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The independence of momentum and velocity in Dirac’s theory of the electron may be understood
classically as a consequence of the radiation reaction force. In earlier work one of the authors has tried to
interpret the whole spin phenomenon on this basis, considering the new degrees of freedom as representatives
of the higher time derivatives in the equation of motion of a particle extended in space. A consequent
treatment of this question by Bopp on the basis of his linear electrodynamics revealed that this program
is possible only for integral spin; also, it seemed to be necessary to ignore the non-conservative part of the
radiation reaction force. We show here that without alteration of the new formalism the spin may be intro-
duced as an intrinsic feature of the particles, as in older theories, so that half-integral values are included.
The Poisson brackets are derived in full generality without reference to a specific model by extension of
an idea of Anderson. It is then shown by a contact transformation first discovered in quantum mechanics
that the motion under the (third order) radiation reaction force is contained as a particular integral in
the (fourth order) equations of motion, which we have in common with Bopp. This holds exactly in absence
of the Lorentz force and suggests a simple scheme for the interpretation in quantum mechanics of the
radiation reaction. In order to maintain nearly the particular motion in presence of the Lorentz force, a
slight alteration of the Hamiltonian is necessary, which has empirical support from the evaluation of the
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corresponding wave equation.

I

T has often been observed that Dirac’s wave equation
of the electron may be interpreted classically as an
energy theorem of the form

E=v(p+eA/c)—eV+mo(1—p2)3, (1.1)

where the velocity v and the momentum p are treated
as independent quantities. (A and V mean the vector
and scalar potential, and B8=1v/¢.) On the other hand,
it seems to have escaped the attention of most physicists
that Eq. (1.1) with its characteristic independence of
v and p may be interpreted classically in a generalized
form in the following way: Let the electron be under
the influence of the Lorentz force and the radiation
reaction force,

mcu/ = (e/c)F]-ku”—}- (262/36) (u,-”—- Uj uk’u’“’), (12)
and let its mass m be variable according to
m' = (26%/3c®)ui’u" . (1.3)

Here #jc means the four velocity (uu*=—1), Fy is
the field tensor, and a prime denotes derivation along
the world line. Then (1.1) is an intermediate integral of
this motion, if m, is replaced by m. As a proof! rewrite
Eq. (1.2) after substituting (1.3) in the form

[mou;— (2¢2/3c)ui ) = — (e/c)F jxu®. (1.4)
With
and
pi=mcu;— (e/c)A;— (2¢%/3c)uy, (1.6)

1'W. Wessel, Ann. Physik (5) 43, 565 (1943). Proof is reproduced
here in a condensed form, because the distribution of the original
paper has been greatly hampered by the war events.

this may, using a contraction well known from ordinary
relativistic mechanics, be written in the form

pi=—(e/c)0Au*/dx?. Ln

In the following we use as a standard abbreviation

gi=pit(e/c)4;. (1.8)
Solving (1.6) for «; so that
ui = (3¢/2€") (meu;—g;), (1.9)

we have two independent equations of motion for p;
and u;. Only if the small constant 2¢2/3¢ is taken to be
zero, one has the ordinary dependence mcu;=g;, with
constant 7. Now it is easy to see that

H=ugt*+mc=0 (1.10)

is an integral of the foregoing equations of motion.
Note first that (1.4) may be written, by using (1.6)
and (1.8), as

g/ =—(e/c)F yuui*, (1.11)

so that #;g'*=0 because of the skew-symmetry of Fy.
It follows upon noting (1.9) that

H' =u/g*~4m'c

= (3¢/2¢%) (mcurg®— grg®)+m'c. (1.12)
Upon substituting Eq. (1.9) into (1.3), we get
’ m'c=3c/2¢*- (m*cPurn*— 2meur g+ gig%), (1.13)

and after using uxg*=—mc, from (1.10), and the
identity uxu*= —1, it follows immediately that

H'=0, (1.19)

which proves that Eq. (1.10) is an intermediate integral
of the motion. Formula (1.1), of course, is merely
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DIRAC’'S THEORY OF THE ELECTRON

formula (1.10), solved for E=cp*, with m instead of m,
in nonrelativistic notation.

I

The quantity on the right side of Eq. (1.3) is the
energy equivalent radiated by the moving charge per
unit time in its rest system. Thus, it may be said that
the analog—or more precisely one analog—of the
motion described by the Dirac equation is one in which
the radiated energy is permanently added to the rest
mass. It is of interest to keep to this interpretation in
contrast to an alternative one developed by Bopp,?
which we shall discuss below. Besides other arguments
in its favor, which are the main subject of this paper,
we should like to mention in passing that it provides
at least in principle the possibility of constructing a
quantum mechanics of the radiation process, which
has not yet been integrated into Bopp’s theory. The
identity of (1.1) and (1.10) does not imply that the
energy is constant. Formula (1.10) is only an inter-
mediate integral, which states that the variable E=cp*
is expressible by the other variables as in formula (1.1).
Let now these variables be represented by operators,
to be defined by a set of commutation rules. Also, the
rest mass will be an operator.®? Both energy E and rest
mass m will then have eigenvalues, and the variability
of the rest mass, given by the classical formula (1.3),
infers quantum theoretically that it does not commute
with the energy. One has, then, the choice of keeping
either to a state of constant energy or to a state of
constant rest mass. In the first case one has a “station-
ary state’” in the ordinary sense, involving states of
different rest mass; in the other case one has a particle
of well-defined mass which changes its energy. The
details of this procedure should be analyzed more
thoroughly, but it seems satisfactory to have at least a
simple program for the treatment of this basic question.

