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In the two-Quid theory of liquid helium, assumptions concerning superQuid He thermodynamic properties
can be tested by comparing, in theory and experiment, values both of de/dx3 and of Tz for isotopic mixtures
of helium. Comparison of Ty values is shown to be the more practical plan, since experimental excess chemical
potentials in dilute solution are available for use in solving the fundamental differential equations. Error
contributed by uncertainty in normal Quid heat capacity is shown to be reasonably unimportant for the
dilute cases considered. The differential equations are solved and theoretical values of lambda temperatures
are presented so that comparison can be made when experimental lambda points become available.

I. INTRODUCTION
' 'N the numerous recent thermodynamic treatments
- - of helium isotope solutions based on the two-Quid
theory, the undetermined nature of thermodynamic
properties both of normal Quid below the lambda point
and of superQuid has left a number of interpretations
open to question. Variety in values employed for
superQuid partial molal entropy has lead to variety in.
results of thermodynamic calculations. In particular,
Gorter' has used a vanishing partial molal superQuid
entropy, whereas Rice' has used a vanishing partial
molal superQuid enthalpy. Since determination of the
thermodynamic properties of superfluid is a matter of
considerable importance, it is worth while to see what
experimental evidence can be used to check the validity
of the above assumptions. Rice' has suggested that
extremely precise determination of the rate of change
of the lambda temperature with respect to He' con-
centration would serve as a test. The fundamental
two-Quid theory equation for the derivative in ques-
tion is dTq/dxs= (rtts4„/Llxs)q/(St„84, ) Fo—r the G. orter
case the equation becomes

dTg/dxs ——(rltt4„/ctxs)), /84„, (1)

and for the Rice case

d T) /dxs Tg (ittst„/rtxs)/H4„. ——

The ratio of the slopes would be H4„/Tq84 which, at
' C. J. Gorter, Physica 15, 523 (1949).' O. K. Rice, Phys. Rev. 76, 1701 (1949).
3 O. K. Rice, Phys. Rev. 79, 1024 {1950).

2.186'K is 0.849, since H4„=2.95 cal/mole and 84„
=1.59 cal/deg mole at the normal lambda point. In
spite of the proximity of the ratio to unity, a fact
which makes differentiation on the basis of dT&,/Cxs a
very di%cult task, the scheme which would compare
theoretical values with the experimental slope at x3=0
has some important features to recommend it. These
immediately become apparent when one attempts the
alternative scheme of dealing with the integrated
theoretical equations, ~' in other words, comparing
lambda temperatures rather than slopes. In order to
integrate the differential equations and to obtain the
theoretical lambda point shift with changing He3 mole
fraction, one must know how thermodynamic prop-
erties of normal Quid He' change with temperature and
with He' concentration. Evaluation of the slope at
x3=0, that is, at the normal lambda point, can be done
without such specialized information; the theoretical
slope result is, at this point, unambiguous with respect
to the heat capacity of normal Quid and to the non-
ideality of the solution.

Recent experimental investigation of vapor-liquid
equilibria, ' which made possible determination~ of
excess chemical potentials of He' and of He' in liquid
solution, has made a reconsideration of advantages
advisable. Calculation of lambda temperatures for
dilute solutions can be put on a firm basis jtf one works

4 O. G. Engel and O. K. Rice, Phys. Rev. 78, 55 (1950).' J. C. Morrow, Phys. Rev. 84, 502 (1951).
6 H. S. Sommers, Jr., Phys. Rev. 88, 113 (1952).' J. C. Morrow, Phys. Rev. 89, 1034 (1953).
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Ter,z I. Nonideality values at the lambda point.

0.0058
0.0198
0.0521
0.0949
0.130

0.364
0.461
0.445
0.491
0.523

in the composition range 0.02&x3&0.13, for which the
experimental excess potentials are known. The low He'
composition range is important not only because excess
potentials are available but also because the corre-
sponding lambda temperatures are very close to the
normal lambda point. Thus uncertainty in Tz intro-
duced through uncertainty in heat capacity of normal
Quid below the normal lambda point is made very
slight.

