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Dipolar Broadening of the Quadrupole Resonance Line Width in Zero Applied Field
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A formula has been derived for the contribution of the dipolar broadening to the second moment of the
resonance line in pure quadrupole resonance experiments.

The following assumptions have been made: The nuclear spins undergoing the resonant transitions have
spin 1 or —,'. No restriction has been set on the spins of "nonresonant" nuclei contributing to the dipolar
broadening. The electric field gradients at all nuclear sites have axial symmetry and common directions.

A comparison is made with Van Vleck's formula for straight magnetic resonance.

INTRODUCTION

V AN Vleck' has shown that the second moment of a
magnetic resonance line is given by the formula

(h'p')A, ———TrLH, S.j'/Tr(S )' (1)
H is the Hamiltonian of a system of spins including
their mutual dipole-dipole interaction, and 5, is the
component along the direction of the applied rf field,
of the total spin of the resonant system.

As Van Vleck points out, there are certain precau-
tions to be taken in using Eq. (1). The Hamiltonian H
can be broken up into two parts, Ho which is the sum
of the energies of the individual spins, neglecting their
mutual interactions, and H1 which is the sum of these
interactions and is generally much smaller than Ho.
H, in turn can be split into two parts H~ H~'+H~" in-—
the following way. H&' is the part of H1 which commutes
with Ho. In a representation where Ho is diagonal, Hl'
has no oG-diagonal elements. H&" is defined by the
condition that in the same representation it has no
diagonal matrix elements. The eGect of H&' is to broaden
the sharp resonance line which would obtain in the
absence of interactions. On the other hand, Hl" pro-
duces weak satellite lines by mixing together eigenstates
of H1 of diGerent energy.

In a resonance experiment the satellite lines are of
no interest and only the so-called "truncated" Hamil-
tonian H=Hp+Hy should be used in Eq. (1), instead
of H, to calculate the second moment of the main line.
The same caution must be exercised in the use of S, in
order to insure that only transitions corresponding to
the main line are considered. Matrix elements of S,
corresponding to other transitions should be discarded
and a "truncated" operator S, used in Eq. (1) instead
of 5,. The breakup of the interaction H1 in its two
components Hi' and Hi", and thence the value of the
second moment, depends on the form of Ho. DiGerent
cases have been considered by several authors.

Van Vleck' has applied Eq. (1) to the case ot straight
magnetic resonance in a magnetic field. Van Vleck and
Ollom, ' Ishiguro, Kambe„and Usui, ' and Stevens' have

considered the case of a crystalline electric field super-
imposed on the external magnetic field. They have con-
sidered a paramagnetic ion of spin one, but the treat-
ment is the same as for a nucleus of spin one with a
quadrupole moment. Hersohn' has considered the case
where the Stark or quadrupol'e splittings are so small
that they are on a par with the dipole-dipole interactions
in broadening the resonance line observed in an external
magnetic field. Pryce and Stevens' have given a general
theory of magnetic resonance line width which covers
practically all possible cases of dipolar broadening but
by their very generality their formulas are ill adapted
to a direct comparison with experiment.

The purpose of the present article is to give explicit
expressions for. the second moment of the resonance
line in the important case of "pure quadrupole reso-
nance" or of resonance transitions between diGerent
quadrupole levels in the absence of an external mag-
netic field. Some of the results have been reported
previously. The principle rather than the details of the
calculations is given.

The treatment depends on whether the nuclei under-
going the resonant transitions or "resonant" nuclei
interact among themselves or with diGerent "non-
resonant" nuclei. We shall consider the two cases sepa-
rately. Since the second moments are additive this is
not a restriction of generality. The complexity of the
calculations increases rapidly with increasing value of
the spin of the resonant nuclei. We have considered the
cases of resonant nuclei of spin 1 and 2. Xo restriction
has been set on the spins of the nonresonant nuclei.

Case I. Interaction between Resonant Nuclei Only

We assume that the interacting nuclei have identical

quadrupole moments and are experiencing axial electric
field gradients of common directions and magnitudes.
The case of "semi-like" nuclei for which the gradient of
the electric field has the same magnitude but diGerent

directions is much more involved and will not be con-

sidered here.
' J. H. Van Vleck, Phys. Rev. 74, 1168 (1948).
J. H. Van Vleck and J. F. Ollom, Physica 17, 205 (1951). R. Sersohn, J. Chem. Phys. 20, 1505 (1952).
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The unperturbed Hamiltonian Hp can be written as

Ho —8——+,5,,2,

TABLE I. Energy levels and eigenstates of two-spin system.
Spin S= i.