i1

We are now coming to the main problem of this
paper, which is the following: The classical equation
of motion (1.2) is of third order in the coordinates. The
usual, although somewhat heuristic procedure of its
quantization requires three steps: (a) decomposition
into a set of equations of first order;. (b) derivation of
the first-order equations from a Hamiltonian by Poisson
brackets (p.b.); and (c) interpretation of the p.b.’s by
commutation rules. Note that only the existence of a
Hamiltonian, not of a Lagrangian function, is essential.
Of course step (a) is always possible; it is accomplished
in the foregoing by formulas (1.7) and (1.9) together
with the definition x/=wu;. Also, step (c) is possible.
But, in order to do step (b) it has been found necessary

2F. Bopp, Z. Naturforsch. 1, 196 (1946); 3a, 564 (1948);
Z. Physik 125, 615 (1949). A report on this theory has recently
been given by H. Hénl, Ergeb. exakt. Naturwiss. 26, 291 (1952).

3 The following considerations have been influenced by inter-

?igng) remarks of G. Falk, Z. Physik 130, 51 (1951); 132, 44
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to introduce additional variables.? The corresponding
classical equation of motion is of higher order and
accordingly more complicated. Now our question is:
Cannot the simpler motion characterized by (1.2) and
(1.3) be shown to be a special type of the more general
case? We shall show that this is true, if there are no
external forces (F;=0), and that in this case H given
by (1.10) is the Hamiltonian; but in the presence of
such forces (Fi70) the tendency of keeping near to
this motion requires additional terms in the Hamil-
tonian depending on the F;, which are also suggested
by experimental evidence in a rather unexpected way.

The p.b.’s which we shall use in the following were
first set up* in a heuristic way anticipating a magnetic
moment of the particle as an additional variable. There
was a decided tendency to consider it as a substitute
for the higher derivatives in the equation of motion of
the electron which were to be expected as a consequence
of its finite extension in space. A very similar program
was simultaneously carried through by Bopp.2 The
difference is that Bopp obtained a conservative char-
acter for the motion not by our artifice (1.3) but by
complete omission of the nonconservative part of the
radiation reaction force. In the formulation of Wheeler
and Feynman® the term (Frt—F;*?Y) in which we
are mostly interested is omitted and only %(Fgret
+F;24v) is retained. With this omission Bopp was
able to found the present “field mechanics” on a
variation principle and to derive the p.b.’s unambigu-
ously.

Now, of course, a consistent interpretation cannot
simply skip the energy consuming part of the radiation
reaction force. Moreover, there is another drawback
for this conception in that it has not yet been possible
to explain the half-integral spin of the electron by this
procedure in spite of considerable effort to do s0.® Thus
one might be forced to abandon this scheme in favor
of the older concept of the spin as a true additional
feature of the particles. The question then arises as to
how to introduce its p.b.’s in a logical way.” This has
been at least partly achieved by Anderson® by the

4W. Wessel, Z. Naturforsch. 1, 622 (1946); FIAT Report
No. 1131,

5J. A. Wheeler and R. P. Feynman, Revs. Modern Phys. 17,
157 (1945).

8 F. Bopp and R. Haag, Z. Naturforsch. 5a, 644 (1950).

7We are referring here to Poisson brackets—to be indicated
by { }—because the following considerations are mainly of
classical character. It must be kept in mind, that p.b.’s, in contrast
to commutation rules, always refer to a system of basic conjugate
variables. It is convenient to be reminded of this fact by the
factor % in front of the p.b.’s. The existence of such a system is
here silently admitted, because it is known to exist from previous
work. If the p.b. of two quantities is zero, we say that they
commute.

8 Leon Tasso Anderson, Ph.D. thesis, Ohio State University,
Columbus, Ohio, 1952 (unpublished). The reasoning is, in short:
the kinetic energy of the linear Hamiltonian does not commute
with the orbital angular momentum. Adding a spin angular
momentum M so that the sum becomes constant, and determin-
ing M;i' in the sense of the text, one finds formula (3.1) by
separation of the three independent momentum components.
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simple remark that one has only to postulate conser-
vation of angular momentum in order to get the p.b.’s
of the spin angular momentum components with the
four velocity. They follow as a consequence of the rule
My'={H, My}, with (1.10) as the Hamiltonian and
under the assumption that m commutes with M .
There results

B{uiM i} = by ;— widij, 3.1)

if the spin angular momentum components are supposed
to be of the form — M3, — AM 31, — iM 15. This formula
may be relativistically generalized, if the M, 7, k=1,
2, 3, are considered as part of a six-vector M, 1, k=1,
2, 3, 4, which may be interpreted as an electromagnetic
moment (magnetic components opposite to spin). The
p-b.’s of the M, among themselves may then be
introduced from the viewpoint of their rotational and
translational invariance:

{M,'kM"} =55’Mks-5k’Mis—5i‘sMk'+5k8M,;T. (32)

