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Theory of Complex Spectra
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A method for the calculation of the energy levels of an atom in terms of the experimentally observed
energy levels, of ions of higher ionization is developed. This method can be applied to a system of non-
equivalent electrons, as well as equivalent electrons. The notion of fractional parentage is extended to
systems of nonequivalent electrons. Tables of fractional parentage coefBcients are calculated for p's, p's, and
d'p configurations. Application is made by a least-squares calculation of the 3d'4p con5guration of Ti D in
terms of the experimentally observed energies of the 3d' and 3d4p con6gurations of Ti ?ax. As a result, the
root-mean-square deviation of our calculated values from the experimental energies is reduced to ~249 cm

I. INTRODUCTION experiment in the calculation of the energy levels since
the root-mean-square deviation of the calculated
energies from the experimental ones is &249 cm ' as
compared to the ~332 cm ' obtained by Racah.
Although our method improves upon the results ob-
tained by Racah, it should be noted that his method
involves the use of only four parameters instead of the
6ve used here, and the use of the experimental energies
of d' only.

'N this paper we shall consider the eS.cacy of trying
- to express the energies of any ion or atom in terms

of the experimentally observed energies of ions of higher
ionization. This approach was first taken by Goudsmit
and Bacher' using a method based on a diagonal sum
procedure, and restricting themselves to con6gurations
involving s and p electrons. Their method expresses
the energy of an atom in terms of the observed energies
of the ions of higher ionization. The accuracy of their
results increases with the amount of experimental data
available. For best results, the observed energies of all
ionizations must be used. In our method, knowledge of
only the next higher ion energies is necessary. It should
be noted that if the energies of only the next lower ion
are known, our method is still valid. In Sec. II, we shall
make use of the tensor operator methods developed by
Racah' ' and shall not restrict ourselves to s and p
electrons.

Inasmuch as we would like to treat, con6gurations
involving nonequivalent electrons as well as, those
involving equivalent electrons, we shall in Sec. III
extend the idea of fractional parentage, which was also
first introduced by Goudsmit and Bacher, ' and was
developed by Racah. ' Racah calculated fractional
parentage only for equivalent electron con6gurations.
We shall show that the method of calculation can be
extended to include nonequivalent electrons as well.
We shall calculate coeKcients for p's, p's, and d p
configurations. In Sec. IV, a d'p calculation involving
the methods of Secs. II and III will be discussed in
detail inasmuch as it is a prototype for other calcula-
tions of this type. Since Racah has derived the expres-
sions for the matrices of the d'p configuration for Ti xx

and has also made a calculation of the predicted energy
levels, we have a good check available on the proposed
method. Our method leads to better agreement with

II. ENERGIES OF ATOMS IN TERMS OF OBSERVED
ENERGIES OF HIGHER IONS

In treating complex spectra it is customary to express
the energy of a term as a function of various F~ and G~
radial integrals. ' ' These integrals are usually treated as
parameters which can be calculated from the observed
values of energies. Of course, any one integral, say Fo
or F2, varies from con6guration to con6guration.

We assume that the FI,'s and G&'s of any con6guration
can be written in terms of the FI,'s and GI, 's of the next
higher con6guration as follows:

Fa(l") =Fa(l" ')+&Fa, Ga(&")=Ga(&" ')+&( a (1)

Let us consider the d' and d' configurations. From
TAS we can write W(d'), the energy of any term of
the d' con6guration as a function of the radial integrals
F~. We assume that the FI,'s of the d' con6guration
can be written in terms of the F~'s of the d' configuration
as follows:

F (d') =F (d')+DFa,

Fp(d') =Fp(ds)+t) Fp,

Fs((P) =Fs(d')+EFp,
F4(d') =F4(d')+AF4.

(1-a)

Therefore, the energy of the cP 345' term is

W(d' p4F) =3Fp(d') 147Fp (d')—
3Fp(d') —147F4(d')+36Fp 147AF4. (2)—

We should like to express 3Fp(d') 147F4(d') in terms—

*Part of a dissertation in physics presented to the Faculty of
the Graduate School of the University of Pennsylvania in partial
fulhlment of the requirements for the degree of Doctor of Phi-
losophy.' S. Goudsmit and R. F. Bacher, Phys. Rev. 46, 948 (1934).

