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Some relativistic contributions of order a'~(137)~ to the
magnetic moment of helium in the lowest-energy triplet state 'S1
have been calculated. These contributions arise from the e8ect
of the electrostatic and Breit interactions in a relativistic wave
equation. The purpose of the calculation was to isolate to order
cP the quantum-electrodynamic radiative contributions to the
magnetic moment of a bound two-electron system for comparison
with experiment. The method of calculation was to evaluate the
sixteen-component form of the matrix element of magnetic
interaction energy in terms of nonrelativistic wave functions in
Pauli approximation and to use the angular and spin symmetry
properties of the 'S~ state. This procedure was possible because
Russell-Saunders coupling in the Pauli approximation could be
shown to hold rigorously to order a2. The result derived was that

the g value for two interacting electrons bound in a 3S1 state is
2(1——',(T)——,'(e'/r~s)) where (T) is the expectation value of total
kinetic energy and (es/r~s) of electrostatic interaction in the sS&

state, in units mc'. The contribution —-', (T) corresponds to the
Breit-Margenau result for one electron and ——,'(e'/res) arises
from the Breit interaction. For 'S1 helium the preceding g value
was evaluated numerically as 2/1 —(38.7+2.3)X10 'j. Com-
parison of theory and experiment tends to substantiate the
nonradiative contribution —$(T) and the additivity properties of
radiative and nonradiative contributions to the magnetic moment
of ~S1 helium. The fourth-order radiative contribution is not
contradicted. The Breit interaction contribution is too small to
be noticed, with the present experimental error.

intrinsic magnetic moment of the electron is 16)(10 '
Bohr magnetons, 4 an approximate test of fourth-order
radiative corrections to the magnetic moment of the
two interacting electrons in 'S1 helium appears possible.

To make this test, or rather as part of the over-all
comparison of theory and experiment, it is necessary
to calculate that part of the magnetic moment of the
system yielded by the Dirac equation without internal
radiation field but with the Coulomb and Breit inter-
actions. This part is of the same order, o.2, as the fourth-
order contribution of the radiation field. For hydrogen-
like atoms this well-known calculation has been made
rigorously by Breit and by Margenau. ' The main
purpose of this paper is to make the corresponding
calculation for helium-like atoms in the 'Sl state.

INTRODUCTION

'HE present perturbation theory of quantum-
electrodynamics yields finite and unambiguous

equations of motion for electrons and positrons inter-
acting with electromagnetic 6elds. The resulting rela-
tivistic theoretical predictions of energy levels in
various arrangements of electric and magnetic 6elds
have been experimentally investigated for a single
bound electron' and for the bound electron-positron
system of positronium. ' In this paper a bound two-
electron system is studied. Specjtfically, some relativistic
contributions to the magnetic moment of 'S~ helium
will be calculated and, cembined with the existing
radiative contributions to the intrinsic magnetic mo-
ment of the electron, will be compared with experiment.

The experiment, described in detail in the preceding
paper, ' yielded the ratio of the g value of helium in the
metastable 'S& state to the g value of hydrogen in the
ground 'S; state. The essential quantities measured
were the transition frequency between the magnetic
levels %=&1+-+0 of 'S~ helium and the transition
frequency between the levels (F, stts) = (1, 0)~(1, —1)
of 2Sy hydrogen, both in the same uniform magnetic
6eld. The magnetic moment of 'S~ helium is about two
Bohr magnetons. The experimental ratio was deter-
mined to an accuracy of &16&(10 . Inasmuch as the
theoretical fourth-order radiative contribution to th

THE WAVE EQUATION

The wave equation for the stationary states 4 of the
system of two electrons in a given external electro-
magnetic field is taken as

0= (E—K)%
= {E+g Leg, +sttc p~+ n; (cy,+eA;))

i=1,2

n&1

*Now at the University of Pennsylvania, Philadelphia,
Pennsylvania.' W. E. Lamb, Jr., and R. C. Retherford, Phys. Rev. 79, 549
(1950); 81, 222 (1951);and 85, 259 (1952); J. E. Nafe and E. B.
Nelson, Phys. Rev. 73, 718 (1948); A. G. Prodell and P. Kusch,
Phys. Rev. 79, 1009 (1950); P. Kusch and H. M. Foley, Phys.
Rev. 74, 250 (1948); Koenig, Prodell, and Kusch, Phys. Rev. 83,
687 (1951).

2 M. Deutsch and S. C. Brown, Phys. Rev. 85, 1047 (1952);
R. Karplus and A. Klein, Phys. Rev. 87, 848 (1952).' Hughes, Tucker, Rhoderick, and Weinreich, preceding paper
LPhys. Rev. 91, 828 (1953)j.

in which E is the energy eigenvalue including the rest
energy 2sttc' of the two electrons, —e= —

~s~ the
.observed charge on the electron, m the observed mass
of the electron, @ and A the given scalar and vector
potentials of the external 6eld, P and e the usual Dirac
variables, p the momentum operator, et~1/137.037

' R. Karplus and N. M. Kroll, Phys. Rev. 77, 536 (1950).
~ G. Breit, Nature 122, 649 (1928); H. Margenau, Phys. Rev.

57, 383 (1940); N. F. Mott and H. S. W. Massey, The Theory of
Atomic Colhssoes (Clarendon Press, Oxford, 1949), second edition;
p. 72.
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/

Qrr ——lie(cr/2ir —2.973as/ws) Q e,' H,
i=1,2

(5)

where e' is the 4)(4 Pauli spin matrix. As justified in
the next section, this operator may be evaluated in the
2-electron Russell-Saunders 'S~ state, to yield the self-
radiative contribution to the g/2 valueM of the system,

(hg/2) „=DErr„/2MfssH = rr/2rr 2—973cr'/—rr'.
=0.0011614—0.0000160=0.0011454. (6)

This evaluation neglects O(or')lisH contributions. The
O(n'logn)psH term in (4), which comes from the
Bethe contribution" to the 'Lamb shift operator, is

' W. E. Lamb, Jr., Phys. Rev. 85, 259 (1952}.
~ E. K. Salpeter, Phys. Rev. 87, 328 (1952); G. Breit and G. K.

Brown, Phys. Rev. 74, 1278 (1948); T. Ishidzu, Progr. Theoret.
Phys. (Japan) 6, 48, 154 (1951).