This process may be continued. The method of
Anderson is restricted by some simplifying assumptions
which are not necessary. Removing them, we are able
to derive all p.b.’s without reference to any specific
model. The essential point is that we do not assume
the magnitude of the spin to be constant. Indeed the
rest mass will depend on its amplitude, and the rest
mass is supposed to be variable. As a consequence we
will not assume, as does Anderson, that %M ;;=0, but
rather that

uiji= KUi, (33)

where U, is a unit vector and K is an invariant. As a
consequence of the skew-symmetry of M, and the
time-like character of #7, the vector U, is orthogonal
to %%, i.e., utU;=0, and space-like: UU;=-1. More-
over, the vector #iM ;;*, where M ;;* is the dual to M j;,
need not be zero. Let us only make the simplifying
assumption that it is parallel to U;. Using the notation
Mi*=M?*, etc.,” we may then write with another
invariant I,

Miji*= —IUi. (34)

By a few algebraic manipulations it may be shown
(see Appendix), that I and K are the invariants of the
momentum tensor in the form

P—K2=1M M (3.5)
IK =1M 3 * Mk, (3.6)

Knowing the p.b.’s of #; and M, formula (3.1), it is
easy to derive from (3.5) and (3.6) the relations

MK, uy=Uj 3.7
BT, u;)=0. (3.9)

Now it may be seen from (3.2) that the two invariants
in (3.5) and (3.6) commute with all tensor components

¢ We omit here a superfluous factor 7 used in earlier publications.
The — sign in (3.4) maintains the + sign in (3.6).
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and among themselves. This leads to the disappearance
of the corresponding p.b.’s:

{K) Mik}:o) (39)
{I, M4}=0. (3.10)

As a consequence of (3.8) and (3.7) the invariant [
commutes also with U;, which makes it the center of
the p.b. algebra.

v

With the extension of formula (3.1) we have intro-
duced all six components of the momentum tensor as
independent quantities, which is unphysical. One should
expect the electrical components to be expressible by
the magnetic components and the four-velocity. Now
only six of the eight Egs. (3.3) and (3.4) are inde-
pendent; as a consequence the six-vector My is ex-
pressible by the vectors #; and U;. The most general
form will be a linear combination of #,U—u,U; and
its dual. Inserting such a linear combination into (3.2)
and (3.3) one finds easily, using the fact that the dual
is orthogonal to both #; and U, that

Map=K(Uar— Upn)) +I(U— Ugn)*.  (4.1)

With this, our apparatus is reduced to seven quantities,
namely, the two four-vectors U;, u; which due to
orthogonality and normalization represent five inde-
pendent variables, and the two invariants [ and K. It
can be shown by some vector calculus that one may
choose the seven quantities 1, %2, #s, Mas/I, M3i/1,
M15/I and K/I in order to express the Uy and the rest
of the M /1, which is essentially the desired result.
We omit the explicit formulas, mentioning only that
the electrical components vanish with v only for K=0.
Formula (4.1) may be inverted and used to derive the
p-b.’s of the #; among themselves. The somewhat
lengthy calculations are given in the Appendix. There
results

B{uary =I(;Up—u Uy)*/ (P4 K?). 4.2)

The rest is mere algebraic manipulation since the U;
may be expressed by the u;, M and K with the help
of (3.2) or (3.3). One finds that

Uy =K Git-wa—U;Uy) /(P4 K?)
=—1{u;Us}, (4.3)

{U,Uk}= —{Mﬂtk} (44)

With this we have derived the formulas first suggested
by the considerations of reference 4 in a straightforward
way. Besides being relieved of some unnecessary
dimensional constants, in accordance with a previous

" note, formula (4.2) appears in a simplified form due

to the use of (4.1). This last relation was first derived
in another paper! as a consequence of a matrix repre-
sentation of the p.b. algebra; hence, there is no doubt

10, Wessel, Z. Naturforsch. 6a, 478 (1951).
11 W. Wessel, Z. Naturforsch. 7a, 583 (1952).
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that it is compatible with the remaining apparatus in
quantum mechanics too.

Bopp’s classical theory is characterized by the
commutativity of the velocity components. According
to (4.2) this leads to

=0, (4.5)

and it follows from the representation theory of the
Lorentz group that only integral quantization is
possible. For finite representations the explicit formulas
are given by van der Waerden.!? One finds after a few
rearrangements®® that

- 1
iIK=i;M,~k*M”‘=j(j+1)—j'(j'+1), (4.6)

where 7 (20) and j/ (=0) are integral of half-integral
numbers characterizing the representation. The in-
variant I can disappear only if 7 =j. Now the eigen-
values of the momentum components are of the form
m~+m' (reference 12), where —j<m<jand —j7 </
<J'; hence, for equal 7, j/ the sum m+m' can only be
integral. For infinite representations see a previous
paper' and the literature quoted therein.

v

With the help of the p.b.’s developed in the foregoing
two sections we are now able to set up the equations
of motion for every quantity, say #; in the form
ui={H,u;}, if a Hamiltonian H is given. It is the
subject of this paper to use the H of Eq. (1.10), which
is primarily only an intermediate integral of (1.2) and
(1.3), as such a Hamiltonian and to see if it leads back
to these equations. To do so we have to know the
function . As an invariant it can only depend on [
and K, and because I commutes with all quantities,
it is its K dependence which matters. Generalizations
of Dirac’s theory in the sense of (1.10) have often been
tried, and there has been much guessing about the
presumable form of m(K). As one of us has recently
shown, both quantum?® and classical'® arguments favor
the choice of the simple function

m(K) =myg cosh(T'K), (5.1)

where m, is a parameter and I' the large constant
I'=37c/2¢" (5.2)

The classical argument was that in this way the mass
variation (1.3) can be realized. If we wish to see if
Eq. (1.2) is also fulfilled, we first have to set up the
equations of motion for u;, U;, K and px, 2k, and then
eliminate all additional variables, expressing them by

12B. L. van der Waerden, Die gruppentheoretische Methode in
der Quantenmechanik (Verlag Julius Springer, Berlin, Germany,
1932).