2 G. Racah, Phys. Rev. 62, 438 (1942), referred to as R-II.' G. Racah, Phys. Rev. 63, 367 (1943), referred to as R-III.' G. Racah, Phys. Rev. 76, 1352 (1949), referred to as R-IV.

' J. C. Slater, Phys. Rev. 34, 1293 (1929).
e E. U. Condon and G. H. Shortley, The Theory of Atomic

Spectra (Cambridge University Press, Cambridge, 1951), referred
to as TAS.
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of experimental observations for d'. Equation (1) of
R-IV is

in value of the radial integrals as we go from one
con6guration to the next lower coniguration,

W(d' p'P) = (8/5) W(d' p'P)+ (7/5) W (d' p'F)

+38Fp 14—73F4. (7)

(l- SL(Gil- 'SI)

(1"asLP" '(ngsgLy)lSL)
yg —2 a1a1'811-1

To calculate the energy levels of d' in terms of the
experimentally observed energies of d', the equations are

W(d' p'P) = (1/10) [7W(dP 2PP)+15W(d' p'D)

+Sw(d' 'F)]+36Fp 6AF—2 12AF—4,

W(d' p4P) = (1/5) [SW(d' HAPP)+ 7W(d' pPF)]

+3AFp 1476F—4,

W(d' p'F) = (3/70) [28W(d' pPP)+10W(d' p'D)

+7W(d' pPF)+25W(d' p'G)]+3AF p+96F p 87aF4-,
W(d' p'F) = (3/5) [W(d' 'P)+4W (d' p'F)]

+36Fp 156Fp
—725F4,—

W(d' p'G) = (1/14) [10W(d' p'D)+21W(d' pPF)

+ 11W(d p G)]+35Fp—115Pp+ 135F4 (8)

W(d Pa) = (3/2) [W(d' PF)+W(d', 'G)]
+36Fp 6AF g 12—6F4, —

W(d' PD) *'= (1/20) [16W(d' 'S)+9W(d' pPP)

+5W(d', 1D)+21W(d,'F)+9W(d' dG)]
y3aP, y7aF, + 63aP„

W(d' p2D) *=(3/140) [49W(d' p'P)+45W(d' 'D)
+21W(d' j'F)+25W(d' p'G)]
+3~Fp+3&Fp 57~F4—

X (l olslL1) G) l +1 S1L1)

X(l" '( 'S,L-,)lSL)l" 'SL), (3)

where we can consider G to be the electrostatic inter-
action. The above equation expresses the energies of
an n-electron conhguration as a linear combination of
energies of an (rc 1) elec—tron configuration. ,

Using Table II of R-III for the values of the fractional
parentage coeKcients for the calculation of the 34E

term of d', and noting that n/(e —2) =3, (3) gives

W(d' p'P) = (3/15)[SW(p'P)+7W(pPF)], (4)

where W(p'P) and W(p'F) are energies of the two-
electron configuration. Expressing Sw(2pP)+7W(ppF)
in terms of FI,'s, '

W(d' p4P) =3Fp
—147F4, (5)

To finci the off-diagonal element, we apply (3),

W(d' i p'D) = (3/(60 140) ') [21W(d' p'P)
—15W(d' p'D) —21W(d' p'F)+15W(d' p'G)]

+3(21)~[aP,—5aF4]. (9)

-'[SW(d&,'P)+7W(d' pPF)] =3P,(d') 147P,(d'). —(6)

So it is possible to write W(d'p'P) in terms of the
experimentally observed energies of d' plus a linear
combination of parameters which represents the change

TABLE I. CoeKcients of fractional parentage for d p.

3Dg'Go'S s3P

6&

90 ~

15-~
3-l
6&

150-~
js—

$

6-1
6—1

90—. $

360 &

360 "-

600 &

120 &

150 &

210 ~

60-~
420-~

1
2&1

30~

2g
4g
4p
4p
4G
2g
4D
4D
'G
2G
Rp
2p
2p
2D
2D
sD
2P'

Qp
2p

-28~

s)
3k

56~
2&

3k

28~

56~
24~

1
72&

3$

—35&
204
—1

105~
—35&

15&
10&

45~

3
28&25~

12& 3$

5$
15~

—35~
—105~

30&
10&
15&

—15~

15~
—1

7$
84~

—2
168~

3$
—24&

3—1

—9—21~
27&

7$
42&

-54&

3—54&

3

14k

—2&

30&
120&

50&

20&

' R-II, Eqs. (77) and {78).' * denotes diagonal element.