8 G. Breit, Phys. Rev. 34, 553 (1929); 39, 616 (1932). This
interaction has been discussed by the newer methods by G. E.
Brown and D. G. Ravenhall, Proc. Roy. Soc. (London) A208,
552 (1951),and by E. E. Salpeter (reference 7).

9 J. Schwinger, Phys. Rev. 82, 664 (1951).
'0 Throughout this paper we shall use one-ha1f the g value, g/2,

which is approximately unity.
"Bethe, Brown, and Stehn, Phys. Rev. 77, 370 (1950).

the fine structure constant, and the subscripts 2, 2, 12
denote dependence respectively on electron 2 with
spatial coordinate variable r~, electron 2 with spatial
coordinate variable r2 and r~2=r~ —r~. The external
field is taken as the nuclear Coulomb field and a constant
uniform magnetic field H.

Reduced mass effects, due to a Hamiltonian for the
nucleus analogous to that in (1),' are zero in order
m/M pi=nuclear mass) in the present case because
the nucleus has zero spin and the total electronic orbital
angular momentum is zero. Higher-order reduced mass
effects, apparently first occurring' in order oPm/M, are
negligible relative to the retained order n'.

The summation in (1) over the self- and mutual-
energy operators 0;&"', 0»&"' represents the finite cor-
rections yielded by quantum electrodynamics when
the internal radiation field variables are eliminated by
covariant perturbation theory. The operators 0&") are
functions of the electron and external field variables
r, p, a, A, etc. The first two mutual energy operators
in (1) are the electrostatic and the Breit interaction, '

rrQ12 + crsQis e /mls+ ~12)

+is e/rls(ai' tss+at 'r12trs'rls/r12 ). (3)

The self-energy operators in (1) that contribute
linearly to the external magnetic interaction energy do
so in the orders

[O(a)+O(cr')+O(cts logo)+O(a')+ .]fisH, (4)

where fss ——e)s/2mc= Bohr magneton. The [0(n)
+O(ar )]psH contributions, corresponding respectively
to the second-' and fourth-4order corrections to the
magnetic moment of the electron, arise from the
operator

I'= l'i(ri)+ I's(rs)+ &u(ris)

Ze'/ri —Ze'/rs+—e'/r„. .

MAGNETIC INTERACTION ENERGY VIA
PAULI APPROXIMATION

(8)

(9)

The present problem is to evaluate to order n' the
external magnetic interaction contribution bE~ to the
energy eigenvalue E. Inasmuch as quadratically H-
dependent contributions are negligible at the magnetic
fields used in the experiment, first-order perturbation
theory can be used. Hence, from (7),

AZrI=&VI e(ni A—i+trs As)+QHI U), (10)

where U, the 16-component wave function correspond-
ing to the lowest-energy '5& state of helium, satisfies

(E I +Pl+62+ trl' iil+ as' ps+~12) + 0 (11)

In (11)energies are expressed in units mc' and momenta
in units mc. Equation (10) will be evaluated by first
expressing the 16-component U in terms of four 4-
component U's, then eliminating all but the largest
4-component U by (11), to order n'fisH, and finally
evaluating the result by means of the nonrelativistic
(Pauli approximation) properties of the largest 4-
component U.

Thus, consider U as a 4-component column matrix
with components I kl&, each value of k= 1, 2 and l= 1, 2

representing two'Pauli spinor components of U. %rite

)0 i~ )0 iy
~,"A,=w,"A,

I I
=A,

l I, s=1, 2, (12)
0&, '&1 0$,

'

where e; is the 2-component Pauli spin variable for
electron i. For i = 1, denoting electron 1, the matrix in

(12) operates on the first subscript k of Ikl& keeping
the second subscript l fixed (a unit matrix for electron
2 can be understood as operating to keep subscript l
fixed). Similarly for l=2. Then the n A terms in (10)
become

++A = —e&U I ni Ai+ tt2 A2 I ~&
= —e((11IAil21)+(21IA, I »&+&»IAil22&

+&22 I A i I12&+&iil As
I 12&+&12

I
As

I
11&

+(21IA, I22)+&22IAsl21)). (13)
Define

E=2+H~, (14)

(15)

I

estimated to be completely negligible. Thus the first
neglected order of magnitude due to self-radiative
effects of various kinds is tsspsH which, inasmuch as
0.'=0.39X20 ', will be considered to introduce an
uncertainty of & 1&(20 in the final theoretical resu1t.

The wave equation for the present problem is, then,

{E V+ Q—[mc'P,+n," (cp;+eA;)]
i=1,2

+Biz Qrr)%=—0, (7)
where
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Carrying out the matrix operations in (11) yields four relations among the
I kl&,

(4+W —U) I »)+Pi I »)+Ps I »&+M» I
22& =0,

(2+W —U) I»&+P1I»&+P2I22&+M»I»)=o,
(2+W —U) I »&+P1122&+P2I »&+M»121)= 0,

(W —V) I
22)+ Pi

I
12)+P2I 21&+M12I 11)= 0,

(a)

(16)
(c)
(d).

where
M12 (e /r12) (1ri 122+121'r12122'r12/r12 ). (17)

In the positive energy state here considered, 8', the
eigenvalue minus the rest energy of the two electrons,
is of order y2= nsZ2= (2/137)'. Also V, M12 ys and
Pi, P2 y. Hence from (16), the largest component
wave function is

I 22) and

indicated in (18) will not be needed. Explicit expres-
sions for the wave function components can therefore be
obtained by first solving (16b, c) for components

I
21)

and
I
12) respectively to & I 22&, substituting these in

(16a) to get the first of (18), which is then put back
into (16b, c) to give the second and third of (18). In
this way, and expanding

I
»&-

I
21&-(~+vs) I 22&. (18)

Higher orders (which go up in powers of ys) than

(2+W—U) '=-', +-,'(V—W)

to the order needed, we obtain

(19)

I11)=-,'[P,P,-M„]I22),
I21)= —[2P2+4(V W)P2+sP2P1 s(P1M12+2M»P1)ll22),
I12)= —[2P1+4 (U —W)Pi+ 0P1P'' —s (P'M»+2M»P2)] I

22&.

(a)
(b) ' (2o)

(c).