B K. J. LeCouteur, Proc. Roy. Soc. (London) A202, 394 (1950).

4 W. Wessel, Z. Naturforsch. 4a, 645 (1949).

15 W. Wessel, Phys. Rev. 83, 1031 (1951).
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xi’, xx’’, xx”’" or by uk, uy/, etc., respectively. This can
easily be done for the case =0, for we are then in
complete accord with Bopp. In this case the motion is
derivable from a variation principle, and the desired
higher-order equation appears immediately in the form
of an Euler-Lagrange equation:

d f9LA ) d aL) oL

(5.3)

ds du? ds ou'? oxi

The derivative d/ds refers to the world line; L is a
Lagrangian function of the form (we follow here Honl?)

L= —mocF(Q)— (e/c) A xui¥; (5.4)
Q is an abbreviation for
Q="Pu'u'®, (5.5)

where [ is a suitable length, to make Q dimensionless;
F is the “structure function” which characterizes a
certain linear electrodynamics of Bopp; and A is a
Lagrangian multiplier which takes care of the condition
uub=—1. If one performs the derivations prescribed
in (5.3), one finds that the equation is self-consistent
only if

A=moc(3F—2QdF/dQ). (5.6)

As Bopp shows,!® the structure function determines the
rest mass by the two equations [in our notation:
gs=K, mG/gs=m(K)]

Q(dF/dQ)*=K?,

m(K)/mo=F(Q) —2QdF/dQ. (5.8)

Inversely, with m(K) given by (5.1), we may solve
them for the structure function. Differentiating (5.8)
with respect to Q, one finds quite generally, after
repeated use of (5.7) and cancellation of a common
factor dK/dQ, that

(5.7

and

(5.9)

With our special choice of m(K), namely formula (5.1),
one has simply

Q=[3Isinh(I'K) . (5.10)
Thereafter it is easy to find
F(Q)=cosh(I'K)—TK sinh(I'K)
= (14+4Q/T%%—2(Q¥/T) sinh~1(20%/T). (5.11)

Evidently this structure function is very “well be-
haved”; its development, consisting of powers of Q/T?,
is convergent for a wide range of Q, owing to the large
numerical value of I'(>~2-137). The function has no
poles, and its behavior for Q— lies well within the
limits of the functions discussed heretofore. This should
be emphasized, for it shows that some “misbehavior”

18 F. Bopp and L. Bauer, Z. Naturforsch. 4a, 611 (1949).
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of m(K), which we will have to discuss below is not a
consequence of an absurd choice of this function.

Substituting (5.6) into (5.3) and introducing # from
(5.8), one may put (5.3) into the form

dmcu;

d s dF
d. =——F,ku"+2moc—-(Q——u lz———u,) (5.12)
s

This is the equation of motion of an electron with an
acceleration dependent rest mass under the influence of
the Lorentz force augmented by force-like terms de-
pending further on the acceleration term of the La-
grangian function. Our program seems to require some
sort of coincidence between this formula of the Bopp
theory and our Eq. (1.2), which may be written, as in
(1.4), in the form

dmcu;/ds= — (e/c)F ypu*—+ (2¢2/3c)ui’, (5.13)

but a comparison does not reveal the slightest similarity
of the additional terms on the right side; even the order
of differentiation is not the same. Nevertheless, the
Hamiltonian of Bopp is identical with our function
(1.10), which has been shown to be an integral of
Eq. (5.13) also. Indeed we are going to show in the
next section that for vanishing F the motion described
by (5.13) is a special case of the motion described by
(5.12) if the mass function (5.1) and the structure
function (5.11) are used. This does not imply that the
additional terms of (5.12) and (5.13) are identical in
this case; even the one time integrated form of (5.12)
is not an immediate consequence of (5.13). This is the
reason why a direct attempt at writing (1.2) and (1.3)
in p.b.’s failed.! The assertion is that for Fi;=0 the
general integral of the third order equation (5.13), with
m' given by (1.3), is a particular integral of the fourth
order equation (5.12).

The direct proof of this theorem is rather involved,
but it is simple and very instructive to derive Eq. (1.2),
for Fy=0, from the general equations of motion
directly, including nonvanishing 7. We will find a very
characteristic type of motion and be able to investigate
the general motion in the vicinity of this restricted one,
which will lead to an entirely new interpretation of
this whole mechanics.