where Iio and Ii4 that are written here are the Ii's of
(d') because all of the electrons we are considering here
are d' electrons. Ke have really expressed the energy
of p'P as a linear combination of the energies of pairs of
d' electrons. We can therefore write (5) in the form of
(2). If we now write (3/15)[SW'(d' &'P)+7W(d' 2 F)]
in terms of the Ii's of d', we ind that
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IIL FRACTIONAL PAIIENTAGE FOR NONEQUIVALENT
ELECTRONS

A. Theoretical Foundation P2$

TABLE II. CoeKcients of fractional parentage for p's.

ap

In R-III, Racah develops a formalism to obtain
antisymmetric eigenfunctions when coupling equivalent
electrons only. We want to couple e electrons, none of
which are equivalent, or more important, two or more
of which are equivalent, in such a way as to yield
antisymmetric eigenfunctions.

Let us build a wave function for a three-electron
configuration. This can be done by coupling electron 1
with electron 2 and then coupling the system' (1+2)
with electron 3. This process must yieM the same
result as coupling electron 2 with electron 3 and then
coupling the system (2+3) with electron 1,

ip(lil2(5'L')laSL) = Q f(l&, lmla(S"L"), SL)
8III I I

X(li, l2lg (5"L"),SL ( lily(S'L') laSL), (10)

where the transformation matrix is given by

(s&l&s2l&(5'L')sal3SL
~
s&l&, s212s3l3(5"L")

&
SL)

= $(25'+ I) (25"+1)(2L'+1) (2L"+1)j&

XW(sis25s3, 5'5")W(lil2Ll3, L'L"). (11)

We obtain in general in (10) both allowed and forbidden
values of S"I.".Those values of S"I."that are forbidden
are the ones denoting states represented by symmetric
eigenfunctions. Therefore

$(l ilm (5'I.') l35L)

is not always an eigenfunction of /&l213. The proper
eigenfunction of l~l2l3 is a linear combination,

4 (lilmlgnSL) = Q ip(lilm (5'L') lsSL)
8II I

X(lil2(5'L')l35L)lil2l3nSL) (12)

in which the coefficients of iP(li, l2l3(S"L"), SL) vanish
for all forbidden S"L" after application of (10). We
call (lil~(5'L')l35LjIlil2l3nSL) coefficients of fractional
parentage. These coe%cients must satisfy the system
of equations:

Q (li, lmlg (5"L"),SL j lil2(S'L')l3SL)
SII.'

X (lil2 (5'L') lgSL)lil2lgnSL) =0, (13)

for all forbidden S"L", i.e., if /2 and l3 are equivalent
electrons, S"+L" must be odd.

We can extend this method to configurations ii)~ ~

l„~/„ if fractional parentages of /~l2 1 1 are known.

0'(l, l„nSL)
Q iP(li l.„ i(5'L')l„SL)

~l 8IL I

X(li . l i(n'5'L')l SL|Il& l„nSI)
$(li l. 2(n"5"L")l„,(S'-L') l„SL)

~I+/L Ir I/+IILlI

. X(li l~ (2"n"5'L)l~ iS L')li l„ in'S'L')

X(li l i(n'5'L')l+L jjli l„nSL), (14)

SP
4p
2/7

3-$

( tt
=

I I Q (li l„nSL(li . .l i(niSiLi)VL)
EÃ —2) mai'siI i

X (li. 4-iniSiLi
~
G ( li 4-ini'SiLi)

X(ll' '4;i(ni 51L1)lDLjIll' ' 'lan SL). (16)

B. Calculation of CoeKcj,ents of Fractional
Parentage of d'P

To illustrate the method, let us calculate the eigen-
function of d'p ~S,

'F(d p'5) =e,p((d', 'P) p '5)+q,p((dp 'D)d '5)
+»4 (dp 'D)d '5), (I&)

where 0~, y~, X~ are coeScients of fractional parentage
to be determined. Applymg (13)' and using dd(iI') as
the unallowed state, with

S=-,'S'=0 S"=0 1

l,=2, l, =2, L=o, L'=1, L"=2, 2

we find that ——,'yi+y8Xi=0.

