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Equation (8.22) in (8.8) yields the desired matrix
element for ki ——ks ——k. Note that by (8.17) and the
definitions after (8.5) the dimensional radial integral in

(8.8) is given in terms of the nondimensional integral
(8.22) by

eH
(figs+ fsgr)» d»

~ G ""pdp= (1/p) = 1/~' (8.24)

For kiAks, as in (8.9), the more complicated (8.15)
appears to be necessary. The Breit-Margenau result
(70) for a Coulomb field is obtained by setting n& ——ns
and

in (8.22). The matrix element (1/p)nrns on the right

(p G +p G )psdp (8 23) hand side in (8.22) is given by Eqs. (A.4, 7) in Ap-
pendix A.
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A Schrodinger-Pauli approximation wave equation for an n-electron atom in an external magnetic 6eld II
is derived from a Dirac equation by straightforward extension of the procedure for n=2. The order cF terms
in the resulting Hamiltonian contain corresponding cPpoH and cx'Ry (fine structure) parts The u'.poP terms
can be arranged as a sum of the existing relativistic bound state contributions due to Breit, Margenau, and
Lamb, and an additional contribution. The additional contribution is analogous to the spin-orbit contribu-
tion to one structure. In the 'Sg ground state of the heavier alkalies it is estimated to yield a positive contri-
bution to the atomic g value of the order of ten times the aforementioned (negative) contributions, which
may help to account for some experimental results.

INTRODUCTION
' /RECISION measurements of the Zeeman effect by

atomic beam spectroscopy' have yielded deviations
from unity of the g& values of the heavier alkali atoms
in their ground state, '5;. The relevant experimental
results are:

rubidium relative to sodium,

(gj)itb/(g j)N@= 1+5X10 '; (1a)

cesium relative to sodium,

(gj)cs/(g j)N, ——1+13.4X 10 ') (1b)

with a statistical probable error of approximately
~1)&10 '. The gJ of lithium, sodium, and potassium
were found to be identical to within &2.5X10 '. An
additional measurement is reported by Franken and
Koenig 2

potassium relative to hydrogen,

(gj)K/(g j)rr = 1+(1.6+0.4)X10 '. (2)

The results (1) and (2) have so far not been quanti-
tatively explained (i.e., to the experimental accuracy),
nor will they be in this paper. A qualitative interpreta-
tion of at least part of the eGects involved will however
be added to the existing one. '

' P. Kusch and H. Taub, Phys. Rev. 75, 1477 (1949).
2 P. Franken and S. Koenig, Phys. Rev. 88, 199 (1952).' M. Phillips, Phys. Rev. 88, 202 (1952).

The deviations from unity in (1) and (2) should be
attributable to relativistic eGects inasmuch as non-
relativistic theory predicts gj= 1 in a S;state. Quantum-
electrodynamic self-radiative eGects on a single free
electron, producing an altered "intrinsic" magnetic
moment of the electron, ' would be expected to aGect
similar Zeeman levels of one-electron spectra similarly
and hence to yield no deviations from unity in the
ratios (1) and (2). Of the various bound-state relativistic
eGects, i.e., eGects arising from the atom obeying a
relativistic rather than a nonrelativistic wave equation,
those due to Breit and Margenau' and to Lamb' appear
too small by a factor of the order of ten. However
effects of breakdown of Russell-Saunders coupling by
a combination of electrostatic interaction and spin-
orbit coupling mixing states of higher con6gurations
into the ground state have been estimated by Phillips'
to yield dowering amounts to the magnetic moments of
the alkalis of the right order of magnitude to account
for at least part of (1) and (2).

' J. Schwinger, Phys. Rev. 82, 664 (1951);R. Karplus and N. M.
Kroll, Phys. Rev. 77, 536 (1950).' G. Breit, Nature 122, 649 (1928); H. Margenau, Phys. Rev.
57, 383 {1940);N. F. Mott and H. S. W. Massey, The Theory of
Atomic CollisiorIs (Clarendon Press, Oxford, 1949), second edition,
p. 72.

