m2 —422 y)

y'I (Ei+E2) (2ml+ ~1' y 2m2+ ~2' y)

+ (2E1E22(t)+m2E1—m,E,)j)j, (4.7)

I (vipi+mi) (y2P2+m2) —Io&4'=0. (3.24)

IV. CALCULATIONS

As shown in the preceding section, the energy shifts
may be obtained in terms of matrix elements of the
interaction between the lowest-order wave functions.
Due to the fact that Io is a static interaction, it is
possible to obtain an adequate solution f'or the wave and
function based upon an iteration scheme stemming
from the nonrelativistic Coulomb wave function.

In momentum space, the lowest-order interaction
(2.22) becomes

exp+ = e—i t.El & (t )—Ns11 t~ e—i fE2 e (&)+m2] t
)

+1 t)0 (4.8)

1&0.
E= (P2+m2)&, e(t) =

0'(P)I'(P P')Gl( 1I'+P')

Xg ( p—p')I'(p', p")yo(p )dpdp dp (3 23) p(y, 't) = (22r) (mi+m2) 'n(tl(0) (y'+(2't4') 'E(y, t), (4.6)

where
The bound-state zeroth-order wave functions obey

the homogeneous equation,

71p02ap(Pa Pa )

(P P')'—7172
I(P P')= -+

(2 )' (P P')' (2 )'-
X= ti'/e. (4.1)

Selecting out the non-spin-dependent static part for Io,
(3.24) becomes in momentum space,

PP1I 0+Po (421' y+Plml) j
XI,I.-P.-(- 'y+a. )3(p)

$8 dp

, 4(p') (42)
(2~)'" (y —p')'

42 and p are the usual Dirac matrices. Defining an
equal relative times wave function,

(Po—Po')'$e
I"'(P, P') = C1' C2—

(2~)' (P P')'—(y —y')'—
(4.9)

&e' vi. 2-, (P-—P«')

(P P')'—I"'"(P,P') =
(22(.)

4

Substituting I('i' into (3.22) yields

i ie'
gE (1)s y8 (y t)e 4p pt-

22r (2~)4J

lt (0) is the value of the ground-state wave function at
the origin in coordinate space.

We consider now the erst-order energy shift with the
first-order interaction. After subtracting out I2, (4.1)
may be divided into a "charge" and "dipole" part:

(4.3)4t( )=(2 ) *J dpo4(P) ~i ~2—(P2—Po')'/(P —y')'x, '""'V(y', t') (41o)
(y—P')' —(Po—Po')'Salpeter' has shown that an equation for p may be

derived, and that to a first approximation, p is the
Schrodinger Coulomb wave function. Putting this
approximate function in on the right of (4.2), one
obtains the wave function

The P2 and p&' integrations may be performed upon
using the usual outgoing wave perscription:

Xie2 t.
' 0*(y, t) exp{—2L(y —y')')'ltl)

(2m.)4"
gg(1) e

(4.4) C1' C2—i
2t (y', t). (4.11)

I:(y—y')'3'

(y'+~V)e(y)
4(P)=-

2ti (22')' QiP +po ((21 y1Plml)1—
XLt 2I',—po —( ~2 y+P2m—2)j
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Inserting the wave function (4.6) into (4.11) gives"

k~ ~2ly(0) l2
gg(1) c

2(2m)' (mi+m2)'

~ &(y, —~) exp( —~T(y —y')'5'l~l)
X l

J (y2+ ~2~2)2 [(y y))25$

x(y', t)
X[ni ng —15 . (4.12)

(y)2+~9p2) 2

The calculation now proceeds exactly as the corre-
sponding one done by Karplus and Klein. We desire
the 0, ' and 0, ' parts of the integral which can be
obtained from the part of the integrand which is large
when at most one of the momentum variable is large.
We also desire the spin-spin interactions as we are
interested only in the hyper6ne shift. These two condi-
tions restrict the portions of the integrand which are
relevant. Further, where one momentum variable is
large, we will neglect the 0.2' in the corresponding
denominator. This corresponds to the neglecting of
binding effects in the intermediate states and will
produce its quota of infrared divergences. Upon carrying
through these simplifications, the integrations may be
performed yielding

2X' Q 4a 2n
AE&'~'= — e, e2ly(0) l' 1——

3 m]m2 7r (mi+ m2)

m2 mj
X miln —+m21n—,(4.13)

2p 2pl
'

where

+1=Yl))[ml '7 1(liiP)+p+ k)5

Xrl'r2[m2. +2/2P p +k)5| 2))

1V2 ='@71))[ml 7 1(lilP +p+ k)5 Y1&2

X (p' p—k—).[m2 y—g(li2P, p—'+k)5y2„, (4.16)¹=&—'v i.[mi v—i(~i P.+p+ k) 5m i~~2~. (p' p—k—).
X[m2 y2(—Ii2P. p'+—k)5~2 p(k p'+—p)s

Since the interaction is already second order, we need
not treat the integrals in the perturbation formula as
accurately as before.