Energies States

where s is the axis of symmetry of the electric field and
5,.; the s component of the spin of the ith nucleus.
6 is a parameter proportional to the strength of the
quadrupole interaction. The resonance frequencies are
pp=8/h and vo ——25/h for spin 1 and —,', respectively. The
interaction Hamiltonian Hi responsible for the dipolar
broadening can be written with the usual notation:

8i=p, )i, W;i=g'O'Q~)i r~i '{(S~Si,)

3r,—i '(S;—r, i,)(Si x,i))
= g'P' P,)„r,„'{(1

—
3y, ~2)5„5—,~

—-'(1—3m~~') (5+iS-~+5-P+~)

2v, ~n—,~ (5=,5+~+5+;S*a)

gv, in, a+—(S.P i+5;5.~)

', (rl, i )'S—~;-5+i,
—f (q, i„")'5—,5 I ),

(3)

where n, ~, P;i„y,i are the direction cosines of r, i, with
respect to the crystalline electric field axis; g;A,+=0,,&

&if, i, . As explained in the introduction, we must sepa-
rate from the interaction Hamiltonian Hi the part Hi'
solely responsible for the broadening of the resonance
line. Since the interactions W, & are of the two body
type, it is sufIicient to consider two particular nuclei j
and k. The unperturbed energy levels of this two-spin
system are determined by the eigenvalues of the
operator

(0, 0)
(j, o) (o &) (-& o) (o, —&)

(&, &) (&, -&) (-& &) (-&, -&)

second term has matrix elements between the states
(1, 0)~(0, 1) and (—1, 0)~(0, —1) which should be
retained and matrix elements between (0, 0)~(1, —1)
and (0, 0)~(—1, 1) which should be discarded. This
can be done by replacing in Eq. (3) (5+,5 &+5,5+&)
by (5„+5,&) (5+,5 &+5;5+1,) (5„+5,&). The third
and fourth terms of Eq. (3) have matrix elements
between different energy levels of Eq. (4) only and
must be discarded altogether. The fifth and sixth
terms have matrix elements (1, 0)~(0, —1) and
(0, 1)~(—1, 0) which must be retained and (0, 0)~
(—1, —1), (0, 0)~(1, 1) which must be discarded. This
is realized by replacing in Eq. (3) 5+,5+i, and 5,5 &,

respectively by —(5„+5,&) (5+;5+i,) (5„+5,&) and
—(5„+S,i)(5,5 i,)(5„+S,q). The truncated Ham-
iltonian Jr=HO+Hi' can be written as

&=&o+Q,)~ IT';~,
where

IT', i, =g'P'r, ~ '[(1 3v, ~')5—.,5.~
—-'(1—3v ")(5.+5")
X (Sp,S i+5,5+&)(5„+S.i)
+-,'(S.,+5,&){(q, & )'5+,5+&

—8 (S„'+S,g') . (4) + (n, a+)'5 4' ~) (S.~+5*-~)) (6)

A state of the two-spin system will be specified by the
values m, and m& of S„and 5,& and denoted by (m, , mi, ) .
Matrix elements of the interaction W, ~ connecting
different energy levels of Eq. (4) must be discarded.
This can be realized in two different ways.

In the first method, W;.I, is modified by the introduc-
tion of suitable projection operators constructed ana-
lytically from the spin operators of the nuclei j and k.
In the second method, the matrix elements of W;I, are
written explicitly in numerical forms in a simple repre-
sentation and those connecting different energy levels
of Eq. (4) are discarded. The first method has been
applied to the case of spin one as explained below but
proved impracticable for the spin ~ where the second
method had to be used. The latter has also been used
to check the results obtained for spin one by the first
method.

I.et us consider first the case of spin one. The energy
levels and eigenstates of Rq. (4) are given in Table I.
From an inspection of Table I and formula (3) we
deduce the changes to make in W, ~. The first term
of Eq. (3) is diagonal in the representation (m;, mi)
and therefore should be retained unchanged. The

Expressions (5) and (6) have to be used in Eq. (1) to
calculate the second moment. Table I also shows that
the operator 5,=+;5, connects states with energy
difference 8 only and can be used in Eq. (1) without
modifications.