6 W. E. Lamb, Jr., Phys. Rev. 60, 817 (1941).' See W. Perl and V. Hughes (preceding paper) LPhys. Rev. 91,
842 (1953))for an evaluation of these eifects in 'S~ helium. -
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In this paper another possible source of at least part
of (1) and (2) will be indicated by an examination of
the 0, ppH terms in an m-electron Schrodinger-Pauli
approximation wave equation derived from an n-elec-
tron Dirac-type wave equation (a=fine structure con-
stant, pp ——Bohr magneton, II= external magnetic held
strength). These terms arise analogously to the usual
n'Ry, or fine structure, terms (Ry=Rydberg energy),
and like the latter can be grouped into a "relativistic
increase of mass" term (R), a "spin-orbit" term (S)
and a "Breit interaction" term (8). Term (8) contains
the diamagnetic contribution of Lamb. In application
to alkali ground states, (R)+ (S) can be rearranged to
give the Breit-Margenau contribution for the valence
electron in an eGective central field together with a
residual term (+), which is the indicated source in
question. (+) is analogous to the spin-orbit f'me struc-
ture term for one-electron spectra. It yields positive
increments to atomic g values, in distinction to the
negative increments given by the Breit-Margenau and
Lamb contributions. A rough estimate of the magnitude
of term (+) for the heavier alkalis yields the order of
magnitude in (1), Some data for 'I' states will also be
d&scussed.

spinor variables. Each spinor variable takes on four
values, 1, . 1', 2, 2', say. Apart from non-Coulombic
nuclear eGects, which will be neglected, and electron
self-radiative effects, which can be included separately
if desired, ' and subject to Breit's prescription for the
use of Bs~, discussed la'ter, Eq. (3) will be considered
correct to order o,'.

The reduction of (3) to Schrodinger-Pauli form to
order 0.' can be accomplished by straightforward ex-
tension of the procedure' ' for v=2. First, U is repre-
sented by a "column matrix. " Each position in the
column matrix corresponds to a component of V
characterized as follows: Up is the component of U
corresponding to the value of either 2 or 2' for all e
Dirac spinor variables; Vk is the component of U cor-
responding to value 1 or 1' of the kth spinor variable,
the remaining n —1 spinor variables having values 2
or 2'; Uk~ is the component of V corresponding to values
1 or 1' of the Pth and lth spinor variables, the remaining
m —2 having values 2 or 2'; etc. By operating on the
column matrix for V with the Dirac matrices

THE WAVE EQUATION

The relativistic Hamiltonian for the stationary states
of an e-electron atom is taken as a sum of e one-electron
Dirac Hamiltonians and N(e —1)/2 interelectronic
Coulomb plus Breit interactions. Thus

n n

(R—V+& [Ps+n, (ps+eA, )]+ P alai)U=0, (3)
k=1 l&k=1

in which E is the stationary state energy including the
rest energy of the e electrons, V is the sum of the
electrostatic interactions,

m n

V=+ Vs(r„)+ P Vsi(rsi)
k=1 l&k=i

where ek is the usual Pauli spin variable, a series of
equations relating various components of U is obtained,
one equation for each position in the column matrix.
From this series of equations it is seen that for a positive
energy state the 1,1' components of U for any spinor
variable are small, relative to the 2,2' components by
the order of magnitude R=P+eA n(1+iisH/Ry).
Thus, relative to the largest component of V, namely
Us, we have Us RUs, Usi R'Us (plus terms in Msi,
see below), etc. To obtain a Schrodinger-Pauli equation
for Vp with a Hamiltonian correct to the independent
orders of magnitude n'Ry and 0.'ppH, only expressions
for Uk to order E.'Vp and for Uk~ to order E Up are
needed, and to obtain these, only U components with
up to three subscripts Uk~ need be considered. From
all but one of the resulting equations for Up, Vk, U
we obtain the desired expression of small V components
in terms of the largest:

ps is the momentum of the 4th electron, As is the given
vector potential field at the 4th electron, us, Ps are the
usual Dirac variables, and Bkg is the Breit interaction'
between kth and 1th electrons,

e +k ' rk&0'&' rki)
—

I
s iri+

)2rsi E fkl
(6)

' 6, Breit, Phys. Rev. 34, SS3 (1929); 39, 616 (1932).

with rk~ ——rk —r~, the vector distance between kth and
lth electrons. In (3), E, V, eAs and Bsi are expressed in
units mc' and pk in units mc. The stationary state wave
function U depends on e space coordinates rk and m

Us =[—(2+W—V) 'Rs ——',Rs Q' Ris
l=1

and
Rs=~s (ps+eAs),

8 t' &s ' rairri ' rl if
) ~'«+

)2~a & rkl'

(10)

+rsQ'(RtMsi+2MsiR() jUs, (8)
/=I

Uzi = 4 (Rs« —Msi) Uo,
I

in which P'i denotes a summation over t omitting 1=Is,
W= E—e is the state energy minus the rest energy of
the e electrons,
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Substituting (8) and (9) into the remaining equation
mentioned above yields, for the largest component Up '.