Since our eigenfunction is to be normalized

tI12+y12+~12—1 812+4/ 2 (20}

It then becomes necessary to fix the contribution of the
the terms in d' and in dp to the energy of the 'S state
of d'p. Since the three electrons d, d, p can be grouped
into d', dp, dp we say that the dp states contribute

9 The lV functions are mostly taken from L. C. Biedenharn,
Oak Ridge National Laboratory Report ORNL-1098 (unpub-
lished).

where the coefficients of fractional parentage,

(li l„,(n'S'L') l&Ljl, l.nSL),

must satisfy the system of equations:

(5"L",l„ il (S'"L"'),SL
i
S"L"l i(S'L')l SL)

aI8ILI

X(li 4 2(n"5"L")l~iS'L')l& ~l& n'5' L')

X(li l i(n'5'L')l+L)li l nSL) =0, (15)

for all forbidden S'"L"'; i.e., for /„&, l equivalent,5"+L"' must be equal to 0.
We can write an equation similar to (3) for the energy

of a term of a configuration of nonequivalent electrons,

(li l„nSLi G(li l n'SL)
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TABLE III. Coe%cients of fractional parentage for p's.

p3S

p3
4S 2P 2D

'S
~S
lp
'P
1D
3D

12%
2 &

24-~
24 &

24 &

3i}

1

2&

Q

—2 —3—2 1
3$

3$
1

3$
3$

twice as much as the d' state. Therefore

g 2 1 (21)
81=3:, Xi=6 &, pi=2 ', (22)

+(d'P 'S) = (3 ')4 (d' 2'P)p 'S)+ (2 ')4((dp 'D)d 'S)
+(6 *')4((dp 'D)d'S) (23)

It should be noted that when calculating the coef6-
cients in the case of, say %(d'p'D), where we have a
3)&3 matrix, each diagonal element is characterized by
having a particular d' term among its parents. Consider
the element having d'(23P) among its parents. In
addition to having dd('P), dd('D), and dd('F) as
unallowed states, where the two d electrons are equiva-
lent, we also consider d'(2'D) and d2(23F) (both being
parents of the other two diagonal elements) as unallowed
states. For the element having d'(2'D) among its
parents, in addition to having dd('P), dd('D), and
dd('F) as unallowed states, we also consider d'(23P)
and d'(28F) as unallowed states. For the element having
d'(PF) among its parents, the unallowed states are

dd('P) dd('D) dd('F) d'(PP), and d'(2'D). Our
formalism will then yield the proper number of equa-
tions to evaluate all of the coefFicients. In general, when
treating states with two or more diagonal elements, the
unallowed states are those arising from the symmetric
states of the higher ion plus the equivalent electron
sources of the diagonal elements different from the one
at hand. Table I lists all of the coefficients of fractional
parentage for the d'p configuration. Table II lists the
coeKcients for the p's configuration.

C. Calculation of CoeRcients of Fractional
Parentage of P's

To illustrate a calculation involving more than three
electrons, consider the calculation of %(p's'S). We
shall make use of the coeKcients of fractional parentage
of P's listed in Table II.
+(P'~'S) =W(p'('S)r 'S)+W(p'~('P)P 'S)

+vP(p' ('P')P 'S), (24)

n, P, y are coeKcients of fractional parentage to be
determined. We expand the eigenfunctions of P(P' 'S),
4'(P'& 'P), 4'(P'& 'P).
4 (p's 'S) =n 1.$(p'('P) p ('S)s 'S)

+P(~~l~~)4(p~('P) P ('P) P 'S)
+P(~l&~4(PP('P)~('P)P 'S)
+~('l~2«p'('P»('P)p '»
+7(&I6')4(p~('P)p('P)p 'S)

+7(&I~~)4(pp ('P) ~('P)p 'S). (25)

TABLE IV. The elements of the energy matrices of the configuration d'p. The use of this table is illustrated by writing the energy of
the d'P S term. W(d'('P) 'S)=W(d 'P)+ ,'W(dP 'D)+ ,'W(dP 'D)-+nA+7nB -145Fr, 3nGi+—21nGq—

d2P

d2

8P 8D 3F aA aB aC aP2 b,Gi
Core

(cm i)