The two-electron Schrodinger-Pauli approximation
equation given by Breit' " can be obtained by substi-
tuting (20) into (16d). This equation will not be needed
here explicitly. " Substitution of (20) into (13) yields
for AE~ in terms of the largest component wave function

AEA= ,'e(22I2(P, A,+-A-,P,+P,A2 +A:P2)-
+ [P'1(U W)A 1+A 1(V —W)Pi-
+Ps(V W) A 2+As(V —W)P2]—
+ [(P1A1+A1P1)P2 + (P2A 2+A 2P2)P1 ]

[M12 (A 1P2+A 2P1)+ (A 1P2+A 2P1)M12

+A 1M12P2+ P1M12A 2

+A 2M12P1+P2M12A 1]I 22), (21)

in which the commutation of subscript 1 variables with
subscript 2 variables has been used. The terms in (21)
involving M~~ arise from the Breit interaction 8~2.
Although derived via (20) apparently without regard
for Breit's prescription that 8» be used only in a
first order perturbation expectation value, these terms
do actually conform with this prescription. For, the
same terms result from the linearly A-dependent part
of —(O'I 812I U'&, where U' satisfMs, instead of (11),

[E' V+Pi+P2+—~i (pi+ eAi).
+ a2 (p2+eA2)]U'= 0. (22)

The same terms also occur in the Schrodinger-Pauli
approximation Hamiltonian derivable from (7) to
order n2poH ~3

'2 H. Bethe, Haedbuch der Physi& (Verlag. Julius Springer,
Berlin, 1933), second edition, Vol. 24/1, p. 354.

'3 W. Perl, fo11owing paper LPhys. Revs 91, 852 (1955}j.

and also

where

yV= Vy —B'AV'V,

P;A,+A;P, =5(L,+e;) H,

AL;=r;Xp, , A;=-'2HX r, ,

H= curl, A, , div, A;=0,

(25)

(26)

yields

+EA 012 &110(22 I
2 (Li+ L2+ei+e2) H

+p, '(L2+~2) H+p2'(L, +~,) H

+(U—W)(L,+L2+oi+e,) H

+irl' V1VX ~1+122' V2VX +2
I
22), (27)

in which has also been used

viv' Al+vsv' As ——»[vi(ri)+ v»(r»)] Hxri/2
+Vs[Vs(r2)+V»(r»)] HXrs/2=0. (28)

The wave function
I 22) has the Russell-Saunders

angular dependence '5&, to the order required in
evaluating Eq. (27). The reason is that it satisfies a

RELATIVITY-SPIN CONTRIBUTION

Equation:(21) contains the usual non-relativistic
magnetic energy AE~O, of order poII, an order o.'poII
contribution DE~3 due to the terms containing M~~
arising from the Breit interaction (not to be confused
with the Breit-Margenau eGect), and the remaining
order o,'poII contribution which will be expressed in
two parts as AEA1+AEA2.

The p»t &EA012 +EAO++EA1++EA2 of (21)
evaluated as follows. Using

o Ae B=A. B+242 AX B,

and, in a Schrodinger representation,
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I22) =+o('Sl)+n'P c 0„(' '1.,), (29)

where the 0 are Russell-Saunders eigenfunctions of
the nonrelativistic 2-electron Schrodinger equation

Schrodinger-Pauli equation (the equation not written
down above) in which the perturbing terms, of the
spin-orbit and spin-spin type, '" are of order 0,'Ry.
Hence the wave function

I
22) can be expressed as

Because of the symmetrical dependence of a 2-electron
'S~ eigenfunction on the spin and orbital angular
momentum variables of the two electrons, the second
and third terms of (27) cancel, by (30), the fourth
term

I
the O(n2) differences between

I 22) and Vo and
between W and Wo are immaterial for this purpose7.

The last two terms AEA2 in (27) can be evaluated as
follows:

+EA2 —2))lo(o 1 ' V 1VXA 1+0 2
' +2 VX A2)

with
(W —V T)@„=—0,

1(p 2+p 2)

(30)

(31)

po ( &Vi &V12
rl+ r12 IX(HXrl)

4 (fl8rl r128rl2 )
Specifically, only 'P, 'P and 'D are included in the
summation in (29)."The numerical order of magnitude
of c in (29) is much less than one because of the
necessity of combining electrostatic interaction to
configurations like 2p 3p, 3d 4d, with spin-orbit type
interaction, to mix in the 4 (see, for example, Ap-
pendix A). Let the magnetic field be in the s direction,
H= (0, 0, H). The first term in (27) evaluated for the
state (29) has the diagonal contribution from the 251

eigenstate,

&EAo+&EAi= poH('R
I (I1+12+&1+&~)*l'~1)

= 2Ãppa, (32)

where E is a normalization constant. Additional di-
agonal contributions from ''L~, of order n'IjpB are.
negligible. There are no cross-product contributions
between 25, and '2l, The remaining terms in (27)
have diagonal contributions of order n'ppII in the 'S~
state, which will be evaluated, and cross-product
contributions between '5& and ''I.~ of order 0,'ppH,
hence negligible. Thus, to order n'p, pH, the wave func-
tion I22) in Eq. (27) may be considered a Russell-
Saunders 251 eigenstate of Eq. (30)."The normalization
constant N is necessary in (32) because norinalization
to unity has already been assumed for the 16-compo-
nent U in (10). Thus by (20),

1=(UI U) = (11I 11)+(21I 21)+(12
I
12)+(22

I
22)

=O(n')+-', (22
I PP+P2'I 22)+(22 I 22), (33)

or, to order a2,

(22 I 22) =1—-'(+oIPp+P2'I+2) =1—2(T)

where now +o(2S1), the usual Russell-Saunders 'Sl
eigenfunction of (30) normalized to unity may be used
on the right in (34) and also with the remaining terms
in (27). Substituting (34) for N in (32) yields for the
contribution of the first term in (27)

d EAo+ DEA1 2IAoH poH(T). —— —
'" G. Breit and E. Teller, Astrophys. J. 91, 215 (1940).
"More detailed analogous arguments for the heavier atoms

have been given by M. Phillips, Phys. Rev. 88, 202 (1952), who
6nds non-negligible configuration mixing contributions, despite
the order a4 involved.