(2+W—V) '=-'+-'(V —W)

and, upon assuming a Schrodinger representation,

(13)

Rk(2+ W—V) 'Rk ——-'Rk'+-'Rk(V —W)Rk (14)

= a2Rk'+ a'[(V —W)Rk —ikek vk VjRk, (15)

in which —ikV is expressed in units of mc. .The lowest-
order part of (12), i.e., the nonrelativistic Schrodinger
equation,

n

(—W+V+-', P RP)Uo=0,
l =1

may now be substituted into (15), [the O(n') difference
between Up and U' is immaterial for this purpose; also,
the term produced by this substitution can only be used
as a matrix element), to give in place of (12), the desired
Schrodinger-Pauli-approximation equation,

n gg n—W+ V+—,'Q Rkm —ao Q Rk' ——Q ek (vkV)Rk
k=1 k=1 4 k=1

Q (RkRiMki+MkiRkRi
l)k=1

+RkMki«+RiM'kiRk) &o=o (17)

' G. E. Brown and D. G. Ravenhall, Proc. Roy. Soc. (London)
A208, 552 (1951);E. E. Salpeter, Phys. Rev. 87, 328 (1952).

[—W+ V++ Rk(2+W —V) 'Rk+aa Q Rk'Ri2
k=1 l)k=i

n

P (RkRiMki+MkiRkRi+RkMkiRi+RiMkiRk)
l)k=1

n

+-,' Q MkiMki)~o=0. (12)
l)k=1

Equation (12) is the same result as for two electrons'
except summed over all electrons or pairs of electrons.
The terms in (12) involving Mki arise from the Breit
interaction (6). Of these, the last one is quadratic in Mki
(although of order n'Ry with rki Bohr radius) and
must be dropped, as being in conQict with experiment
and with more complete theory taking account of
higher order electron interactions. '' [This term does
not appear if the Mki dependent terms in (12) are cal-
culated in accordance with Breit's prescription as an
expectation value of (6) in the state U and using (8)
and (9). In any event this term does not contain the
external field and hence would not contribute to the
external magnetic interaction energy to order n'poH. ]
Equation (12) without the last term is still not a
Schrodinger eigenvalue equation as itgcontains the
eigenvalue 8" in two places. 8' is therefore eliminated
in the second term, using the lowest-order, nonrela-
tivistic, part of (12). Thus, to order cP,

The first three terms in (17) constitute the usual non-
relativistic Schrodinger Hamiltonian, for, omitting sum-
mation signs for brevity,

and

Rk2= ek (pk+eAk)ek (yk+eAk)

=pko+eAk yk+ehek Hk+c'Akk,

(18)

(19)

-,'Rk' ——pk'/2m+go(Lk+ek) H+AkV/2mc'. (20)

Equation (19) corresponds to an arbitrary external
vector potential Ak, and (20) to a constant uniform
external magnetic field. Equation (20) has been made
dimensional by dividing p by mc, eA by mc and multi-
plying through by mc2. The fourth term in (17) is the
"relativistic increase of mass" (R) term. It becomes,
upon squaring (19) and retaining only terms linear in
the constant uniform ma, gnetic field H, (right-hand side
dimensional)

(R) = —g'Rk'

= —(pka/8m'c') —(po/2m'co) (La+ca) Hp„'. (21)

The fifth term in (17), the "spin-orbit" (S) term,
becomes (right-hand side dimensional),

(S)= ,'ihek —(—vkV)Rk

=(~/4m'c2)(-~vkV y+k'eV kVX pk

+ek VkV&&Akc/c), (22)

in which the term iehVk—V Ak/c has been omitted as
vanishing when summed over k in a constant uniform
magnetic field. The last set of summed terms (8) in