The calculation of the trace involved in Eq. (1) is
very tedious but perfectly straightforward and leads
to the following expression for the second moment:

5= 1 (h'd, v')A„——~ Qi g'P'r i

XL3(1—3v, i')'+9(1—v, a')'

—2(1—3v ~') (~ "—P~")7 (7)

For the spin ~ case, as stated before, we write the
matrix elements of W, k explicitly. We choose a repre-
sentation in which the basic states are {(m, , my)

&(mi, m, ))/V2 rather than (m, , mi) if m, Wmi, The.
principal Hamiltonian, Eq. (4), as well as the inter-
action Hamiltonian W, I, being invariant through inter-
change of spins j and k, this choice of basic states
reduces considerably the number of matrix elements of
5",A, since there are no matrix elements between odd
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Eg 0
0 E2
0 0

0
0

E3 .'
(8)

and even states. There are 16 states of the two-spin
system, 10 even and 6 odd, and three energy levels
—h/2, 5—8/2, —98/2.

The level —5/2 corresponds to a three-dimensional
manifold h& of even states and a one-dimensional mani-
fold St of odd states, the level —58/2 to a four-dimen-
sional even manifold b2 and a four-dimensional odd
manifold Ss, and the level —9B/2 to a three-dimensional
even manifold 83 and a one-dimensional odd manifold
$3. 8",~ has matrix elements inside each manifold as
well as between diferent manifolds of the same parity.
The latter elements must be suppressed in order to
obtain the "truncated" interaction W;I, . 8';~ is then
represented by the matrix (8):

r

expressions of any of those matrices. Their calculation
is straightforward.

The matrix expressions (8) and (9) for W;~ and S,
can now be introduced in Eq. (1). From matrix multi-
plication rules we get

—TrPIt', 8,$'= 2 Q,)g {Q„,„I (EtMr —M)Es)

+P„,„I(E,M, —M,E,)„„I
+E.,- I

(at&t-.ptas) -I'
+Z. ,-l (Ds~s —~'sDs)-I'),

and an expression of the same type for Tr{S,'}.By
an expression such as (E~Mt —MtEs)„~ we mean the
element at the intersection of the eth row and the mth
column of the rectangular matrix E~M~ —JI/I~X~.

The result of the calculation of the traces leads to
the following expression:

0
: Dg

0
0

D2
0

0
0

D 4$

S=$: (h'Dv')A„——(1/96)g'P' P. r, l, 'I 207(1 3y;s'—)'

+1512' p'(1 —y g')+459(1 —y Is)'

E&, E2, E& are square submatrices which correspond to
the manifolds h~, h2, b3, and D~, D2, D3 correspond to

S~, $2, $3. If now we write the matrix elements of S,
in the same representation, we find matrix elements

TAar, E Il. Various cases of dipolar broadening
by nonresonant nuclei.

1o8(1 —37J~') (—~Ps' ps'') j —(1o)

It is interesting to compare Eqs. (7) and (10) with
the formula (10) of reference 1. For argument's sake
we assume a simple cubic lattice with the gradient of
the electric 6eld parallel to one of the axes. Then Kqs.
(7) and (10) become

, Case
Resonant

spin 5 Nonresonant spin S'

arbitrary (no quadrupole splitting)
half-integer (with quadrupole splitting)
integer (with quadrupole splitting)
arbitrary (no quadrupole splitting)
half-integer (with quadrupole splitting)
integer (with quadrupole splitting)

S= 1 (h'6 v')„= 28.4g4P4d
—'

S=—,': (hsd v')A„——60.0g4p4d '

where d is the dimension of the unit cell.
Van Vleck's formulas for ordinary magnetic reso-

nance yield:

inside each manifold as well as between di8erent mani-

folds of same parity. As explained in the introduction,
we must keep only those connecting states with energy
difference equal to the resonance energy, that is those
connecting h&~b~, 8~&—+63, S~+-+S~, X)2~$3. When this
is done, the truncated operator 8, is represented by
the matrix (9):

0
3IIg

0

Mg 0
0 352

3f2 0

0

0

Eg 0
0 E2

0

(9)

M~ and M2 are rectangular 3&4 and 4&3 matrices,
and 3IIt and Ms the transpose of Mt and Ms, respec-
tively. Similarly E j and E2 are 1X3 and 3X1 rectangu-
lar matrices. For brevity we do not write the explicit

S= 1 (h'Dv')A ——20.0g'p'd '

5=-'s: (h'Av')A„——37.4g4p4d ',

where we have assumed that the applied static field
is parallel to one of the cubic axes.