( BV2 8V12+,"~ r+ r IX(„HXr)).. (3rr)
E r28r2 r128r12

The two-electron eigenfunction 4'o('Sl) is the product
of a triplet spin function and an L=0 orbital function.
Hence

(~1*)= (~2*)= (~1.)= (~ .)= o,

(~1*)=(~ *)=1,
and (36) becomes

(37)

(»)

poH 8V1 ( SP) 8V2 ( 222)

I
1——,I+f2

ar, E rP) ar2 E r2'&

8 V12 ( &12

+r» I
1—

I
. (39)

8r12 ( r12

(
8] = (COS 81)o
~1 p

p2rr ~2rr

cos 81 sln81d81dpldfl 2 ~ (41)
Vp 6p

By a symmetry argument, or substitution of

cos82= cos8 cos81+s1118 s11181 cosp
1

(42)

To evaluate the angular factors in (39), the orbital
function in %p is expressed in terms of the "Hylleraas"
variables" specifying the spatial location of the two
electrons. These variables are the polar coordinates
f181&1 of one radius vector, rl, say, with respect to an
arbitrary polar axis ro and the polar coordinates f2+2
of the other radius vector r2 with respect to r& as polar
axis. The variable r~2 may replace 8 in accordance with

r12 rl +r2 2rlf2 COSH. (40)

Because of the spherical symmetry of an 5 state, the
orbital part of Vo(251) must be independent of the
orientation of the polar axis rp, i.e., must depend only
on the relative dimensions of the triangle formed by r&

and r~, not on the orientation relative to rp of this
triangle regarded as a rigid body. Hence the wave
function is independent of 81, pl, and $2 and, letting
( )o represent averaging over these variables,
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a&~2= -',po&&z'). (47)

The non-Breit interaction contribution to the g/2 value
of the system is thus by (47) and (35)

in place of cos81 in (41), there results

&22'/r2') o= (cos'82) = 2.
Finally

S12 1 1
&(sl z2) )0 ((rl cos81 r2 cos82) )p

r12 0 r12 r12

1
-- (r1'(cos'8l) p

—2r lr2(cos81 COS80) 0

r12
+r22&cos282) p) =-'„(44)

by use of (41) to (43). Hence (39) becomes

++A 2 pe&(2 1&Vl/8ri+ r2& V2/8r2+ &128V12/8r12). (45)

The virial theorem" states that for a discrete state
satisfying the nonrelativistic Schrodinger Eq. (30).

+;r;8V ( r, )"/Br;) = 2&T)= 2(Wp —(V)). (46)

Hence (45) becomes

the self-radiative Qzi term in (10) via 4'0('Sl) to yield
(6) is now seen to be justified.

S12 621 ' 622+621 ' r12622 ' r12/r12 ~ (56)

By use of (23) and (24), the various bracket expressions
in (55) can be evaluated as

t 121'rlor12'A2)
[S12, Apj+=21 621 A2+

r12

( A2 rurlp. pl)
LLS», ~2j+, &ij+=41 A2. pi+

l )r12'

BREIT INTERACTION CONTMBUTION

The Breit interaction part DE~2 of (21) can be
expressed in terms of commutator s [,] and anti-
commutators [,)+ as follows:

++Ap p~&V12{[[S12,s42$+ +lj+
+[LS12, s41j+, Ppj+)+ [Elr V12j[S1 r s42 j+

+p 2 V121[S12 s41)+) (55)

where V12 e /r——u (in 222c' units) and

(g/2) o12= (&&~0+ &&»+&&~2)/2go&

= 1-l(2)+l(2)
= 1-:&T)

(48)

(49)

(50)

r12

[Pl, Vuj=pe'h (59)

ru A2 ~1 Apxru—42k +2k, (58)
r122

The result (50) holds for the 'Sl bound state of two
electrons in a potential V(rl, r2, r12) which depends
arbitrarily on the three variables r1, r2, r». In the special
case of Coulomb interactions (50) can be evaluated
exactly. In this case V is given by (9).'" Hence by (46)

r12

The other bracket expressions in (55) are obtained from
these by interchanging subscripts 1 and 2. Substituting
these bracket expressions into (55) yields, after some
reduction,

and (50) becomes

(V) = 2Wp ———2&T), (51)
e e'(

~&a——
1

A2 pl+Al p2
2 rlpl

(~g/2) 12 (g/2) 012 1=
2 Wo. (52)

The experimental spectroscopic value of Wo is"

Wo= —2(22(1.08765)= —2(1.08765)53.3X10 ' (53)

(Use of the theoretical value of Hylleraas and Undheim"
here would make no appreciable diBerence. Also
(2 1/137 is sufficiently accurate here. ) Hence (52)
yields

A2 ' ruru ' pl Al ' ruru ' p2 )+
r12 r12

e2

+os (, r,sXAr+o, roXAt)), (60)
r12

which becomes, by (37), (38), and H= (0, 0, H),

e2

+ -(r,xr,),r„(0,—th))
2r12V. Pock, Z. Physik 63, 8SS (1930).' The Coulomb interactions could be independently multiplied

by 1+0(e),which might arise from higher order quantum-electro-
dynamic interactions, without affecting the numerical result of
this evaluation.

' Atomic Energy Levels, Natl. Bur. Standards Circ. No. 447
(Government Printing OfBce, Washington, D. C., 1948)."E.A. Hylleraas and B. Undheim, Z. Physik 65, 759 (1930).

+ ( su')

The terms containing pl, p2 in (61) average to zero for

(ag/2) 12———38.7 X 10-0. (54) ~~,s

To comptete the evstostioo of the e A terms of (t0) @e
& (( ' 0')'+(

there remains the calculation of the Breit interaction
part of (21), depending on M12. Also, the evaluation of
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4'p= Q„a„f, (63)

where P„, the product of one-electron hydrogenic
functions corresponding to electron conlguration isis,
satisdes

L~ +«'/t'i+Zan'/~2 —
2 (Pi'+P~'GP =0 (64)

with hydrogenic eigenvalue for 8= 2 of

e„=—2n'(1+n ') (65)

The mixing coefficients a„ for m=2, 3, 4, 5, 6 were
determined by direct diagonalization of the Hamiltonian
(30) using calculated values of matrix elements of e'/ri~
in this representation. Configurations such as 2s3s,
2p3p, 3d4d were ascertained to contribute negligible
mixing. Details and results are given in Appendix A
and Tables II and III. With these mixing coefficients
(62) was evaluated as follows: The expectation value
of the Hamiltonian in (30) for 4'0('Si) expanded. as in

(63) and using (9), (64) and (65), yields

a/~» I +,)= W, —Z„a„"„/&„a„'
=Wo+2 'L1+(2- -'/ ')/2- -'j (66)

Substituting the experimental value of binding energy
Wo, Eq. (53), and the a of Table III into (66) yields,
for (62),

(hg/2) 3———2.3X 10 '. (67)

The value in (67) as derived from (66). is not very
sensitive to reasonable variations of binding energy or
of mixing coefficients. Thus use of the theoretical
binding energy Wo, Table III, in (66} instead of the
experimental value, or use of arbitrarily altered values
of c„designed to yield the experimental value of 8 p

rather than the theoretical, or also a direct calculation
of (62) via (63}and Tables II and III, do not change
the value of (67} by more than 0.1)&10 '. It is
incidentally concluded that the positive energy con-
tinuum configurations 1se's, &n'&0, have no more
than this effect on (67), if these configurations account
for the diGerence between (Wo)th«, in Table III and
(Wo), ~ in (53).