(17), arising from the Breit interaction, can be written,
with

Ra=Pa+~a, Pa= ek pk, ~a=ca Ak,

and omitting terms quadratic in Ak, Al, as

(B) a[PkPlMkl+MkiPkPL+PkMktPi+P&MkiPk]
a&[(&kPi+&iPk)—Mki+Mkt(&kPi+A teak)

+ (~kMkiPi+PkMki& i)

+ (~ iMkiPk+PiMkdk) j. (24)

The 6rst bracketed term in (24), an n'Ry or fine struc-
ture contribution, is reduced explicitly by Sreit. "The
second bracketed term in (24), the Breit interaction
contribution to 0. ppH, is reduced explicitly in the pre-
ceding paper. '

The three terms (21), (22), and (24) are seen to
contain corresponding n'Ry and n'@pe contributions.
This correspondence is not surprising, in view of the
occurrence of Ak in the Dirac Hamiltonian (3) only in the
combination pk+eAk. Inasmuch as this combination
occurs also in the classical Hamiltonian and equations
of motion for electrons, the eGect of a given external
vector potential may be regarded classically as inducing
the diamagnetic momentum eAk in electron k to give

'OH. Bethe, Hundbuch der I'/zysik (Verlag. Julius Springer,
Berlin, Germany, 1933), Vol. 24/1, second edition, 377.
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n

aEtv=tto(%'~ H P (Ls+es)
~
e);

k=1
(26)

the "relativistic increase of mass" contribution is

Qp n

~Ett= ——(+~H E(4+~a)Ps'~+);
2 k=1

(27)

the "spin" contribution is

Pp/E. = (~~& ~'v. v XA.—~~);
2 k=1

(28)

it the total momentum ps+eAs. A general diamagnetic
classical interpretation for magnetic interaction energies
is thus possible. For example, the usual nonrelativistic
contribution of order ppH has the well-known classical
interpretation of diagmagnetically induced kinetic
energy due to the product of mechanical momentum p
and the diamagnetically induced momentum eA (p may
be taken as the original momentum for A =0 if
eA/c«p); the (R) contribution (21) to cr'ttoH is due to
"relativistic increase of mass" in which one factor of
the fourth power momentum term is diamagnetically
induced momentum; the (S) contribution (22) to cr'ttsH
has the classical spin-orbit energy explanation with eA
replacing p; Lamb's diamagnetic contribution is shown
later to be the "spin k-orbit /" part of the (8) term
(24) with eA replacing p; etc. Likewise one sees from
this point of view that spin-spin contributions to fine
structure have no analogous 0.'p, pII contributions.

Equations (20), (21), (22), and (24) yield by first
order perturbation theory the linear-in-H contribution
AE~ to the energy eigenvalue of an e-electron atom
governed by (17) as

/sErI =AEtr+ AEIt+/t Es+DEs, (25)

where, for a constant uniform magnetic field H the
nonrelativistic contribution is

of

—e(U~Q es As~ U),
k=1

(30)

%=4s+ersp„c 0, (31)

in which U satisfies the Dirac equation (3) without As.
This procedure, followed in reference 7 for n= 2,
requires an O(tr') normalization correction for %', neces-
sitated by the normalization assumption (U~ U) =1 in
(30). The derivation of the eigenvalue equation (17),
which is presumably correct to the orders n'Ry, cr'ttsH,
did not however require a normalization assumption.
Since also an eigenvalue is independent of the normaliza-
tion of its eigenfunction, AEtr as obtained from (17) to
order 0.'ppP, being the contribution to the eigenvalue of
(17) to this order, should be and is independent of the
normalization of O'. It would thus appear that the use
by Lamb" of normalization in this connection is an error
which, however, leads to the right answer because of his
compensating error of using, in effect, ps instead of R' in
(16) to yield (17).

For one bound electron, DER, in Eq. (21), combines
with AEs, in Eq. (22), to give the Breit-Margenau
result, ' as noted by Lamb, " just as the corresponding
fine structure contributions combine to give the Som-
merfeld-Dirac fine structure formula. This corre-
spondence extends also to relative sign of the con-
tributions. Thus, for hydrogenic S states, contribution
(R) to fine structure is negative, contribution (S) is
positive, "the ratio being I (S)/ —(R)j/. = rt/(2rt —ss) or
4, for m=1 to ~ for n= ~ in state 'S;. Similarly, ' con-
tribution (R) to crsttsH is negative, contribution (S) is
positive, the ratio being [(S)/—(R)j~= s in state sS1
independently of principal quantum number.