VI

The equations of motion to be derived by the p.b.’s
of Secs. IIT and IV from (1.10) as the Hamiltonian,
first given* and in a purified form,” are here further
simplified by the use of (4.1), which eliminates the M
entirely, and are specified by the use of (5.1) for the
mass. The value zero of the Hamiltonian (1.10) implies

Uigh=—mc. (6.1)
As before we introduce for symmetry of writing
Urgt=—Mec. (6.2)

W. WESSEL AND S. J.
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This is primarily only an abbreviation and does not
mean that M is a given function of K, as is m. Further-
more we write

h/moc=X, (6.3)

which is the Compton wavelength, divided by 2, if m,
is the electron mass. With this notation we have now

=[1/1(P4K?) J(wrU j—u;Ur) *g*

+(I/X) sinh(TK)U,,  (6.4)
U{=[K/h(I*+K*)J(meu;— McU ;—g;)

+(I'/X) sinh(TK)u;, (6.5)

— Mc/h, (6.6)

r=o. 6.7)

These are 10 equations for the %;, U;, K and I, reduced
to 7 independent equations by the conditions #,uF= —1,
UpUk=+1, u,U*=0, which are particular integrals of
(6.4) and (6 5). In addmon we have as a consequence

of {ps, %1} =0ux:
g ={grgiyuk=—(e/c)F jyu* (6.8)

and of course

xf ={grx}ub=u;. (6.9)

We are now going to show that for vanishing Fi, where

gi=const=p;, (6.10)
there is another particular integral
M=+ me=0, (6.11)

provided the invariant of the energy-momentum four
vector is

prpt=— (mqc)?. (6.12)

Indeed, we have from (6.1), taking into account the
skew-symmetry of the starred tensor in (6.4), for
gF=p¥=const:
m'c=—u' g¢= — (T'/X) sinh(TK) Up*
= (I'/X) sinh(TK) M,

and from (6.2) and (6.5)

M'ec=—Uy gt=[K/(P+ KD i) (mPc— M2+ pip*)
+ (T'/X) sinh(TK)me.  (6.14)

Now, if (6.11) holds at one time, the first term on the
right of (6.14) disappears as a consequence of (6.12).
It follows immediately that MM'—mm'=0, i.e., (6.11)
holds at all times. We infer from (6.11) and (5.1) that
for this type of motion there is

(6.13)

M =my sinh(TK). (6.15)

Let us now make the transformation
@;=u; cosh(TK)— U, sinh(T'K), (6.16)
Uj=—u;sinh(TK)+Ujcosh(TK).  (6.17)



DIRAC’S THEORY OF THE ELECTRON

It corresponds to a unitary transformation (n.b. with
expil'K?/2), which has been found to play a key role in
quantum mechanics,! and may directly be shown to be
canonical. With this transformation the equations of
motion (6.4) and (6.5) go over, for the particular case
(6.11), into

hai (P4 K?) = I (@0 j— ;U ) *p* coshI'K

+ K (p;—moci;) sinh(TK), (6.18)
wU { (P+K?) = I (0,0 j—i,;U}) ¥p* sinh[K
— K (pj—mocii;) cosh(TK). (6.19)
It is now immediately seen that
W;=pj/moc= const, (6.20)

which makes the last terms vanish, is a particular
integral; for the starred tensor, after insertion of (6.20),
becomes orthogonal to pF, so that %;=0. At the same
time there follows U =0; hence

(6.21)
to be chosen perpendicular to %; and so that U,U*=1.
Accordingly the original #; U; are expressible, by

inversion of (6.16), (6.17), in terms of the variable K
alone:

U j=const,

u;=1; cosh(TK)+ U, sinh(TK),  (6.22)
U;=1;sinh(TK)+U; cosh(I'K). (6.23)

In order to obtain the differential equation of %; we
have now only to eliminate the two constant vectors
by two differentiations. This is done very easily with
the use of K as an auxiliary variable, obeying

K’'=(1/x) sinhT'K, (6.24)
as a consequence of (6.6) and (6.15). We have first

ui=(/X)U;sinhT'K, U;=(/X)u;sinhT'K. (6.25)
There follows
wy'u¥ = (T2/X2) sinh*(TK)=—U,/U"Y  (6.26)

and finally
ui’ = (I2/X2)[u; sinh?(T'K)+ U ; sinh (T'K) cosh(T'K)]
=u;(ux/ u*)+ (T'/X)u; cosh(T'K). 6.27)
Solving for #; and introducing m from (5.1) we have
mu;’ = (moR/T) (' — ;- u'ut), (6.28)
which due to the values (5.2) and (6.3) of I and X is
just Eq. (1.2) for vanishing F;. Finally we have
m’=mol sinh(TK)K’
= (mel'/X) sinh?(T'K)
= (moX/T)ur/u¥,
which is Eq. (1.3). Hence the motion described by

(1.2) and (1.3) is contained in the general motion, if
. F,=0, whereas I is arbitrary. That the integral given

(6.29)
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by (6.22) and (5.1), with arbitrary m,, is the general
integral of (1.2), (1.3), may be inferred from the
number of constants. Equation (1.2) represents three
equations of second order for the three independent
components of the four velocity, and (1.3) is one
equation of first order. Hence, the number of integration
constants must be seven. They are present in the five
independent components of #;, U; in (6.22), the value
of my, and the time constant.