The desirability of dealing with the slope of the
lambda line near x3=0 appears small indeed when the
advantages of direct comparison of lambda tempera-
tures are noted. Comparisons of the latter type have,
of course, been made previously both for ideal solu-
tions' and for solutions with nonideality calculated
from theory. ' These previous efforts cannot be de-

scribed as being completely free from uncertainty as
far as the distinction between the Gorter and Rice
assumptions is concerned, although the results seem to
point in a definite direction. In previous work corn™

parisons of theory and experiment were made with
results for concentrated solutions. The Gorter and
Rice difference is more exaggerated for concentrated
than for dilute solutions, but the advantage of greater
difference is offset somewhat by the uncertainties in

heat capacity and in nonideality in the concentrated
region. The purpose of this paper is to provide for the
Gorter and Rice equations solutions describing mixtures
dilute enough that heat capacity uncertainties are un-

important and that experimental nonideality terms
can be used and yet sufIiciently concentrated to pro-
vide differences greater than reasonable experimental
error.

II. SOLUTION OF THE DIFFERENTIAL EQUATIONS

In the solution of Eqs. (1) and (2), it is convenient
to express (Bp4„/Bx3) as —xa(1—x3) '(Bp3/Bxg). The
chemical potential of isotope three is given by p,3'

+ET lnx~+ET lny3., pao is the standard potential, x3 is

the mole fraction of He', and y3 is the mole fraction
activity coe%cient. Then

(Bp4„/Bx,)),———ET),(1—x3)
—'[1+x,(B ln73/Bx3) $. (3)

For each of the five mixtures examined by Sommers, '
the-activity coeKcients are available. Table I presents
the values of lny3 at lambda points corresponding to
indicated concentrations. Only the last three refer to a
concentration range in which there is enough difference
in the results of Eq. (1) and Eq. (2) to make distinction

reasonable. Examination reveals that lny3 is linear in
x3 for these three values, and nearly linear for all Ave.
Focusing attention on the practical range 0.02&x3
&0.13, one notes that, since lny3 is linear in x3, (8 lny3/
Bxa)q can be given the constant value 0.915. This re-
sult is important because it makes analytic solution
possible for most of the differential equations.

Three types of normal Quid heat capacity tempera-
ture dependence' are employed so that the inQuence of
uncertainty in C~ can be ascertained. In the dilute
solutions considered, inQuence of heat of mixing on
the results of Eq. (2) is so slight that the heat of
mixing can be neglected. In subsequent sections, con-
stants of integration are to be evaluated from the fact
that T~——2.13'K at x3——0.02. All treatments regardless'
of assumptions about heat capacity, superQuid thermo-
dynamic properties, and the like, produce this value
because of the extreme dilution of the mixture de-
scribed.
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For Case A, C„=2.2 cal/deg mole, the value at the
normal lambda point and S4„=2.2 lnT —0.135—R
Xln(1 —x3). The resulting differential equation has been
integrated numerically over the range 0.02&x3&0.13
in steps of 0.005 in x3. In this range the lambda tempera-
tures can be represented (correct in the thousandths

place) by the empirical expression Tz 2.1845—2.7x, ——
—2x32. Similarly in Case B, where C„=0.725 cal/deg
mole and S4„=0.725T—Bin(1—x3), numerical integra-
tion produces Tq =2.$85—2.74x3—0.78x3'.

