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One proves them, following Minkowski, " by direct
computation, using matrix notation for the tensor
multiplication. With them one obtains (3.5) and (3.6)
from (3.3) and (3.4) by squaring and subtracting these
relations or multiplying them, respectively, remember-
ing that U~U~= i.

For the proof of (4.2) we first invert formula (4.1)
by combination with its dual. There follows, e.g. ,

u;Vs usU, =—( KM—;i+IM,s*)/(Is+K'). (A3)

l,et us denote the tensor on the right by E;&. The
p.b. with I, is

{u,u, ) Us+u, {u;Us) {u,us—}U,
—us{u, U, ) = {u;R,s). (A4)

The right side may be computed with the help of (3.1),
(3.7), and (3.8):
k{u;R,s) = DIs K') U;M—,s+2IKU;M;s~ j//(Is+K')'

+ t K (5;,its bs, u, ) —I (5;,us—bs, u, )*—j/(Is+ K'). (A5)

We now multiply (A4) by U" and contract. Due to
(3.3), there is Usu&=0; and as a consequence of

~ H. Minkowski, Math. Ann. 68, 472 (1910).

U&3I, ,=EN;,

U&M;;*= —Im;,

and 6nally there holds

(A8)

(A9)

U" (b;,us bk, u—~)
*=(u, U—; u; U,)*— (A1. 0)

With these formulas the computation of {u;,u;) from
(A7) and (A5) is straightforward and leads to Eq.
(4.2) of the text.

V'Us=1, we have U"{u,Us) =0. With this there
results

{u,u;) {—u,u&) U" U,= U'{u,R;s) . (A6)

This is a system of six inhomogeneous linear equations
for {u,u;). The determinant is unity, that is, if a
solution is found somehow, it is unique. Try now

{uu, ) = U"{u;R; s) . (A7)

Due to the skew-symmetry of R;I, there holds then
V'{u,u, ) = V'Vs{u;R;s}—=0. Accordingly, the second
term in (A6) vanishes, and the equation is fulfilled.
Furthermore formulas (3.3) and (3.4) may be inverted
with the help of the tensor identities (A1) and (A2),
glvlng
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In an earlier paper Schwinger derived expressions for the effective strengths of the neutron-proton and
proton-proton interactions in the singlet S state. He showed their diA'erence is small and can be accounted
for by magnetic forces if a long-tailed potential (Yukawa) is assumed but not for. a short-tailed potential.
In this paper an equivalent analysis is carried out for nuclear potentials which have a repu sive core. It is
shown that for core radii of more than about 0.3X 10 "cm the eGect of the magnetic interaction is decreased
and the difference between the e-p and p-p interactions is increased. Numerical values of the discrepancy
are given for different core radii.

I. INTRODUCTION

~~ NE test for the hypothesis of charge independence
of nuclear forces consists in comparing the zero-

energy scattering lengths for the singlet 5 states of the
neutron-proton and proton-proton systems, a„„and
a», respectively. The experiments from which these
two quantities are derived are very accurate, but the
value obtained for u» depends to an appreciable extent
on the assumed shape of the nuclear potential. It was
further pointed out by Schwinger' that the magnetic
interaction between nucleons gives diGerent contri-
butions to the effective potential strengths for the rt-p
and the p-p systems. Formulas for these magnetic

' J. Schwinger, Phys. Rev. 78, 135 (1950). This paper will be
referred to as Sc and the same notation will be used throughout.

contributions, also shape-dependent, and hence for u„„'
and a»', the eGective scattering lengths resulting from
the purely nuclear potentials alone, were derived by Sc.
He found that a„„' and a»' are practically equal if a
very long-tailed potential shape (Yukawa or Hulthen)
is assumed, but that there is a definite discrepancy
between them for more short-tailed potential shapes.

The presence of large repulsive nuclear forces at short
internuclear distances for the singlet tt-p and p-p states
is now considered very likely. ' It is the purpose of the
present paper to point out that a sizable discrepancy
between a„o' and a»' (and hence between the effective
strengths of the two potentials) is again obtained if a
repulsive core is assumed, even if the attractive part of

'R. Jastrow, Phys. Rev. 81, 165 (1951); M. M. Levy, Phys.
Rev. 88, 725 (1952).
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the potential is of Yukawa or Hulthen shape. Following
Sc, nonrelativistic theory will be used throughout. In
Sec. 2 we evaluate a» from the experimental data for
potentials containing an infinite repulsive core, for
various values of the core radius rq. In Sec. 3 we
estimate the eRect of a "mild" repulsive core on the
magnetic interaction energy.