In evaluating (26) to (29), the state 4 should be, by
first order perturbation theory, an eigenstate of (1'7)
without the vector potential As terms. Hence, + can be
expressed in the Russell-Saunders scheme as

the Breit interaction contribution is given by Eq. (60)
of reference 7,

where the 0' and 0'p are. Russell-Saunders eigenfunc-
tions of (16) without the vector potential terms,

j'k&4&———A, I1+, litt2„, i;P &

( ratrst)
+At (1+ i p

rsts )
e'

+~, ( a r„x4+ r. raxA„) e), (29)
~kl

and 4 satisfies (1/). In (28) V is given by (4) and later
specialized to (5). The unit for ps is mc and for V and
e'/rat is ottcs.

The expectation value /t Err, Eqs. (25) to (29),
results also from a reduction to Schrodinger-Pauli fprm

(—W„+V+-', Q Ps')% „=0,
k 1

and the order css arises from the n'Ry terms in (17).
By the same argument as in the two-electron case~ the

contribute only in order crettsH in (26) to (29) and
so the n'ttoH contributions are given by (27) to (29)
with 0' replaced by 4'p. One cannot however conclude
that the 0.'p, pH contributions are negligible relative to
the cr ttoH contributions. This is true only if c in'(31)
does not change the order of magnitude by being &&1.

» W. E. Lamb, Jr., Phys. Rev. 85, 259 {1952).
~ See, for example, E. U. Condon and G. H. Short1ey, The

Theory of Atomic SPectra (Cambridge University Press, Cambridge,
1951),p. 120 and following.
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+ 2L&l' Vl(vi —vc)XA1+Q iri vivi, X (Ai —A;)j
g g2

el ri;XA;
2=2 2r .3

12

If V, (r,) is taken as a central field potential that gives
the correct value of (P12), then the first bracket ex-
pression in (37) represents the Margenau contribution
AE,~ to A ppII as usually applied. ' In the last bracket
expression in (37), the y term vanishes for the %0——'S~,
ground state. The first term is just one-half Lamb' s
diamagnetic contribution, i.e., the spin dependent part
of the Breit interaction contribution in (33) is Lamb' s
contribution DEi„which is halved by use of (36) and
(5) in the spin contribution DEB of (33). The second
bracket expression in (37), AE+, will next be estimated
roughly for the 0'p ——'S~ ground state, Coulomb poten-
tials (5) are assumed and for the central field potential

APPLICATION TO ALKALI GROUND STATES

Consider the sum of the u'poH contributions (27) to
(29) for the Z-electron configuration of one valence
electron outside closed shells. In (29) and that part
of (28) involving pairs of electrons, neglect the exchange
contributions. due to the antisymmetry of %. Then the
summations in (27) and (28) reduce to one term, that
for the valence electron, denoted by subscript 1, and
the summation in (29) reduces to one over those
electron pairs of which the valence electron is a member.
Thus the (x'poH contributions for a one-valence-electron
con6guration become approximately

(38)V, (rl) Z,e'/ri. —

Then with H= (0, 0, H) and

(B„)=(01„)=0, ((ri, )=1, (39)

the expression in question gives a g/2 value increment of

~EBSB ~EB+s-iEB++EB

In light atoms, as in the two-electron case, ~ c ~1. Then (33) becomes
However c increases rapidly with atomic number and
for the heavier alkalis Phillips has estimated the &E + 1(- H (I+ ),+
aAc„'poH contributions arising from the diagonal product
terms of (26) using (31) as being of the same order
as n'@pe. Hence, for the heavier alkalis o.'c ' 1 or
c 1/n Th. e diagonal product terms in (27) to
(29) for 4=%0 will be considered in the next section.
Lastly, the cross-product terms in (27) to (29) of type
(+0(n'poH(n'c 4„) are of order n4c I(AOH and hence
of order aPppB using Phillips' result. It may be con-
cluded that the first neglected order for the heavier
alkalis (aside from self-radiative e8ects) is n @OH (in
contrast to n'I(AOH for light atoms), which is negligible
in the present problem.