For Case C, C~=O. Then S4„=1.59—Rln(1 —x3)
cal/deg mole and dTq/dxa =—RTq (1—x~) '(I+0.915x~)
X[1.59—8 in(1 —x3)j '. The variables are easily sep-

Cases for which 84,——0

Substitution of 0.915 for (8 lny3/Bxa)z in Eq. (3) com-
bined with Eq. (1) produces a differential equation for
the Gorter cases,

dTg/dx, = (—ET),/84„) (1—x3)-'(1+0.915x3) (4)
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arated, and the solution is

!n(T&/Tp) = L0.915 exp(1.59/R) —1.915j

Xln(m/sssp)+0. 915 exp(1.59/R) P (ass' —sssp')/(i) (i!),

2.l

where sss=—(1.59/R) —ln(1 —xs) and subscript zero
refers to known values. Rapid convergence of the sum
simplifies calculation of T& from this equation.

Cases for which H4, =0

Analytic solution of Eq. (2) can be given for all
three heat capacities. In Case D, with the constant C~
of 2.2 cal/deg mole and P,„=2.2T—1.868, Eq. (2) has
the solution

l.9 (I)

{2)

1.8

T 'K
FIG. 2. Lambda

temperature es He'
mole fraction for
Gorter (1) and Rice
(2) assumptions.

O.I2
1.868(T), '—Tp ')+2.2 1n(Tg/Tp)

= 1.9158 ln (1—xs)/(1 —xs, p)+0.915R(xs—xs, p).

For Case E, with the linear heat capacity and H4„= 1..21
+0.3625T', the solution is

1.21(Tp—'—T), ')+0.3625 (T),—Tp)
= 1.9158 ln(1 —xs)/(1 —xs, p)+0.915&(*s—*s,o).

Finally, for Case F, with vanishing C„and constant
IJ4„=2.95, the integrated form is

2.95 (Tp '—T), ') = 1.9152 ln(1 —xs)/(1 —xs, p)

+0.915&(a:s—as, o).

III. DISCUSSION OF RESULTS

In Fig. 1, the values of the lambda temperature from
Cases A, 8, and C are plotted against He' mole fraction
in order to display the inQuence of heat capacity as-
sumptions on the results. Even on such a large scale
plot as Fig. 1, the two more realistic heat capacities are
very close indeed. Even at the largest x3, separation
between the extreme C~=O case and the mean of A and
8 is but 0.03'. Having noted the relatively insignificant
efFect in these dilute solutions even for rather radical
variation in C~, one finds the retention of interest in
the rather unlikely vanishing C„cases hard to justify.
Results in concentrated solutions' lend further support
to the suggestion that Cases C and F can be ignored.

It is clear that one should not seek to identify the
temperature dependence of C„by making comparisons
in the dilute range discussed. One', can, then, lsfocus

attention on the difference between Gorter and Rice
cases by dealing with two curves: (1) the mean of A
and 8, and (2) the mean of D and E. The difference of

a parent curve from its mean curve is in no case greater
than 0.008'. These mean curves are presented in Fig. 2,
which shows that, for 0.11&x~&0.13, the separation
of temperatures 5 is given by 0.050'& ~&0.061'.

IV. CONCLUSION

%ith the use of experimentally determined excess
potentials which remove uncertainty about mixture
nonideality and with the demonstration that radical
variation in assumed temperature dependence of normal
Ruid heat capacity has only slight e8ect on T&, one re-
moves limitations on testing the basic Gorter and Rice
assumptions by comparison of calculated and experi-
mental lambda temperatures for dilute mixtures.
Demands on precision of experimental data are much
smaller for this type comparison than for comparison
of slopes in the neighborhood of x3=0. Differences in
the Gorter and Rice cases near He' mole fraction of
about 0.12 are of such magnitude that experimental
investigation of the lambda temperatures should give
significant information about validity of the two as-
sumptions. Careful measurements in the dilute range
thus can be of much value and significance in elucidat-
ing the nature of superQuid thermodynamic properties.
Equally worth while would be vapor-liquid equilibria
studies in concentrated mixtures. Such work, in making
available the concentrated mixture nonideality, would
permit extension of the above calculations and, in-
directly, would provide information not only about
the Gorter and Rice assumptions but about the normal
Ruid heat capacity as well.


