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The influence of gaps for injection, acceleration, etc., on the stability of orbits in a strong-focusing
synchrotron is examined and found not to be negligible. The calculation also gives some information about

the resonances resulting from irregularities.

I. INTRODUCTION

N earlier constructions of the synchrotron, the
oscillations of the particles are governed by the

equation
(@*w/d0®)+nw=0, 1)

with » a constant. It has been pointed out by Courant,
Livingston, and Snyder! that the engineering construc-
tion may be considerably simplified by making # a
function of 6. These authors have considered the case

where # shows a rectangular ripple. The result seems

promising, allowing a wide variation in the absolute
values of #. It has also been suggested that the condi-
tions for stability will not be remarkably influenced by
the presence of small intermediate intervals where #=0.
In practice it is necessary to have evenly spaced inter-
vals with #=0, which are not small. As the motion is
more complicated in this case, one is inclined to believe
that the stable regions will be diminished. This sug-

Fic. 1. Field gradient ¢
as function of the angle 6 for
sections arranged without

gaps.

gestion is shown to be correct by the following analysis.
Furthermore, it is shown that the stable regions become
“perforated” in the presence of irregularities in the
engineering construction.

II. REMARKS ON HILL’S EQUATION

The following mathematical theorems concerning the
equation
(d*w/d6")+q(O)w=0 2)

will be useful in treating the stability problem. Here
¢(0) is a periodic function of § with the period Q. Two
different solutions w;, ws of this equation are linearly
independent if, and only if,

Wa

A@)= 0. 3)

w) Wy
! Courant, Livingston, and Snyder, Phys. Rev. 88, 1190 (1952).

For the solutions of Eq. (2),
dA/de=0; 4)

i.e., A is constant for all values of 6. From the theory
of Floquet? it is known that Hill’s equation has normal
solutions Wy, W, satisfying

W1 (0+Q) = 0’1W1 (0),

©)
W2 (0“"9) = 0'2W2 (0) .
This fact is due to the periodicity of ¢(6).

From an arbitrary set of fundamental solutions, w;,
w,, satisfying Eq. (3), the normal solutions Wy, W,
can be: constructed in the following way. A normal
solution, which can always be written

W = aw;+bw,, (6)
satisfies
W (@)=eW (0), M
W' (Q)=eW’(0). (8)
Hence,
a{w1 () —ow1(0)}+b{w:(2) — ow:(0)} =0, ©
a{w (@) —owi' (0)} +b{w:' () —ow,'(0)} =0.
A solution exists if
w1 (Q)—'O"wl (O) Wy (Q) —0Wsy (0)
=0, (10
w1’ (@) —ow: (0)  wy' (Q)—ow.(0)
or
o’— (o/A){w1(0)wy’ () — w1 (0)w2(Q)
+wy’ (0)w1 (@) — w1 (0)w: (@)} +1=0. (11)

q

F16. 2. Field gradient
g for the case of m double
sections followed by a

WH;W

gap.
m‘.Q \@t
period T=mN+6;
2 See, e.g., E. T. Whittaker and G. N. Watson, 4 Course of

Modern Analysis (Macmillan Company, New York, 1946), p. 412.
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Here Eq. (4) has been used. Denoting the roots of Eq.
(11) by o1 and o2, the normal solutions are

W1= {'ZU2 (Q) —001Wse (0)}72)1— {'wl(Q) —01W1 (0)}7.02,

_ (12)
W2= {‘ZU2 (Q) —0Ws (0)}‘101— {wl (Q) —0o2W1 (0)}71)2

In order that all solutions of Hill’s equation be
bounded, it is necessary that

ldllgl and ‘Uglgl (13)

Since, according to Eq. (11), o102=1, the condition for
stability is that the roots of Eq. (11) be complex, and
thus

lo1]=oa| =1,
or

[ [w1(0)w5" (@) — w1’ (0)w2 (@) 4w (R)w2’ (0)

—w' @w:(0)]/24] <1.  (14)

III. RECTANGULAR RIPPLE WITHOUT GAPS

Let us consider the case where the function ¢(6) is
defined as shown in Fig. 1. Elementary calculations give
the following set of solutions (continuous and with con-
tinuous derivatives of first order): In region I:

wy=cos(7:}9), wy=n"tsin(n,¥0). (15)
In region II:
w1=A cosh (n:!0)+ B sinh (n510),
wo=Cny% cosh (#2¥0) = Dny~* sinh (.36).
Here
A =cosa; coshas+y sina; sinhas,
B= —+ sina; cosha,— cosa; sinhas, (16)