VII

The integration of the force free motion which
hitherto has been carried to the determination of #;=x;’
may be accomplished either through (6.24), which gives
K as a function of the world line, or by direct treatment
of (1.2) and (1.3). As in similar cases’” one finds a
strong variability of all ingoing quantities including .
This must not be considered as absurd, for we have
here the clear distinction between momentum and
velocity. The momentum is constant for force free
motion, according to (6.20), and the variable velocity
together with the variable mass describe an internal
motion, which can only be checked indirectly. To check
the behavior of m one has to check the mass operator
in the wave equation, and we have already shown!
that its behavior is reasonable. Also, as we have seen
in Sec. V, the corresponding structure function is
absolutely reasonable. There is only one calamity for
the interpretation, already discussed,!! namely that
Eq. (6.24) does not always lead to real values of K for
real s. Instead by using an imaginary world line, as we
did," one solves this difficulty more easily by exchanging
the roles of (6.1) and (6.2), i.e., by considering Ug*
+Mec, with M given by (6.15) as the Hamiltonian and
(6.1) as a consequence. This modifies K’ in the right
sense and leads immediately to the wave equation
used ;! besides it shows directly, from x/ = {H, x;} = U},
that the velocity of the internal motion is greater than
the velocity of light, which causes' the imaginary
character of the world line and of all normally real
vectors. In the present paper we will keep to the
Hamiltonian (1.10), for the question, whether #; or U;
should be considered as the “real” velocity is unessential
for the following considerations.

Rather our next step must be to introduce the
Lorentz force, Fi:%0. If we do this in the usual way
by replacing pr in the Hamiltonian by g, formula
(1.8), we obtain for g, the equation of motion (6.8);
and if nothing else is modified, the equation of motion
for u; is given by (5.12), that is for I=0. This equation
looks formally very satisfactory, but the motion it
describes is very far from the classical motion of an
electron, since it refers to the internal velocity ;.
What one should expect is rather, in first approximation,

(7.1)

mocti;= — (e/c) Fua*,
17 C, J. Eliezer, Revs. Modern Phys. 19, 147 (1947).
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where ; reduces to p;/moc, formula (6.20), in the force
free case, and m, is strictly constant. With the present
Hamiltonian (1.10) this equation does not hold. Neither
u; nor U/, Eqgs. (6.4) and (6.5), contain the Lorentz
force, and accordingly @, contains only the g The
Lorentz force in (5.12) appears first at the next stage
of the elimination process described in Sec. V and is
intimately connected with the appearance of terms
with #;/” in (5.12). From the point of view of an
independent spin this is- unnatural. If the spin is
treated as an autonomous quantity, it is purely formal
to eliminate its variables in favor of the higher deriva-
tives of #;. A direct interpretation of the Euler-Lagrange
equation (5.12) is no longer available, and for the
essential case 70 there is even no Lagrangian. In any
case, even apart from these reflections, a constant
momentum in the force free case should be modified in
the sense of Eq. (7.1) without the detour of higher
derivations. This is true for the vector

pi=mcu;— 2moc(QF qu;—PdF qui/ds)  (7.2)

(Fe=dF/dQ), according to Eq. (5.12), at least for u;
instead of %; on the right side of (7.1), and this vector
is coincident with our p;, Eq. (6.20), if the #; of Eq.
(6.22) and the F(Q) of Eq. (5.11) are used (n.b. for
I=1%/2). But this holds only in the force free case; the
equation of motion of our p; or 4; is different from the
Eq. (5.12) obeyed by the p; just mentioned.
Let us compute
df,= {H7 di}y (73)

with (1.10) as Hamiltonian. We obtain similar terms
as in (6.18), with p* on the right side replaced by g.
But this is not the only change, because in the derivation
of (6.18) we have used the form (6.15) for M as a
consequence of M?—m?+m®=0, which in presence of
external forces is no longer a particular integral. Rather
the equation of motion of #%; reads now, after using
(6.16) and by direct use of (6.4), (6.5), and (6.6),

haj (I*4-K?) = I(dej'— djl_jk) *_gk coshI'K
+K (g;+%;- urgt— U, Uigk) sinhTK
+mocT'U ;(guU*/moc+sinhTK) - (IP+K?).  (7.4)

Let us see what happens, if we try to generalize (6.20)
in the form

(7.5)

The term with the starred bracket disappears for the
same reason as in (6.18). In the second bracket we
have @xgh= wxa* - moc=—moc, Urght=Uxi* - moc=0, i.e.,
it disappears too, and likewise the last one is zero,
because there is grU*/moc=urU*= —sinh (I'K). Hence,
there follows #,/=0, in contradiction to Eq. (7.5),
which would lead to

i/ =— (e/moc®)F jut®. (7.6)

;= g/ mc.

Now, there seems only a little required to make (7.5)
and (7.6) compatible. Let us join to the Hamiltonian
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an additional term H, and keep to (7.5). As before, the
right side of (7.4) will disappear, but we will have

4= {Hy, u,}. (1.7)

On the other hand, we have still in the first approxi-
mation, if A, is small compared with H,

¢ = (H+Hy, g~ H, g3} =~ (¢/0)F v, (1.8)

Hence, to maintain (7.5), we would have to find an H;
so that
{H1, @;} = — (¢/moc®)F jus*. (7.9)

It does not seem possible to fulfill this relation exactly
in a simple way. Indeed we did not expect to find Eq.
(7.6), but rather Eq. (7.1), with @* instead of #* on
both sides. There exists an H; which accomplishes this
task very simply, namely,

H1= -—eﬁ/szCz‘Mn;kFik. (710)

It follows first from (3.1) in view of the commutativity
of M{k and K that

{H1, u;} = — (e/moct)F jyu*, (7.11)

and due to the canonical character of the transformation
(6.16) (see the comment to this formula) one has also