The g/2-value contributions (6), (52), (54), and (67)
correspond to magnetic quantum number &=1 LEq.
(38)7. By (5), (27), and (57) to (61) the linearly

4'0('Si), as can be verified by expressing %0 as a sum of
products of one-electron functions and integrating over
the azimuth angles. Reduction of the last term in (61)
by (44) yields as the Breit interaction contribution to
the g/2 value of the system

(~g/2) & ~+&&/280+ 6 (+o I
~'/~»

I +0) (62)

Numerical evaluation of (62) analogously to (T) in
terms of spectroscopic data cannot be made. However,
a zero-order representation of 0'0 was available (from
an initial attempt to solve the entire problem in this
way), as

H-dependent magnetic energy to order 0,' is proportional
to M.

TABLE I. Breit-Margenau result with screening constants.

Case

(a)
{b)
(C)
(d)
{e)
(0

2
2
2.04
2
2
2

72

2
1
1.19
1.19
2

(~g/2) mr

—44.4X &0-'
37%7—40.1—38.7—39.5

-36.6

actual case by the kinetic energy of the system of two
interacting electrons, which is not obviously decom-
posable into a sum of signi6cant energies for each
electron.

If V(r) in the hypothetical case is taken as a Coulomb
potential with nuclear charge Z» for one electron and Z2
for the other, then (69) becomes,

(Ag/2} = (g/2) —1=—', '(Z '/ '+Z '/I '). (70)-
Various combinations of Zi, Zm, Ni and e2 in (70) give
the numerical results shown in Table I. Cases (a) to
(d) assume a is2s plectron configuration. Case (a)
assumes. no screening of nuclear charge. Case (b)
assumes complete screening by the 1s core electron.
Case (c) uses the screened nuclear charges derived by
Hylleraas and Undheim" in connection with a vari-
ational calculation of the binding energy of 'S» helium.
In case (d) Z~ was adjusted to yield the correct value,
Eq. (54). Cases (e) and (f) assume a 1s3s electron
configuration as possibly more representative of the
superposition of isis configurations making up the 'S»
eigenfunction (Appendix A), with unscreened and
screened values of nuclear charge. Table I shows that
reasonable valves of screened nuclear charge or effective

BREIT-MARGENAU RESULT WITH
SCREENING CONSTANTS

Breit and Margenau's result for the g/2 value of a
single s electron moving in a central field, obtained by
evaluating —ee A in a Dirac eigenstate (compare
Appendix B) is, to order 0.',

(g/2)am=DR/poH=1 —3(T). (68)

I.et two s electrons move independently of each other
in the same binding potential V(r). The Breit-Margenau
g/2 value of this hypothetical system is, by (68)
(subscripts 1, 2 here denote electrons 1 and 2),

(g/2) = (~~+~~ )/2~~=-'t 1—l(T }+1—l(T )j
= 1——,'(T,+T2). (69)

The result (69), being a nonradiative contribution, is to
be compared with the two-electron nonradiative contri-
bution (50}. This comparison shows that the simple
sum of. the kinetic energies of the two independent
electrons in the hypothetical case is to be replaced in the
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=1.001104+1X10-6. (73)

The indicated precision of this number, ~1&10
stems from the first neglected self-radiative contribu-
tions of order o.' previously mentioned. The first
neglected nonradiative contributions are of order n4Z4,

n'Z'm/Mp hence ((10 '.
The experimental result' is the ratio of gJ value in

'S~ helium and in 'S~ hydrogen, or

(gu, /gH), „p——1—(11%16)10-'. (74)

If the experiment' is considered independently of the
Koenig, Prodell and Kusch (KPK) hydrogen g-value
experiment, ' the experimental ratio (74) is to be
compared with the theoretical ratio

(1.0011454—41X 10 ')
(1.0011454—17.8X 10

= 1—(23+1)10—' (76)

in which, for hydrogen, the same self-radiative contri-
bution as for helium and a Breit-Margenau contribution
of —23W= —3~n', Eq. (68), have been used. Alternatively,
assuming the theory to have been satisfactorily verified
for hydrogen by the KPK experiment and hence
multiplying the experimental ratio (74) by the denomi-
nator in (75) gives

quantum number yield results within about two parts
per million of the correct value (54).

THE DIAMAGNETIC EFFECT

This effect' gives a negative a'p, oH contribution to g
arising from reduction of the external magnetic field
at a given electron due to the external magnetic held
(diamagnetically) induced momentum in the other
electrons. As might have been expected, this contri-
bution is, for s electrons, just the spin dependent part
of the Breit interaction contribution (60). This contri-
bution can also be derived classically-'' as the cross-
product Ah'. A), ' terms of the sum of Hamiltonian
contributions —,

' (y),+eAI, '+ eA), ')' for each electron,
where AI, ' is the external vector potential at electron k
and A), '= goto—Xr ~/)r P)is the vector potential at
electron k due to the spin magnetic moment of electron
l (to be summed over l). A more general diamagnetic
interpretation is discussed in the following paper. "

COMPARISON OF THEORY AND EXPERIMENT

The theoretical g/2 value of 'S) helium is given to
order n' by (6), (50), (54) and (67) as

(g/2) He, theor

++K/2POII ++AD+ ++Dr+ (++A12+~+A3) (71)

= 1+(0.0011614—16X10 ') —(38.7+2.3)10 ' (72)

which is to be compared with (73). (Multiplication of
the ratio (74) by KPK's experimental result for (g/2) H

would give. the same mean value as (77) but somewhat
higher limits of error ).