W(d2(3P) 2S)
W(d2(3P) 4S)
W(d2(3P') 4P)
W(d2 (3P) 4P)
W(d2(8F) 4G)
W(d2 (1G) 2II)
W(d2(8P) 4D)
W(d2(3P) 4D)
W(d2 (3P 3P) 4D)
W(d'(») 'G)
W(d2('G) 2G)
W(d2(8F iG) 2G)
W(d2('S) 2P)
W(d2(8P) 2P)
W(d2('D} 2P)
W(d2(iS, 8P) 2P)
W(d2(iS iD) 2P)
W(d2(3P, iD) 2P)

W(d2('D) 2D)
W(d2(3P) 2D)
W(d2 (3P iD) 2D)
W(d2(8P 8P) 2D)
W(d2(iD, 8F) 2D)
W(d2(iD) 2F)
W(d2 (8P) 2P)
W(d2 (1G) 2F)
W(d2(iD' 8F) 2F)
W(d2('D 'G) 2F)
W'(d2(3F, iG) 2F)

1

1

1

1

1

1

1

3 (14)~/5

1

(15)&/2
1

1

(3)&
(7)~
(21)&/2

1

1

1

3(7)~/(»)~
3 (14)~/10
3/(30)&

1

1

1

(3)~/(7)~
3(3)&/7
3/(28) ~

W(8P)
W(3P)
W'(8P)
W (3P)
W(8F)
W ('G)
W(8P)
W (3F)

0
W(8F)
W ('G)

0
W(iS)
W(8P)
W('D)

0

0
W(8P)
W ('D)
W (8F)

0
0
0

W('D)
W(8F)
W ('G)

0
0
0

0
0
0
0
0
0
0

0
0
0
0

1/10
27/40

7/40
3/20
1/20
3/20

27/200
7/40

21/25
3/40
3/10
7/10
1/70
3/10

27/70
1/10
1/10
3/5

3/2
0
0
0
0
0
0
0
0
1/4
5/12
1/6
1/6
1/S
7/24
1/12

—1/12
-1/12
21/40

1/8
3/5
1/8

-1/2
-i/2

1/7
3/4
3/2S
1/2

-1/6
—1/2

0
0
0
0
0

1/2
0
0
0

5/4
1/12

-1/6
7/30
7/10
i/30

-7/30
1/30

-i/i5
21/25

1/5
3/50

—1/5
1/5

—1/5
)2/35
9/20
1/140

—3/5
1/15

-1/10

0
0

9/10
2/5
0
0

9/50
2S/25

i/5
0
0
0

3/io
9/40

21/40
—3/20

3/20
—3/20

9/200
21/40

7/25
—3/40

1/10
—7/10

3/70
1/10

si/70
—1/10

3/10
—3/5

1/2
2
i/6
1

1/3
0
7/10
4/5

-1/3
1/12
5/4

-i/6
1/2
1/24
7/s

—1/12
-1/4

1/12
7/40
3/S
1/5

-i/s
-1/6

i/2
3/7
1/4
9/2S

-i/2
-i/2

1/2

0
0

14/15
3/5
5/3
3/2

28/25
2/25
2/15
5/12
1/4
1/6
7/10
7/30
1/10
7/30
1/10
1/i5
7/25
3/5
1/50
i/5
i/i5
1/5

36/35
3/20
3/140
3/5
1/5
1/10

1 7 0
1 7 0
1 7 0
1 —8 0
1 —8 0.
1 4- 2
1 7 0
1 —8 0
0 0 0
1 -8 0
1 4 2
0 0 0
1 14 7
1 7 0
1 —'3 2
0 0 0
0 0 0
0 0 0
1 7 0
1 —3 2
1 —8 0
0 0 0
0 0 0
0 0 0
1 —3 2
1 —8 0
1 4 2
0 0 0
0 0 0
0 0 0

—14
—14

7
—3

1
4

-7/5
12/5

1
—11

0
0
7

—3
0
4
0

-7/5
3

12/5
0
8
0

—6/7
—3
55/7
0
8
0

—3
6

—6
—1
—9
—6

—24/5
4/5

—2
9/2
3/2

—3
—2

3
1

—3
-1

0
12/5

—2
—2/5
—3

2
2

—23/7
1/2

—3/14
—10
—2

3

21
—42
-63
—. 48
-12
—3

—147/5
—438/5

—6
6

—18
6

—21
63/2

—69/2
21
-3
15

147/10
—57/2
219/5

27/2
6

66
—69/7

24
—372/7

30
—6
54

162 084
165 168
169 080
156 597
155 736
172 725
166 503
158 977

1853
16i sii
168 685
—2365

193 618
174 410
165 739
—i697

3474
553

170 231
167 355
160 420
—2255

5137
1063

165 559
158 270
175 582
-2559

i949
i240
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Our condition on P and y is TABLE VI. Energies of the 3d 4p configuration of Ti n.
All numbers are in units of cm '.