2. DETERMINATIOH OF a»

We consider in this section a central potential for the
proton-proton singlet S state, consisting of an in6nite
rectangular repulsive potential of core radius r~ plus an
attractive potential outside the core of approximately
Yukawa (Hulthen) shape. We use as Ns, the radial wave
function for zero kinetic energy,

up=0, r &rg,'
(1)

up= (1+r/a ) Ae e", —r)rc,
where a» is the zero-energy scattering length, A is a
constant fitted to make us continuous at rc, and P is a
parameter 6tted so as to give the correct eGective
range' for zero energy r,. As the core radius r~ increases,
the parameter P increases rapidly, becoming ininite
for a limiting core radius, rt.-=1.22X1O+" cm. Thus,
as rq is increased, the potential in eGect becomes more
and more short tailed. 4 '

Using the shape-independent approximation of the
effective range theory, an analysiss of low-energy P-P
scattering gives

Tanr, E I. Values of various parameters for square well (S) and
Hulthdn (B) potentials, and for three Hulthen potentials with
repulsive cores of different radii rc {in 10 "cm).

r, (in 10-» cm)
f' (in 10 "cm)
b,/a„„
bbp/a„~
bbo/&n~

2.61
1.21
1.75—0.04
0.06

2.74
1.06
1.59—0.14
0.20

(0.3)

2.65
1.22
1.75—0.07
0.10

(0.6)

2.61
1.32
1.83—0.025
0.05

(1.2)

2.60
1.42
1.90—0.015
0.02

for an attractive square well potential without a
repulsive core, are given in Table I.

As the core radius r~ is increased, the results of this
section become less and less sensitive to the shape of
the attractive part of the potential. For a value of
r~=0.6)&10 '3 cm, the parameter r was also calculated
for two diGerent shapes of the attractive potential.
For square well shape, r is about 1.37, for a shape
approximating that of the attractive part of Levy's'
potential (which has no singularity at r=rc) r is about
1.34, as compared with 1.32 for the Hulthen potential,
which has a singularity at r = rc (r in 10+" cm).

3. TRF- EFFECT OF MAGNETIC INTERACTION

An analysis' of experimental fs-p scattering data at
very low energies gives a value for a„„,the zero-energy
scattering length for the singlet S state of the neutron-
proton system, which does not depend on the potential
shape,

r,= (2.65+0.07) X 10 "cm, bs/a= 3.755&0.025, (2)
bs/a„„= 1.216&0.003. (3)

where bo 5'/Me' and ——a is a parameter connected with
the scattering length a». Since r, and a are most
accurately determined from experimental data for
energies of the order of 1 Mev or more, the values
obtained for these parameters depend slightly on the
shape of the nuclear potential. ' ' Values" for r„
corresponding to various core radii r~, are given in
Tab]e I.The variation with shape of bs/a is slightly less
than the experimental error.

The derivation of the scattering length a» from the
parameter a involves another parameter r, de6ned by
Sc. This parameter r is connected with the eRective
range r, but is strongly shape-dependent. Using the
wave functions, Eq. (1), and formulas (10) and (11) of
Sc, both r and bs/a» were calculated for various values
of the core radius r~. These values, together with those

3 J. M. Blatt and J. D. Jackson, Phys. Rev. 76, 18 (1949);
H. A. Bethe, Phys. Rev. 76, 38 (1949); K. E. Salpeter, Phys.
Rev. 82, 60 (1951);G. Snow, Phys. Rev. 87, 21 (1952).

Hafner, Horynak, Falk, Snow, and Coor, Phys. Rev. 89,
204 (1953) .

~ The well-shape parameter (references 3 and 4) Pg decreases
with increasing rf. from about +0.05 for a pure Hulthdn potential
to about —0.04 for the limiting core radius. P8 is zero for rg of
the order of magnitude of 0.3)&10 "cm.

6 J. D. Jackson and J. M. Blatt, Revs. Modern Phys. 22, 77
(1950).

~ J. Rouvina, Phys. Rev. Sl, 593 (1951).

The values of a „, Eq. (3), and of a», Table I, are
measures of the eGective strengths in the two systems
of the sum of the purely nuclear potential and of the
magnetic interaction energy. Formulas for this magnetic
interaction energy were derived by Sc, using non-
relativistic theory and assuming no spread of the
nucleonic magnetic moment, and two parameters a„„'
and a»' were de6ned which are measures of the purely
nuclear potential alone.