The agreement between (74) and (76), and between
(73) and (77), is within the assigned theoretical and
experimental uncertainty, of which the experimental
uncertainty is greater than the theoretical by an order
of magnitude. The agreement between (74) and (76)
tends to substantiate the additivity properties of the
radiative and nonradiative corrections in hydrogen and
in helium and to some extent the magnitude of the
nonradiative corrections in helium relative to hydrogen.
The experimental uncertainty is too large by a factor of
ten to permit any conclusion as to the mutual radiative
or Breit contribution of —2.3X10 ' to the theoretical
helium g/2 value. Comparison of (73) and (77) indi-
cates that the helium experiment' in combination with
either the hydrogen theory or experiment' tends to
substantiate the nonradiative contribution to the
theoretical helium g/2 value and does not contradict
the existence of the fourth-order self-radiative contri-
bution.

We are particularly grateful to Professor N. M. Kroll
for many stimulating talks. We also wish to thank
Professor R. Serber and Professor S. T. Epstein for
helpful discussions.

APPENDIX A. MATRIX ELEMENTS AND
CONFIGURATION MIXING OF e'jr&2

The nonrelativistic matrix elements of the electro-
static interaction e/r» between nonrelativistic zero-
order 'S~ states corresponding to various 1sns electron

configurations are"

(1sets
~

e'/r» I 1sn 2s)

= —,'&u, (1OO)u, (e,OO) —u, (1OO)u, (e,OO) ( (e2/r») (

~
ut (100)u~ (e200) —u2 (100)ut (e200) )

= (Ze'/a) LR'(10e)0, 10n 20)
—R'(10e)0, e2010)j, (A.1)

where ut(elmt) is the one electron nonrelativistic
Coulomb eigenfunction for electron 1 with quantum
numbers e, )), mq, etc., and a=5'/me'. The direct
integral can be written as

R'(10eto, 10e20)

=Jf BpE p)t ppf )) (p)p leap

0 0

+ dpRntoRn20p ~ RM (p)pdp (A.2)

(g/2)H. .. p= 1.001117&16X10 ', S(e), e2) —T—(e), e2), (A.3)

~ W. E. Lamb, Jr., Phys. Rev. 60, 817 (1941).
' N. F. Ramsey, Phys. Rev. 78, 699 (1950).

~ E. U. Condon and G. H. Shortley, The Theory og Atomic
Spectra (Cambridge University Press, Cambribge, 1951),p. 174.
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where, setting n1——m, n~=n, TABLE II. Electrostatic interaction matrix elements
(in units of Ze'/a). e

S(m, e)= pR oR.odp,
0

(A.4)

T(m, n) = " (p+p')e "R oR odp (A.S)

Ro (10nt0, no010)

dpRtoRoyop RqoRnoopdp

R o(p) is the Coulomb radial eigenfunction with

p=Zr/a and quantum numbers n=m, 1=0, etc. The
exchange integral can be written in various ways, of
which one is

1sms, 1sms

is2s, is2s
2 3
2 4
2 5
2 6
3 3
3
3 5
3 6

4

4 6
5 5
5 6
6 6

1s2s, 2s3s"
1s2s, 2p3pb
1s2s, 3d'4db

Qo(10mO, 10nO)

0.20988
0.05053
0.02871
0.01927
0.01441
0.09949
0.02884
0.01774
0.01170
0.05763
0.01842
0.01190
0.03752
0.01273
0.02652
0.004158—0.017057—0.002413

Ro(10mO, n010)

0.02195
0.01122
0.00710
0.0051.
0.0038
0.00577
0.00367
0.0027'
0.0022'
0.00234
0.0018'
0.0016
0.0013'
0.0011"
0.0009'
0.003936—0.004588—0.002739

~lX leme, lees

0.18793
0.03930
0.02161
0.0142
0.0106
0.09372
0.02517
0.0150
0.0095
0.05529
0.0166
0.0103
0.0362
0.0116
0.0256
0.000222—0.00719
0.000146

' Estimated by graphical extrapolation~
b See Eqs. (A.10, 11, 12).

Jo
The direct integral (A.2, 3) was evaluated by the
method of Gordon" as

1 nl (n —m)" (n —m)
5(m, n) =4(m/n)l F —m+1, n+1, n —m+1, I

(n+m)' (n —m)!m! En+m& &n+m)

4 (mn)'*(2mn+n m)" s—(2mn+m n)™2—(2mn+m —n~
T(m, n)=

~
[(2m+ 1)'e'—m'+4m'n']

(2me+ m+ e)"+" & 2me+m+e &

(A.7)

4mn 4mn
XIi 1—m, 1—n, 2, —4(m —1)m'n'F 2 m, 1—e, 2, —— (A.8)

4m'n' —(e—m)' 4m'e' —(e—m)'

where n&~ m and I is the hypergeometric function

np n(a+1)p(p+1)
F(a, P, y, x) = 1+—x+ x'+ . (A.9)

7 mb+1)2'

The formulas (A.7, 8) are for discrete states, n, m,
positive integral. The formulas for one or both states in
the continuum are similar but more complicated.

The direct integral (A.2) was computed by (A.7, 8)
for 2&~et, no&~6. The exchange integral (A.6) was

computed by direct substitution of the radial eigen-
functions in (A.6) or the equivalent, for 2&~et, no&~4,

and estimated graphically by extrapolation for n&, n2

=5, 6. The difference between direct and exchange
integrals is by (A.1) the desired matrix element of
e'/r~, , in units Ze'/a. The results are shown in Table II.
Also included in Table II are the matrix elements to
some 2-electron-excited configurations as follows:

(1s2s
t
e'/r to

~

2s3s) = (Ze'/a) [Ro(1020, 2030)
—R'(1020, 3020)], (A.10)

(1s2s
~

e'/rto
~
2p3p) = (Ze'/v3a) [—R'(1020, 2131)

+R'(1020, 3121)], (A.11)

6

P K„„a„=W'a, m=2, 6.
N=2

(A.13)

simultaneously for W', ao, a4, ao, ao with a& ——1 (here a
means at, o,, t„«), using for K the nonrelativistic two-
electron Schrodinger Hamiltonian with Coulomb inter-
actions. The results, 'after making a small allowance
by extrapolation for all m, n) 6 are given in Table III.
The calculated binding energy —1.0859 of '5& helium
(in units of 4 Ry) may be compared with the experi-
mental value" —1.08765 and with- that derived by
Hylleraas and Undheim" by a variational method,
—1.08761. To compare ionization energies (in units

C

~ W. Gordon, Ann. Physik 2, 1031 (1929).