Pp +0 2
' 1 &1 1 2l' V1VX 1

Z

+2 ~i ri XA,
2=2 r 3

12

'DE~ 1 (Z—Z,)e' ( sP )
(~g/2)+=

PDH 4 Fl ( Fl )

g2

where 0 p is the relevant Russell-Saunders eigenfunc-
tion of (32). The second term DEB in (33) is rearranged
as follows: by (4),

z $ ()PAL z $ BV~;
VlV VlV1+Q VlV1' rl+Q ri'- (34)

where sl, ——sl —s, and ) represents ~'5;). Because of the
spherical symmetry in the 'S~ state,

(sl'/rl') = (cos'8,/rl) = ', (1/rl) —.(41)

(si,'/ri, ') is estimated by considering the classical
geometry of a point electron at r& outside spherical
shells of radius r; containing the core electrons uniformly
distributed. Taking the polar axis along r& and aver-
aging uniformly with respect to all directions of r; gives

%rite ~ ~

s'
, 1i

'r

(s„) ' ccs'H„siss8sM; ~~ sicSS;sA;)

(35) &is 0 0

where V, (rl) is to represent an effective central:field
acting on the valence electron 1. Also write

1 f 2rPy

A, = (A, A,)+A;=—,'(HXr„—H-Xr, )„ (36) Using hydrogenic values to estimate (r,2) relative to
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TABLE l. Estimate of n'ppH energy contributions in 'Sg alkali ground states.

Elem. (~g/2)+" (~g/~)m k(~g/~)1 (~g/2) (~g/2) (~g/2)N

H
Iil
Na
K
Rb
Cs

1
3

11
19
37

.55

1
1.6
1.63
1.78
1.83
1.9

~ ~ ~

0.07
0.13
0.15
0.14
0.14

0
0.8
3.9
6.0

11.8
16.5

—1.78—0.9—1.1—1.0—1.0—0.9

0
. —0.1—01—0.1—0.1—0.1

—1.78—0.2
2.7
4.9

10.7
15.5

—4.5—2.9
0
2.2
8.0

12.8

& All (Ag/2) entries in table are &(10 ~.
b (L3g/2) =d,Eggy/poH, Eqs. (37) and (53).

(rP), yields

z rP z n,2[5m;2+1 —3l;(l;+1)j= (Z—1)C, (43)
'=2 r 2 i=2 ep[5ep+ 1j

(~g/2) = l (Z—1)(1—C) (~/r ) (44)

= —', (Z—1)(1—C) (T—W), (45)

where n;, l; are, respectively, the hydrogenic principal
and azimuthal quantum numbers of a core electron and
e& is the hydrogenic principal quantu~ number of the
valence electron. The values of C yielded by (43) for the
alkali elements are given in Table I. Substituting (41)
to (43) in (40) and taking Z, = 1 in line with the approxi-
mations in (42), (43), (this also normalizes (Ag/2)+ to
zero for hydrogen), gives

and the total n'p~ contribution (37), exclusive of self-
radiative sects, is

~g/2= (~g/2)++ (~g/2) +l(~g/2) .(53)

The numerical results for hydrogen and the alkalis
are shown in Table I. It is seen that [d,g/2 —(Ag/2)N, )
is of the order of magnitude of Kusch and Taub's
results (1). On the other hand [(&g/2) K—(&g/2)H j
=6.7)(10 ' is about four times larger than Franken and
Koenig's results (2). Also a steeper rise with Z might
have been expected from the analogy with ine structure.
The large positive contribution of (hg/2)+ is seen to
arise from the low value of C, Kq. (43), which corre-
sponds to small shielding of the nuclear charge by the
core electrons in the spin-orbit type term (28).

gq(In 'P;)/gq(In 'P;) =2(1.00200&6X10 ~), (55)

gq(Na'S~)/gq(Ga'I'i)=3(1. 00242+6X10 '), (56)

g~(Na 'S~)/gJ (In 'P.)=3(1.00243&10X10-'). (57)

Finally, using Lamb' s' aPProximate exPression for (T)~ From these by use of (~=magnetic quantum number),

(4g) g, =~a /~I, a= (~Z +~a...)//~i ~
and = nag L+ nsgs+2(~g/2) Bssc, (5g)Wo= —n'/2n' W = —n'/2n*' (49)

'P STATES
in which —(e /r~) is regarded in this approximation as
the potential energy of the valence electron in an ThefollowingmeasuredgzratiosaregivenbyKusch
equivalent central Geld with (T) and W the corre- and Foley" »d by M»n and «sch:"
sponding kinetic and total energy respectively, in units