{H1, 121'} = (6/1%062)ij12k. (712)

With this choice of H;, (7.5) is no longer true; accord-
ingly we will have additional terms in Eq. (7.1), coming
from the right side of (7.4), which no longer vanishes;
but such terms are as natural as in (5.12), where they
arise, if one tries to replace #; by p; [Eq. (7.2)] on
both sides. ;

VIII

From the foregoing considerations it seems very
suggestive to generalize our particular motion by
introduction of the term H,;, Eq. (7.10), into the
Hamiltonian. Evidently, it represents the magnetic
energy of one Bohr magneton (the factor 1/¢ comes
from the reference to the world line instead of to the
proper time), and the question arises: Is there any
experimental evidence for the addition of such a term?
In Dirac’s theory it would be impossible. Before we
discuss this question, we should like to discuss another .
apparent difficulty which is even more obvious. The
Lorentz force in (7.12) appears as the consequence of a
magnetic moment of the particle and not of its charge.
Apparently, by this mechanism, an uncharged particle
with a magnetic moment, like the neutron, would move
in much the same way as an electron. In fact the
phenomenon is very surprising, but the present conse-
quence is wrong. If (7.1) is supposed to hold to a fair
approximation, the perturbation coming from the term
on the right side of (7.4) must be small, i.e., mocti;=g;
must hold approximately, at least in some time average.
This is possible only when the particle has the right
charge-moment ratio. Without charge the variation of
g; would be much smaller [namely, {H;, g;} instead of
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{H, g;}] than that of mcu;. The particle would move
more or less like a dipole, and the use of #%; would
simply lose its meaning.

In Dirac’s original Hamiltonian, as is well known, a
spin moment does not appear explicitly, and a term
like H; would destroy the accord with experiment, e.g.,
the fine structure of the H atom. More recently the
much discussed inconsistency discovered by Lamb and
Retherford (LR shift) has modified the picture, but
in order to describe it phenomenologically in the
terms of the Dirac theory one would have to add only
(1/27)(1/137) of the present H;.

This is very much different in the present approach.
Our Hamiltonian is coincident with Dirac’s only if the
variability of the rest mass is disregarded, and our
p-b.’s can be interpreted quantum mechanically only in
the sense of “minus” commutation rules. The classical
interpretation demands the use of Hermitean matrices
for their representation, and this leads to infinite
matrices'® for the velocity components, similar to those
of momenta and coordinates, but similar to the original
Dirac matrices only in the first rows and columns. The
theory of these infinite representations has been worked
out during the last years by one of the authors with
permanent regard to the integration into Dirac’s theory
of the finer reactions of the electron upon itself. It was
in strong support of this tendency that the use of these
representations together with formula (5.1) for the mass
could be shown to account for the LR shift at least
qualitatively.’! An approximate evaluation gave a
term of the right form, but with too great a factor
[(16/3)(1/2x)(1/137)]. This deviation is certainly at
least in part a consequence of the rather rough approxi-
mation. We evaluated the LR shift classically, using
for the rest of the Hamiltonian a finite instead of an
infinite matrix representation. This was done, since the
interest was primarily centered on the shift term and
since the technique of the infinite matrices was not yet
sufficiently developed. The wave equation obtained in
this way was just Dirac’s except for the correction
term and- accordingly included the correct relativistic
(Sommerfeld) fine structure. In the meantime a way
has been found to treat the rigorous equation by a
perturbation method.”® It had to be applied first to
check the normal relativistic fine structure, and the
somewhat unexpected result was that this term was too
small by a factor of 1/9. In this case the approximation
method seems trustworthy, and the deviation has a
physical reason. In the infinite representations also the
matrix of the spin is infinite. There exists a minimum
spin which, incidentally, is given by the center 7 of the
p.b. algebra, and “excited states” with I+1, 742,
- - -. The perturbation caused by the spin § in its first
order is of similar magnitude as the second-order

18 W, Wessel, Phys. Rev. 76, 1512 (1949).

18 Unpublished; the procedure is based on the Lorentz
transformation formula (3.7) (see reference 11). Its application
to the potential gives the additional terms.
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perturbation caused by the spin 3. To correct for the
observed value of the fine structure one may try to
introduce additional terms into H, and we have found
that it may be done by an appropriate combination of
terms with (eh/moc?)UppF* and (eh/moc®)u:p*Fi**;
but without the support of the foregoing classical
considerations this would be extremely unsatisfactory.
Now we consider this result as much in favor of the
whole attempt. The additional terms found by trying
are not simply of the form (7.10); but the demand,
that the classical motion in the presence of external
forces should be “near to” mocii;=g; is too vague, to
make the form (7.10) compulsory. It would even be
more in the sense of the original formula (7.9) to
replace the M, formula (4.1), by mixed terms propor-
tional to @, Ur—u,U; or even p;Ur— piU,, etc., which
due to the skew-symmetry of F,; would just give terms
of the form found quantum theoretically. In any case
the correspondence is evident, and one has no reason
to hesitate with the introduction of such additional
terms into the wave equation. We give no more details
here, because we have not yet surmounted a half-
empirical stage. In a satisfactory theory the correction
terms should follow from a clear principle, which would
also deduce the necessary numerical factors from the
invariants 7 and K. Such principle would also have to
explain, why just the particular motion studied in
Sec. VI should be realized in quantum mechanics; but,
of course, quantum mechanics in general is in favor of
particular motions.