(1s2s
~

e /rto
~

3d4d)= (Ze'/(+5) a)[R'(1020, 3242)
—R'(1020, 4232)]. (A.12)

The direct and exchange integrals for these matrix
elements were computed by direct substitution of
Coulomb radial eigenfunctions into formulas"- equiva-
lent to (A.2, 6).

The mixture of the configurations of Table II making
up the '51 state was determined by solving
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4 Ry) subtract one from each of these numbers. Prob-
ably the continuum states of type isns account for
most of the difference of about two percent between
the present result for ionization energy and the experi-
mental value.

APPENDIX B. MATRIX ELEMENTS OF —eo. A

As the result of initial attempts to calculate utt12II
contributions by direct representation of U(251) as a

sum of products of Dirac one-electron Coulomb wave
functions, matrix elements of —ee A were calculated.
They are presented here for possible usefulness in this
type of problem.

To be calculated to order u2t22II is the matrix element
of —ee A between two Dirac one-electron Coulomb
wave functions, where A is the vector potential of a
uniform magnetic Geld II in the s direction. The Dirac
wave functions are-'4

't,(j m+-1)/(2i+2)5'f-. (t) Y,+,.- .(8-, e-)

iP(j+m+1)/(2j+2)hfdf„&(t) Yt+t +t(8, &)

I:(j+m)/2jl'*g-2(&) Y --:,--~(8, 0)
—L(j—m)/2jl'g- (t) Y;—:,-:(8,e)

2TU+m)l2j j'f-.(t)Y;;,-~(8, e)
iL(j —m)/2i —3'f-.(t) Y:.~:(8,e)

L(j—m+1)/(2j+2) j'g- (r) Y+;,= (8, 4)
Dj+m+1)/(2j+2)$&g„&(r) Y;+t, +~(8, P)

(j=~+l)
(k = l 1—= ——(j+-,') )

(i =t 2)—
(k=l=j+ ,')-

in which the angular functions Y1 (8, @) are the
normalized surface harmonics,

Y (8, ~)=(2 ) :6.(8)'—"t, (3.3)

and (P1 (8) is the normalized associated Legendre
polynomial. The radial functions f„&(r), g„&(t) are the
regular solutions of

(&+1+'7/ )f=&L~g/d +(k+1)g/ 3 (3 4)

(& 1+&'/p)—g =et dfldp+—(k 1)f/pj, —(3 ~)

where p=Zr/a, a= 52/me', 7= eZ~Z/137, and 8 is

the energy eigenvalue in units mc',

7~ n3~-- l+ (36)
2n' 2n4 E. lkf 4)

Specialization to a Coulomb binding potential has been
made in (3.4, S). Let u;, v;, i,j 1, 2, 3, 4denote any
two Dirac wave functions (subscripts i, jdenote spinor
components here). Then the matrix element to be
calculated is

—e(ul22 Alv)= ——(ul22 Hxrlv)
2

eH
(ulr si~(u„co~—,sing) l.)

2

~eH t.
r sin8[u1*e't'v4 u2*e, '&v 2—

2
+u2*e '&v2 u4*e't'v1)dt, (3.7—)

TAar.E III. Diagonalization of Schrodinger
tv o-electron Hamiltonian.

where * denotes complex conjugate and the integration
is over r, 8, p. Substitution of the various possible
combinations of wave function (3.1, 2) into (3.7)
yields (numerical subscripts now denote particular
values of quantum numbers)

—e(n1k2j1 ——l1&2, m1IC Altttkj22 l2&2, m2)——

m (2j+1y eII
=+8m 1m28t 12'2—

l

~ &2j+2) 2

X (f1g2+f2g1)r'dr, (3.8)

where m= m1 ——m2, j =j,=j 2, f1= fn121(r), etc.

e(n1k1j1=11+s2,—m1I 22'Aln2k2j2=l2 —2, m2)

eH (j22—m2)l
= Smlm2 ~i2,~1+1

2 2j~

(j12—m')'
(f1g2+f2g1)r'dr

2/i
(3.9)

The radial integrals in (3.8, 9) are next evaluated to
order y in terms of integrals of nonrelativistic hydro-
genic radial functions. Thus, multiply (3.4) for f1 by
g2, (3.4) for f2 by g1, (3.5) for g1 by f2, (3.5) for g,
by f1 and add the four resulting equations to get

(
l

&1+&2+
l (fC2+f2g1)

p

d glg2
'7 (g1g2 f1f2)+ (kl+ k2+ 2)

dp P

ZnXmnan =W am am = —am, a2 = 1.
W' (unit 4 Ry) ae' a4' ae' ae aj' ae' as

-1.0859 0.523 0.090 0.052 0.049 0.00027 —0.0087 0.00014
'4 Reference 12, p. 311.

, + (k1+k2—2) . (B.10)
p
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The functions f(p) and g(p) are next written as power
series in y=&2Z. By (8,4, 5) g is the "large" wave
function for positive energy states and starts oG with
the zeroth power of y. By (8.4) f starts off with the
f«rst power of y. Since (8.4, 5) expressed in terms of

f/p and g contain y only as y2, there are no odd powers
in the series for f/y and g. Hence

(ki= k2 ——k being understood) and

P= (~/Z)'f, G= (~/Z)'g, (8.17)

are nondimensional wave functions. In case both e~, e2
belong to the continuum, the Kronecker delta in (8.16)
is to be replaced by the Dirac 8 function. Expanding
(8.16) to order &2 yields

g
—g(o)+~2g(2)+. . .

(8.11)

(8.12)
f LG (o)G &o)+&2(P (o)P (o)

0

+.Gi(o)G2(2)+G (2)G (o))]P2(fp=g» (8 18)The zero-order function g' & is the usual Schrodinger
nonrelativistic hydrogenic radial function

Substitution in (8.15) yields8.13g a(0'=~ i.