First, one requires only the low-momentum parts of
the wave function and hence may set p and p' to zero
in I». Also, the po poles, unlike the situation in the
6rst order interaction, will occur at high-frequency
values and give higher order contributions to the energy
shift. Thus it is possible in general to set p and p' to
zero in I»(p, p'). Under' these conditions, (3.22)
becomes:

AE "»)'= —i(2m)4l)t (0) l'I&P(0) 0). (4.17)

This result is in direct agreement with the idea that for
the hyperfine effects, only small distances are involved
requiring only the wave function at the origin.

The calculation proceeds as follows: first, the spin-
spin parts of the numerator are picked out. The three
poles in the denominator may then be integrated.
Following this, the remaining real variable integrations
may be performed. The final answer is:

where p is the irifrared cutoff. AE&"»=— ei e2l (0) l'—A similar calculation may be done for the dipole part . 3 m m ~ 2~(m m )
of the interaction. The result here is"

4x nX 4n 2o;
AE&'&D= ——ei e2lg(0) l' 1——

3 m] m (mi+m2)

. m2 mg
X mi ln—+m2 ln— . (4.14)

2p 2p-

mi m2l 4~ nX
m21n—miln —+——ei enl)t (0) l'

2p 2pl. 3 m,

4A 3' my
X —+—ln—+1~'n'ei e2ly(0) l' ——

2p- . 6 m2 —mg

2p 2p
X 4m, ln—(3m,+m, ) h —,(4.1g)

m, 1S$

where p is a dipole ultraviolet cutoff. We have also
assumed that the infrared cutoff is the same as in the
previous calculations.

The Gnal contribution to the energy shift that need
be considered comes from the second-order perturbation
formula. Here we consider only the lowest-order
interaction:

hE&"= —i )p(p)[I&"'(p k)+I&'&"(p, k)5

XGi( Pl,i+ik)G2(p2P, —k)[I&'&'(k) p')

+I"'"(»p')3 (p') (4 19)

We turn now to the effects of the second-order
interaction [the second term of (2.23)5 in the first
order perturbation formula. This interaction contains
the double photon processes and consists of three types
of terms according to whether the proton interacts
zero, once, or twice with the electromagnetic field via
its spin current. In momentum space, the interaction is

e4 I)Ii+I)I2+¹
I~~= — dk

(2e)'~ [(J,P.+p+k)'+mi'5[k p'+ 5'—
X[(p,P,+k p')'+m2' k', —

(4.15)
"P*(y, t) is not actually the complex conjugate of P. An

analysis of its definition, (3.1), will show that for our function,
(4.6), it is actually the time reversed function.

12 K should like to thank Dr. W. A. Newcomb for Gnding an
error in the calculation of this term.
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As in the previous calculation, one may set p and p' to
zero in the interaction terms, yielding

gg&2&= —j(2s)4I@(0)I2 i d&&&[IQ&~(0 p)

1/n = 137.0377&0.0016.

Including the above corrections, one obtains

(5.2)

constants and obtained a value for the fine structure
constant of

+I&'&"(0, k)]G&(p&P,+k)G2(p2P, —0)

X[I&'&'(k 0)+I&'&"(0, 0)j. (4.20)

137.0378 for p =meson mass,
1/n=

137.0374 for p =proton mass,
(5.3)

Again there are three types of terms corresponding to
the three possible ways the proton may interact with
the electromagnetic field. The calculation proceeds in
an analogous fashion, giving for the energy shift:

2'r Q~«"=— l~(0) I'
3 m,m2 2m (m&+m2)

m, m, y 4~~X
X I m, ln—+m, ln—

I
———g, .o, I y (0) I

'
2p 2P) 3 m,

Q m1 m2 I

X (3m(+ m2) ln—2m' ln—,
7l m1 m2 2p 2p-

1
+see, e, ly(0) I

6 m&+m2

27&
I

(3m&—m2) ln +4m2 ln——. (4.21)
m1 m2

V. RESULTS

Adding up the results of the preceding section, the
infrared divergences cancel. Keeping terms only to
order m&/m~, the total shift due to reduced mass
corrections may be written as"

4m n)„
~a=— 'v, e, ly(0) I'

3 m1

CL m1 m2
X 1—— [3——,'(p„—1)'j ln-

7l may m1

9 21& 1
+—(p,—1)' ln——(p„—1)', (5.1)

4 m2 8

where X~=1/(2m2)+l&, and p,„ is the protons total
magnetic moment expressed in units of the nuclear
magneton. The coeKcients in front of the bracket is
the Fermi formula, modified by the usual reduced mass
correction.

Neglecting the shift calculated here, Dumond and
Cohen" have made a least-squares fitting of atomic

' This result is in agreement with that obtained by W. A.
Newcomb (private communication)."J. W. M. Dumond and K. R. Cohen, Special Technical
Report No. 1, U. S. Atomic Energy Commission, Nov. 1952
(unpublished).

the contributions from the Dirac and Pauli moments
almost cancelling. The results are fairly insensitive to
the cut-oG value.