Case II. Interaction between Resonant and
Nonresonant Nuclei Only

The case where resonant nuclei interact with non-
resonant nuclei only is much simpler, at least if the
gradient of the electric 6eld has the same direction for
both types of nuclei, which we shall assume here (ex-
cept if the nonresonant nuclei have spin —'„when this
assumption is unnecessary). For each value of the
resonant spin S=1 and S=-,', there are three diBerent
cases to consider depending on the characteristics of
the nonresonant nuclei. These are summarized in
Table II.

The interaction Hamiltonian Hj is written below
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with index j for resonant and k' for nonresonant spin. where the functions F(5) and G(5') are defined as
follows:

H»=p, , k W;k ——gg p'Q, » e, k '[(1 3p—,k')5.,5,»
'

—
k (1—» ') (5+ 5-k '+5-4+k ')

2|jk ' (»kjk ' »Pj k ') (SzjS+» ' +5+jSzk ' )

2V—,» (n, »+i', ». )(S.;5» '+S,S.» ')

f(n—,:» . iP,—»')-'5+, 5+»

', (c»—;k-+iP, k )'5;5 k 'j (1.1)

According to the principles stated in the introduction,
the following modification should be made on t4;~
and S:

(a) Spin operators relative to resonant nuclei:

Cases A i, A2, A3'. All operators in Eq. (11)containing
S+, should be discarded.

Cases Bi, B2, B&. S~; should be replaced in Eq. (11)
by 8~;, where 8~; is deduced from 5+; by equating to
zero all the matrix elements except those connecting
the states m= +-', .

(b) Spin operators relative to nonresonant nuclei:

Cases A ~, 8-1. Xo change.
Cases A2, B~ '. S+~ ' should be replaced by 8~1„-

' which
is defined in the same way as 8~;.

Cases Ak, Bk'. All operators in Eq. (11) containing
5+I, ' should be discarded.

(c) Operator S.=g; 5„:
Cases A~, A~, A~. No change.
Cases Bj, 82, 83. 8 results from S,. by suppression

of matrix elements connecting the states m =~2.
After these modifications have been made, Eq. (1)

can be used to calculate the second moment of the
resonance line.

The results for all cases are summarized compactly
in the following formula:

(ba, )k„=-;gg'AS (5'+1) p» e»

X {(1+I"(5)G(5')) (1—3m~» )"

F(1)=o, F(2)=k.
G(S') =1 for the cases A i and Bi.
G(S') = 8 (25'+1)/[5'(S'+1)j for the cases A2 and Bk.
G(5') =0 for the cases A3 and 83.

These results can again be compared with the straight
magnetic resonance case. I,et us call

'(1—3y k')'

b=Qk e;»i 'v;k'(1 —y, k'),

c=Zk e;k '(1—v, k-')'.

Van Vleck's formula (28) of reference 1 yields for
this case

h'(6»') .,„=-,'5'(5'+1)a.

For spin 1, Eq. (12) gives for the pure quadrupole
resonance line width:

Case Ai. h'(Av'), „,g, =-',5'(5'+1)a(1+6/a),

3 (25'+1) b
Case A2.. h'(Av')«. d, ———,'5'(5'+1)a 1+—

8 5'(5'+1) a

Case A, : h2(~a)«.„=3»5'(5'+ 1-)a

To make the comparison in the spin -', case we shall
assume for simplicity a cubic lattice with the electric
field gradient parallel to one of the axes, in which case
we have c=3a+2b and

Case Bi '. h'(6» ')«~q, =-,'5'(5'+ 1)a{3 (1+6/a) ),

Case B,: h'(av')q„. g, = -', 5'(S'+1)a

6 25'+1 q ( by
xl 1+- —, , ll 1+-

I85'(5'+1)) E ai

Case Bs. h'(Av')«. g, =-',5'(5'+1)al 1+—
laj
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