Dividing through in (8.10) by the first factor and (p G+J; G ) 3p (k 1)p
substitution therein of (8.6, 11, 12) yields, to order p,
2 d (ki+ k2+ 2)
—(fig2+ f2gi) = —+ gi"'g2"'
7 -~p p

d ki+k2+2
(g«(O) g2 (2)+.g«(2) g2

(O)

-~P P

d (ki+k2 —2) ( 1 1
fi(0)f2(o)+

~
+

dp p & 4N«2 42222 p i

d (ki+ k2+2)
X —+ g

(o)
g

(o) (8 14)
-~p p

Integration by pod p and integration by parts (assuming
regularity at infinity) yields

F00 00

(fig2+f2gl)p'(fp= (ki+k2 —1) ' gi"'g2 P (fp
pJO J,

+ y2 (kl+k2 1) (gl(o)g ( )+gi{2)g2(0))p2(fp
Jo

+( «+ 2+ ) fi"'f2"'p' p

1~1 1~
+-~ + 1(ki+k2 —1)

J4 & 22«2 N22)

(2k —1)('1 1)
i"'J'2"'P' P+ I +

8 ) ~, n, )

—k)I Gi( )G2( )pdp . (8.19)
0

Further reduction of F~ "&F2('& to G~")G2(" can be made.
Thus, multiply (8.4) for fi by f2 and (8.4) for f2 by f,
and add. Multiply (8.5) for gi by g2 and (8.5) for g2

by g& and add. Subtract the resulting two equations
from each other and integrate by p'dp. Integrate the
right-hand side by parts. For k~= k2 it reduces to zero.
The left-hand side equated to zero can be written

(" (%+&2) V'
+1+—~P'2P2(jp

p

P" (%+&2) V2—1+—GiG2p'dp (8.20)
p 2 p

7

which yields

1/1 1)
P (o)P (o)P2{fp

~ +
~

I Gi(o)G (o) 2(f

8&m, n, i j,
00

+ I G, (o)G2(»pdp (8 21)
2J,

Further reduction can be made on the assumption
ki ——k2 as is usually the case. The orthogonality relations 1

for f and g can now be used. Thus, from (8.4, 5) is
1p p

readily derived (k-1) ( 1 1 y= (k—2)~»+V' ~,+
4 E 22«2 2222)

(8.16)(~1~2+GIG2)p (f'P ~12&J,
vrhere the subscripts 1, 2 now denote only n&, e&

—(k k ) ~ &» &') d . (8.15)( '+»j g' g' P P ' i ' ) Substituting (8.21) into (8.19) yields the desired radial
integral to order y'
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Equation (8.22) in (8.8) yields the desired matrix
element for ki ——ks ——k. Note that by (8.17) and the
definitions after (8.5) the dimensional radial integral in

(8.8) is given in terms of the nondimensional integral
(8.22) by

eH
(figs+ fsgr)» d»

~ G ""pdp= (1/p) = 1/~' (8.24)

For kiAks, as in (8.9), the more complicated (8.15)
appears to be necessary. The Breit-Margenau result
(70) for a Coulomb field is obtained by setting n& ——ns
and

in (8.22). The matrix element (1/p)nrns on the right

(p G +p G )psdp (8 23) hand side in (8.22) is given by Eqs. (A.4, 7) in Ap-
pendix A.
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Relativistic Contributions to the Magnetic Moment of n-Electron Atoms
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A Schrodinger-Pauli approximation wave equation for an n-electron atom in an external magnetic 6eld II
is derived from a Dirac equation by straightforward extension of the procedure for n=2. The order cF terms
in the resulting Hamiltonian contain corresponding cPpoH and cx'Ry (fine structure) parts The u'.poP terms
can be arranged as a sum of the existing relativistic bound state contributions due to Breit, Margenau, and
Lamb, and an additional contribution. The additional contribution is analogous to the spin-orbit contribu-
tion to one structure. In the 'Sg ground state of the heavier alkalies it is estimated to yield a positive contri-
bution to the atomic g value of the order of ten times the aforementioned (negative) contributions, which
may help to account for some experimental results.

INTRODUCTION
' /RECISION measurements of the Zeeman effect by

atomic beam spectroscopy' have yielded deviations
from unity of the g& values of the heavier alkali atoms
in their ground state, '5;. The relevant experimental
results are:

rubidium relative to sodium,

(gj)itb/(g j)N@= 1+5X10 '; (1a)

cesium relative to sodium,

(gj)cs/(g j)N, ——1+13.4X 10 ') (1b)

with a statistical probable error of approximately
~1)&10 '. The gJ of lithium, sodium, and potassium
were found to be identical to within &2.5X10 '. An
additional measurement is reported by Franken and
Koenig 2

potassium relative to hydrogen,

(gj)K/(g j)rr = 1+(1.6+0.4)X10 '. (2)

The results (1) and (2) have so far not been quanti-
tatively explained (i.e., to the experimental accuracy),
nor will they be in this paper. A qualitative interpreta-
tion of at least part of the eGects involved will however
be added to the existing one. '

' P. Kusch and H. Taub, Phys. Rev. 75, 1477 (1949).
2 P. Franken and S. Koenig, Phys. Rev. 88, 199 (1952).' M. Phillips, Phys. Rev. 88, 202 (1952).

The deviations from unity in (1) and (2) should be
attributable to relativistic eGects inasmuch as non-
relativistic theory predicts gj= 1 in a S;state. Quantum-
electrodynamic self-radiative eGects on a single free
electron, producing an altered "intrinsic" magnetic
moment of the electron, ' would be expected to aGect
similar Zeeman levels of one-electron spectra similarly
and hence to yield no deviations from unity in the
ratios (1) and (2). Of the various bound-state relativistic
eGects, i.e., eGects arising from the atom obeying a
relativistic rather than a nonrelativistic wave equation,
those due to Breit and Margenau' and to Lamb' appear
too small by a factor of the order of ten. However
effects of breakdown of Russell-Saunders coupling by
a combination of electrostatic interaction and spin-
orbit coupling mixing states of higher con6gurations
into the ground state have been estimated by Phillips'
to yield dowering amounts to the magnetic moments of
the alkalis of the right order of magnitude to account
for at least part of (1) and (2).

' J. Schwinger, Phys. Rev. 82, 664 (1951);R. Karplus and N. M.
Kroll, Phys. Rev. 77, 536 (1950).' G. Breit, Nature 122, 649 (1928); H. Margenau, Phys. Rev.
57, 383 {1940);N. F. Mott and H. S. W. Massey, The Theory of
Atomic CollisiorIs (Clarendon Press, Oxford, 1949), second edition,
p. 72.

6 W. E. Lamb, Jr., Phys. Rev. 60, 817 (1941).' See W. Perl and V. Hughes (preceding paper) LPhys. Rev. 91,
842 (1953))for an evaluation of these eifects in 'S~ helium. -