(G 2p )/ (G 2p ) 2(1 pp172 6X jp Q) (54)mc'. The Margenau' and Lamb' contributions to o. ppB
in the same central 6eld are

where 8'p is the hydrogenic binding energy, and the
effective principal quantum number e* for the alkalis
is taken from experiment, "yields

533 p3 1p
(hg/2)+= (1—C) (Z—1)

~

——
~
X10 ', (50)

12

and, subtracting oG the theoretical self-radiative con-
tributions as in, reference 14, by

gz, = 1, gs= 2(1+Ss)= 2(1 0011454),

nz, = 2/3, 4/3, 0,

ns= 1/3, —1/3,
for

5.33] 2 1q
(ag/2)» ——

(
——

I X 10-,
3 E~*' ~'i

P&p P&y S+, respectively,
51

there remains to be explained

533 t' 1 1i—IX 10-',

"Reference 12, p. 143.

(52)

[-', (hg/2) (Ga 'P;) —3 (bg/2) (Ga 'P~) $gssc
= (0&6)10 ',

"P.Kusch and H. M. Foley, Phys. Rev. 74, 250 (1948).
"A. K. Mann and P. Kusch, Phys. Rev. . 77, 435 (1950).
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L'. (~g/2) (» 'P;) —3(~g/2) (» 'P~)j
= (28&6)10 ',

i (~lL/2) (Na '~k) —3(~g/2) (Ga 'P~) j»~~
= (13+6)10 ',

(60)

(61)

L(~g/2) (Na '~~) —3(~g/2) (» 'P&)]BS~C
(14+10)10 ', (62)

in which the experimental results on the right are to be
accounted for in terms of the theoretical contributions
indicated on the left by subscripts E, 5, 8, C denoting
respectively the "relativistic increase of mass, " "spin, "
"Breit interaction, " and "configuration mixing" con-
tributions. Contributions E. and 8 are neglected as
being &1X10 5. (Moreover, as (Ag/2)~ is by (27)
proportional to gq, Eqs. (54) to (62) will contain ap-
proximately equal and opposite contributions from
(dg/2) g on the left-hand sides. ) Also, the contributions
of Na S~ are neglected" as being &2)&10 '. Contri-
bution C is considered by Phillips' to be not negligible
but also probably insuKciently large to account for all
of (59) to (62). For the present approximate purposes
it is not considered further.

Contribution 5 remains to be discussed. %ith the
approximations mentioned, and substituting (61) and
(62) into (59) and (60), there results:

(&g/2)8(Ga 'Pg) = (—8.7&6)10 ', (63)

(dg/2)s(Ga 'P;) = (—4.3~2)10 ', (64)

(&g/2) s(In 'P~) = (9.3+8)10-', (65)

(hg/2) s(In 'P~) =.(—4.7~3)10-'. (66)

In the one-electron hydrogenic case Margenau's'

theoretical results give, analogously to 6ne structure as
previously mentioned, (hg/2)8 negative in j =l—2

states, (d,g/2)& positive in j=/+-, states, and, inde-
pendently of principal quantum number e,

-(~g/2). ('P~)/(~g/2). ('P~) =5, (67)

(~g/2). (~;)«~g/2). (P;)=5/-3.

Assume that these results apply qualitatively to the
closed-shell-plus-one-valence-electron 'I' states under
consideration, together with the approximately ten
times greater magnitude of the spin contribution rela-
tive to that for Z=i, for the same range of atomic
numbers as previously indicated for 'Sg states. Then
the theoretical signs of (hg/2) s mentioned above agree
with (64) and (66) and are not definitely contradicted
by (63) and (65). The experimental and theoretical
uncertainties are too great to yield a conclusion as
regards (67). Finally, the factor 5/3 in (68), which
might be expected to be greater in heavy atoms due to
increased relative penetration effects (as for fine
structure splittings), when applied to (63) and (65)
gives values for (Ag/2) s('5,*) not incompatible with the
experimental results (1).

Although no great signi6cance can be attached to
the present numerical estimates, it may, perhaps, be
concluded that the present source should not be over-
looked in a quantitative calculation of g values of
multi-electron atoms to one part in 104 or 10'. Such a
calculation would also be interesting as a test of the
theory of fine structure, in view of the similar theoretical
origin of n'poII and 0.'Ry.
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