Schwinger's' expressions for the magnetic interaction
energy operator LSc, Eqs. (26) and (27)j are

In Eq. (5), the term involving the delta-function gives a
numerically much larger contribution to the interaction
energy than the term involving the momentum oper-
ator. The value for the magnetic interaction energy
Lexpectation value of Eqs. (4) and (5)) therefore
depends strongly on the value of

~
fs (0)

~

', where
fs(r)=Is(r)/r is the spatial wave function for zero
energy. Since p„ is negative, Eqs. (4) and (5) give
energies of opposite sign.
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tions imp(r) and replacing the delta-functions in Eqs.
(4) and (5) by

I.O

0.8

3/4prra' for r(ra,
~

0 for r&ra, I

(6)

0,6

04

0.2-

0.5 0.6
l

0.9

To estimate the eHect of a repulsive core on the
magnetic interaction in a nonrelativistic manner, we
evaluated Pp(r) for a potential containing a "soft
repulsive core" only; i.e., a 6nite repulsive rectangular
potential of radius rg and of depth about ~3fc plus an
attractive potential outside of r& of approximately
Yukawa (Hulthen) shape. The range of the Hulthen
potential was adjusted to give the correct eGective
range r, . A plot of Pp(r) for such a potential with
rq ——0.6&10+" cm, as well as for a Hulthen and for a
square well potential without repulsive core, is given in
Fig. 1. It will be seen that lf p(0) for the pure Hulthen
potential (and similarly for other long-tailed potentials
with an attractive singularity at the origin) is much
larger than lip(0) for the other potentials and that
tgp(f) decreases more rapidly with increasing r for the
pure Hulthen potential. For these reasons the magnetic
interaction energy is considerably smaller than
Schwinger's' result for a Hulthen potentia] if (a) a
repulsive core is added to the potential, or if (b) the
nucleonic magnetic moment is considered spread over a
finite distance (making contributions from larger values
of r more important).

If a repulsive core of radius rg is assumed, it seems
reasonable to assume the nucleonic magnetic moments
to be spread out over distances of the order of magni-
tude of rg. We therefore estimated the magnetic
contributions to bp/a„„and bp/a», Sbp/a„„and 8bp/a»,
respectively, by using the above-mentioned wave func-

Fro. 1. The spatial wave function fp(r) versus r for a pure
Hulthen (H), pure square well (S), and a Hulthdn potential
("0.6") plus a repulsive core of radius 0.6. r is in units of 10 "cm,
A(r) in arbitrary units (same asymptotic form for all three curves).

corresponding to a spread of the moments over a sphere
of radius ra. Values for 8bp/a„„and hbp/a» are given
in Table I. These values are, of course, only rough
estimates, but for rzp0. 3)&10+" cm they are small
compared with the variation of bp/a» with ra. It should
be noted that the values of 8bp/a„„and 8bp/a» are
much smaller still if a repulsive core but no spread of
magnetic moment is assumed.

We finally obtain values for bp/a„„' and bp/a»', the
parameters comparing the purely nuclear potentials,
for. a square well (S) and Hulthen (H) potential and
for Hulthen potentials plus repulsive cores of radii rg
equal to 0.3, 0.6, and 1.2 (in 10 "cm), respectively,

bp/a „':
fplpup'

(S)
1.26
1.69

(&)
1.36
1.39

(0.3)
1.28
1.65

(0 6)
1.24 1.23
1.78 1.88

The uncertainty due to experimental error alone is only
about &0.04 for bp/a»' and much less still for bp/a „'.
It will be seen that the diGerence between bp/a„„' and
bp/a»' is considerably greater than the experimental
error, for ro&0.3)&10 "cm (a difference of about 0.54
for r&=0.6, the value suggested by Jastrow and Levy' ).
For r&)0.3 this difference does not depend very
critically on the exact value of r&, nor on the exact
shape of the attractive part of the potential.

We therefore conclude that there is a dehnite dis-
crepancy between the eGective strengths of the ts-p
and p-p singlet potentials, if a reasonable repulsive
core is assumed and nonrelativistic theory is used. It
should, however, be pointed out that this discrepancy
corresponds to a difference of only a few percent in the
strengths of the attractive part of the potential and
that there might be appreciable relativistic corrections
to the magnetic interaction of two nucleons which
were not considered in this paper. A C meson Geld' of
range (0.5 to 1))& 10 "cm (or a spread of the charge of
the proton over similar distances) would contribute to
the p-p interaction energy an amount of the same order
of magnitude but of wrong sign for removing the dis-
crepancy.

O. Hara and M. Tatsuoka, Progr. Theoret. Phys. (Japan) 3,
369 (1948), and private communication.