IX

The reader will probably be more willing to accept an
independent spin than a basic change in Dirac’s equa-
tion. Our opinion is the opposite. The idea of the spin
as an independent quantity has been a little over-
emphasized in the foregoing to make things clearer;
actually we think that the program of Bopp’s linear
electrodynamics is too attractive to be abandoned so
readily. On the other hand, the necessity for a thorough-
going modification of Dirac’s theory seems very prob-
able to the authors. In its present form it is still pioneer
work. Its elegant simplicity is largely due to the “plus”
character of its commutation relations, and that
frustrates every classical understanding. Its successes
may be due to the same fortunate chance as was
Sommerfeld’s derivation of the fine structure formula
which he did without knowledge of the spin. If a
classical interpretation becomes possible at no greater
expense than a small additional term in the Hamiltonian
it should be taken very seriously.

APPENDIX

The proof of Egs. (3.5), (3.6) rests on two identities
for skew-symmetric tensors

Mji*Mjk = laikan*an’
Mj,'M’.k*Mﬁ*Mfk*= %5ikanM"m.

(A1)
(A2)
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One proves them, following Minkowski,® by direct
computation, using matrix notation for the tensor
multiplication. With them one obtains (3.5) and (3.6)
from (3.3) and (3.4) by squaring and subtracting these
relations or multiplying them, respectively, remember-
ing that U, U*=1.

For the proof of (4.2) we first invert formula (4.1)
by combination with its dual. There follows, e.g.,

Let us denote the tensor on the right by Ry. The
p-b. with u; is
{uui} UktuduUs}—{uue} Us

—M}c{MjUi}= {’MJRUC} (A4)

The right side may be computed with the help of (3.1),
(3.7), and (3.8):
h{uiRa}y=[(P— K)U ;M i+ 2IKU ;M *]/ (I* 4 K?)?

+[K (5i]%k‘—5kjui) ‘—](sijulc— 51:1“”1’) *:]/ (12+K2)' (AS)
We now multiply (A4) by U* and contract. Due to
(3.3), there is U*up=0; and as a consequence of

20 H. Minkowski, Math. Ann. 68, 472 (1910).
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UtUr=1, we have U*{u,;U;}=0. With this there
results ‘
{M]"I/ti} - {M]”I/tk} UkUiz Uk{’ujR,'k} . (A6)

This is a system of six inhomogeneous linear equations
for {#u;}. The determinant is unity, that is, if a
solution is found somehow, it is unique. Try now

{’I/tﬂ/ti}= Uk{M,Rdc} (A7)

Due to the skew-symmetry of R;; there holds then
U{uju}=UU*u;R;}=0. Accordingly, the second
term in (A6) vanishes, and the equation is fulfilled.
Furthermore formulas (3.3) and (3.4) may be inverted
with the help of the tensor identities (A1) and (A2),
giving

UM j;=Ku,, (A8)
UM ji*= —Iu;, (A9)

and finally there holds
U (85— 0k jt:) ¥= (u,U j—u;U ) *. (A10)

With these formulas the computation of {u;, #;} from
(A7) and (AS5) is straightforward and leads to Eq.
(4.2) of the text.
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In an earlier paper Schwinger derived expressions for the effective strengths of the neutron-proton and
proton-proton interactions in the singlet S state. He showed their difference is small and can be accounted
for by magnetic forces if a long-tailed potential (Yukawa) is assumed but not for a short-tailed potential.
In this paper an equivalent analysis is carried out for nuclear potentials which have a repulsive core. It is
shown that for core radii of more than about 0.3)X 10713 cm the effect of the magnetic interaction is decreased
and the difference between the #-p and p-p interactions is increased. Numerical values of the discrepancy

are given for different core radii.

1. INTRODUCTION

NE test for the hypothesis of charge independence

of nuclear forces consists in comparing the zero-
energy scattering lengths for the singlet .S states of the
neutron-proton and proton-proton systems, a,, and
@pp, Tespectively. The experiments from which these
two quantities are derived are very accurate, but the
value obtained for @,, depends to an appreciable extent
on the assumed shape of the nuclear potential. It was
further pointed out by Schwinger! that the magnetic
interaction between nucleons gives different contri-
butions to the effective potential strengths for the 7-p
and the p-p systems. Formulas for these magnetic

1J. Schwinger, Phys. Rev. 78, 135 (1950). This paper will be
referred to as Sc and the same notation will be used throughout.

contributions, also shape-dependent, and hence for a,,’
and a,,’, the effective scattering lengths resulting from
the purely nuclear potentials alone, were derived by Sc.
He found that a.," and a,, are practically equal if a
very long-tailed potential shape (Yukawa or Hulthén)
is assumed, but that there is a definite discrepancy
between them for more short-tailed potential shapes.
The presence of large repulsive nuclear forces at short
internuclear distances for the singlet #-p and p-p states
is now considered very likely.? It is the purpose of the
present paper to point out that a sizable discrepancy
between a,, and a@,,’ (and hence between the effective
strengths of the two potentials) is again obtained if a
repulsive core is assumed, even if the attractive part of

2R. Jastrow, Phys. Rev. 81, 165 (1951); M. M. Lévy, Phys.
Rev. 88, 725 (1952).