C=+v""sina; cosha;— cosa; sinhasy,

D=cosa; coshay—v! sina; sinhas,

where y= (#1/12)}, a1=n,%0,, and as=n,0,. This is a
set of fundamental solutions, and the functional deter-
minant has the value 1. The equation for ¢ is

0%— 20 cosp+1=0, (17)
Y
0
—cosy
2} --8
e
1+
<

%
Fi1G. 3. cosg and B as functions of ;? and as?. The quantity cose

characterizes a double section, and 8 describes the arrangement
of the gaps.
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where
1 0112—1122
cos¢=cosa; coshay—— sine; sinhay.  (18)
2 oo
The condition for stability,
[cosep| <1, (19)
is identical with that given by Courant et al.
cos
1
f 1 2%
-2 -1 '
-1
(@ m=1
cos
1
-2 -1 "
1 2
-1
(B m=2
cos P
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%77777777

-2 -1
-144444[[%_1
(©) m=3

F1c. 4. The stability of the motion depends on the properties
of the magnetic sections and the gaps, which are characterized by
cose and «. The number of double sections between the gaps is .
Regions of stability for one type of oscillation are shown for 3
different values of .

It is easy to verify the following relations:

o1=e", gy=e?, (20)

g™t oym=2 COS(mqD), (21)

1™ —0y™=2i sin(m o), (22)

W1(0)/ W+ (0)= —w,(Q)/[w:(Q)—01], (23)

W2 (0)/ Wy (0)= —w2(Q)/[w:1(Q) — 2],
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where the I, are the normal solutions defined by Eq.
(12).

IV. RIPPLE WITH GAPS

In the actual case, ¢(8) is defined according to Fig. 2.

A fundamental set of solutions #;, #; is obtained by
starting with the normal solutions W in the region I

w(0)=W1(0), ui(r)=o1"{W:1(0)+6:W1 (0)},
:(0)=W3(0),  ux(r)=0"{W2(0)+6.W5 (0)},
w'(0)=W(0), w'(r)=c"W.(0),
us’ (0)=W4'(0), uz' (r)=0"W4' (0).

(24)

The condition of stability (14) corresponding to this

problem is
oy"+a1™ 61

2 2 Q)W Q)= W0y )

1, (25)

which, by using Egs. (21)-(23), may be reduced to

| cos (m o)+« sin(me)/sing| < 1. (26)
Here cose is given by Eq. (18) and -
K= ﬁal/ 907
= Ly cosey sinhay— 30y sina; coshas. 27N

Figure 3 shows cos¢ and $ as functions of a;? and a3
Figure 4 gives the stable regions in the plane «, cose.
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Fi1G. 5. Stability regions for an arrangement of 2 double sections
followed by a gap. This figure is constructed from Figs 3 and 4(b).
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F16. 6. An irregularity in the engieeering construction repre-
sented by a small gap repeated after 12 double sections gives rise
to 22 unstable stripes, shown as fine lines.

The stable regions of Fig. 4 may be mapped into the
o? plane for different values of 61/6,. In order that the
stability of both radial and axial oscillations may be
examined, the stable regions should be transformed
according to ai’=a?+0¢2. If a>>0,, this is equivalent
to a reflection in the line ay?=a,?. The final region of
stability is then found as the area common to both
regions.

This construction has been worked out for m=2,
01/60=0, %, and the result is shown in Fig. 5. By means
of Figs. 3 and 4 the process is easily repeated for other
combinations. It is seen that the stable regions are
split up by the presence of the gaps. The effect is larger
the larger the ratio 61/6o, and if this ratio is not very
small the effect can probably not be neglected.

It is possible to investigate the influence of a small
irregularity in the engineering construction by applying
these results in a slightly different manner. Let us
assume a rectangular ripple interrupted after a distance
kQ by a small error represented by a gap. This corre-
sponds to case III with m=%>1 and 6,/6,<<1. One
finds (see Fig. 6) that the stable regions will be “per-
forated” by small unstable regions crossing the line
a’=as?, the number of such regions being 2(k—1).
Though of small area the perforation may seriously
influence the operation. By letting the oscillation be of
a nonlinear character, a stable operation may be ob-
tained. This question, however, will not be discussed
here.