&W~/A~Lps(3F), PP('&) '~I ps('&)P(4&)p '~3
+7(6 '*)t Ps('&), pP('&) 'alps('F)p('F) p'~3=o. (26)

Term Experiment Racah Calculated p„b

From (15) we obtain (26), the brackets of which may
be put in the form of (11), where

S3= iq S2= 2q
1

12=1

1Sy= 2q 5=1,
I.=0,

5'=0
)

L,l=r,
gll 3 1

(27)

Therefore

and, as before,

~=2&2',

~2+$2+~2 1—~2+ 9P2

(28)

(29)

To fix the relative contributions of p' and p's to p's,
we consider the four electrons ppps. There are three
ways to get p's out of the four electrons, as opposed to
one way to get p'. We therefore say that the p's states

('P} 'S
(3P) 'S
(3P) 4P
(3P) 4F
(3J ) 'G
('G} 2H

('&) 'D
(3F) 4D

(3P) 2G

('G) 'G
(3P) 2D
('D) 'D
(V} 2D
(lD) 2P
(3P) 2P
(1G) 2P
('S) 'P
('P) 2P
(1D) 2P
rms deviation

37 431 37 628
40 027 40 237
42 127 42 100
31 108 31 125
29 936 29 823
45 802 45 184
40 612 40 441
32 690 32 890
34 657 34 109
43 763 43 675
44 907 44 737
39 380 40 000
31 918 32 251
40 011 39 507
31 369 31 471
47 535 48 078

~ ~ 64 465
45 524 45 673
39 627 39 496

+197
+210—27
+ 17—113—618—171
+200—548—88—170
+620
+333—504
+102
+543

~ ~ ~

+149—131
&332

37 413 —18
40 260 +233
42 018 —109
31 123 + 15
30001 + 65
45 459 —343
40 506 —106
32 711 + 21
34 175 —482
43 721 —42
44 897 —10
39 928 +548
32003 + 85
39 662 —349
31387 + 18
47 801 +266
66 060
45 814 +290
39 321 —306

~249

TABLE V. Values of parameters. All parameters have units of cm '.

a4
AB
aC
aF.2
AG1
aG3

Approximate

—126 989—35.7
76.8—177.7—108.7—12.32

Perturbation

273—0.5—225.2
19.2
25.2
4.15

Finala

—126 716—36.2—148.4—158.5—83.5—8.17

a Final value is the sum of the approximate value and the perturbation. ,

Table III lists the coefficients of fractional parentage
of p's.

IV. CALCULATION OF THE 3d24P CONFIGURATION
OF Ti II

We shall calculate the term values for the 3d'4p
con6guration of TiII in terms of the experimental, ly
observed energies of 3d' and 3d 4p of Tim. To find
the energy of any element we apply (16). We arrive
at equations which, when written in terms of F~'s and
G~'s, are similar to those of R-II, except that our
coefficient of G& is three times that of Racah's, since
we used the G3 of TAS. However, if we wish to write
the terms in terms of experimentally observed energies
of 3d' and 3d4p, and in terms of Fi,'s and Gi' s, we
obtain equations like

W(d2P 2+) W(d2 1G)+ 1W(dp 1F)+3W(dp 3F)

+hA+468+2AC+46F2 6AGi 36G3, (32)—, —

make three times the contribution of the p' state. There-
fore

n =-', n= ', , P=—1/(243), y=v2/%3, (30)

+(p's '~) = (-'.)0(p'('~) s '~)+ L1/(2&334(p's('&) p '~)
+Y~/&3~(p" ('F)p'~). (»)

a b, t is the deviation of Racah's calculated value from experiment.
b b2 is the deviation of the value calculated in this paper from experiment.

where AA includes the change in the A of the d' con-
figuration and the change in the Fe of the dp configur-
ation; AB and AC refer to changes in the 8 and C of
the d' configuration; and AF2, AG~, AG3 refer to changes
in the F2, Gi, and G3 of the dp configuration. All of
the levels written in this form are listed in Table IV.
The terms of dp and d' are taken from the U. S.Tables. "
The sums of the observed energies, or the "experimental
cores, " are also listed in Table IV.