In evaluating the validity of the results, two points
should be noted. Though the final formula is independ-
ent of the infrared cutoG we have assumed that all
the cutoGs were equal. Since the divergences come from
intrinsically di8erent momentum integrations, this
assumption need not be true. Recently, however, the
two-body Green's function equation has been re-
arranged so that the infrared divergences can be elimi-
nated from the beginning. It appears that the pre-
scriptions used here are correct. "DHIiculties also appear
in dealing with the ultraviolet cuto8. In the dipole
terms which are finite, we have assumed that the upper
limits on the momentum are rigorously at infinity and
have introduced cutouts only in the divergent terms.
Since the meson mass is not a particularly high fre-
quency this procedure might disturb the values of the
finite terms. The issue could be settled by inserting a
form factor into the Pauli term rather than using
cutoGs„but this would greatly complicate the calcu-
lations.
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APPENDIX

Et will be shown here that both M&"' and b &"& produce
no contribution to the hyperfine splitting to the desired
order. The interaction proportional to &1&"' is

I(P, P')=~~&" (& ~P&.+P)[v26 2P.—P)

+&2&"&(p2P,—p))l&(p —p'). (A.1)

First-order perturbation theory leads to an energy shift
of

f
f(p)~i&'& (& iP'+ p) [v2(& 2P.—p)

+~2&"&(~ P. P)34(P)dP. (A 2)—

Due to the B(p—p') appearing in (A.1) only one

"Conversations with J. Schwinger and R. Karplus.



THE Hfs QF HYDROGEN 1009

momentum integration remains in (A.2) and thus no
spin-spin combinations can be formed. A similar phe-
nomenon occurs in the second-order perturbation shift.

Upon evaluation of the Grst-order polarization opera-
tors, g'"~ may be written as

I(p, 'p') = const&&4cts)Byes, (A.4)

which leads to an energy shift of

terms lead to a second-order interaction. Considering
the constant term first, one obtains an interaction of

n ("ds
g„,&"& (p) = a„„—4X—' ' —exp( —ssrt')

J, 4(p)vn ~4 (p')d pdp', (A.5)

fi(N)+ dl
trtis+ I(1—tt)p'

fs(N)
+ ~ dg (A.3)

"o srtss+N(1 —N)P'

the 6rst term having an extra dipole inanity. These

which has no spin-spin part. The evaluation of the
energy shifts from the second and third terms would be
analogous to the evaluation of hE&"' except that
interaction is already second order and the low-

frequency pole of D+ has been replaced by a high-
frequency pole. Thus these terms give no contribution
to the desired order.
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A fundamental particle is treated as a unit char'ge whose rest mass and space time coordinates are variables
of its motion. Classical electrodynamics, in its action at a distance formulation, is obtained from an action
principle which is simpler than the usual one. In this new action principle the rest mass of a particle is varied
as well as the coordinates. The rest masses of interacting particles, although not assumed constant u priori,
become constants as a consequence of the equations of motion. Modifications of the old action principle can
yield purely electromagnetic rest masses which are, however, the same for all particles. Similar modifications
of the new action principle give purely electromagnetic rest masses to all charged fundamental particles. In
this new modification of electrodynamics, particles interacting at'small distances no longer have constant
rest masses.

1. INTRODUCTION

~ F the many fields which play an important role in
quantum physics, the one whose classical counter-

part is most familiar is the electromagnetic field. It has
been known for a long time that classical electro-
dynamics can be formulated in two equivalent forms,
as a 6eld theory (Faraday-Maxwell-Lorentz) or as a
theory of action at a distance between charged par-
ticles. ' In the case of electrodynamics the two formula-
tions are of the same order of simplicity. Other fields
(such as meson 6elds) could also be described classically
in an equivalent action at a distance formulation but,
in general, the two descriptions would not be equally
simple.

In modern physics it is the field-theoretic point of
view which has been stressed. Ignoring quantum

*Supported in part by the OfBce of Scientific Research; U. S.
Air Force.
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Kl. IIa 1903, 128, 132, 245 (1903);H. Tetrode, Z. Physik 10, 317
(1922); A. D. Fokker, Z. Physik 58, 386 (1929); Physica 9, 33
(1929); 12, 145 (1932);J. A. Wheeler and R. P. Feynman, Revs.
Modern Phys. 17, 157 (1945);21, 425 (1949).

mechanical considerations such as statistics, each type
of free fundamental particle (photon, electron, meson,
nucleon, etc )is des. cribed by a set of 6eld variables
whose behavior is characterized by a diferent Lagran-
gian function. Interaction is characterized by additional
Lagrangians which are functions of the field variables
of two or more diGerent fundamental particles. Even
if this kind of description gave good results, it can
hardly be regarded as satisfactory at a time when the
number of fundamental particles is of order 20 and
still increasing.

It may be claimed, with only some measure of truth
perhaps, that all simple 6eld theories modeled on elec-
trodynamics have been examined exhaustively, and
that not one of them shows any indications of explaining
all processes involving fundamental particles. It there-
fore seems worthwhile to investigate systematically all
simple modifications of electrodynamics in its action
at a distance formulation. The present 6eld theories
may well turn out to be asymptotic approximations of
an even more complicated and nonlocal field theory
which corresponds to a simple equivalent action at a