A least-squares calculation to determine the value of
parameters d A, AB, d,C, AF2, BGi, and EG3 is carried
out using the equations in Table IV. At this stage in

the calculation, the d'p'P matrix is not included due
to the uncertainty of W(d' e'8). The parameters ob-
tained as a result of this calculation are listed in Table
V. In order to bring into the calculation the effect of
each of the separate terms of the 4D, 'G, 'D, and 2'
matrices, we use a perturbation procedure given by
Many" and Rohrlich. " The changes in parameters
obtained in this way are listed in Table V, as are the
final values of these parameters. The eigenvalues,
obtained using the parameters listed in Table V, are
listed, together with the results obtained by Racah, in

Table VI. Our values for the 2I' terms are calculated
using the parameters of Table V and using a value of
W(d' &'5) computed from the parameters of Cady. "
The value of W(d' 0'5) listed in the U. S. Tables is not
used, since in a calculation for Ti IId' from the ob-
served energies of Ti III d2, large discrepancies occurred
due to its use.

' C. E. Moore, "Atomic Energy Levels, "Natl. Bur. Standards
U. S. Circ. 467- (1949).

"A. Many, Phys. Rev. 70, 511 (1946)."F.Rohrlich, Phys. Rev. 74, 1381 (1948).
"W. M. Cady, Phys. Rev. 43, 322 (1933).
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The results obtained show a root-mean-square devi-
ation of ~249 cm ' compared to Racah's &332 cm '.
Certainly, one more application of the perturbation
method and the inclusion of the 'I' matrix in obtaining
our normal equations would yield still better values.

An error in the calculation of the 'I' terms occurs
because of the uncertainty in the value of W(d' stS).

The writer wishes to express his sincere gratitude to
Dr. C. W. UBord for suggesting this topic and for
guiding him in all phases of the work.
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The electrostatic energy matrices of the configuration f4 are computed by the Racah method, which
separates terms of the same kind. The diagonal sums of these matrices are checked by the Slater diagonal sum
rule. Three of the matrices are checked by a method developed by Innes.

ACAH' has developed a method for computing the
electrostatic energy matrices of the configuration

f4 This m.ethod enables one to separate terms of the
same kind which occur in a given configuration, whereas
Slater's method' finds only the sum, or average, of the
terms of the same kind. Hence, the latter method is a
partial check on the former. Both methods have been
applied to the f' configuration and the results of Racah's
method are given in Table I. The eigenvalues of the
two-by-two matrices are given in Table II. The multi-

plicity of the term r is the left superscript, the seniority
number v is the left subscript, and in place of J, the

right subscript, the quantum numbers U have been

inserted. These quantum numbers are found in Table I

of reference 1, and serve to distinguish terms of the
same I., 5, and v,

The parameters E', E', E', and E' are defined in
terms of Slater's F's in reference 1, Eq. (66) as follows:

E'= Fo—10F2—33J'4—286F6,

E'= (70/9)Fs+ (231/9)F4+ (2002/9)Fs,

E'= (1/9)Fs —-(1/3)F4+ (7/9)Fs,
E'= (3/3)Fs+2F4 —(91/3)Fs.

As a further check on the interpretation of the Racah
method, matrix elements for three typical matrices
('5, a two-by-two matrix, 'F, a three-by-three matrix,
and 'F, a four-by-four matrix) have been checked by a

TAsLE I. Electrostatic energy matrices of the con6guration f4.

4'j 21 =6EP+6E' —195E2+33E'

4'E.1 =6E'+6E' —129E'—11E'

4'Ã2. =6Eo+6E'+60E"—11E'

4"1.21=6E +4E' —85&—19E'

4'%30=6E'+4E'+50E —19E'

4"Spp =6E'

4"Dgp =6W+33E'

4'F10= 6E

4'Gyp =6E'+12E'

4'I20 =6E0—21E'

o'Sop 4'S22

0'Spp 6E'+18E' —12 (22) &E3

4'S22 —12(22)&E3 6EP+6E'+390&+66E'

' G. Racah, Phys. Rev. 76, 1352 (1949).'-J. C, Slater, Phys. Rev, 34, 1293 I'1929).


