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The method of correlations, which has been widely used in the theory of turbulence, is applied to the case
of a field that satisfies linear equations. It is found that most of the difhculties encountered in the theory of
turbulence disappear when the equations are linear and that a number of general results can be obtained.

In particular, it is possible to use an analog of Gibbs' procedure of replacing a time average by an
ensemble average. The mathematical. foundations of this procedure are discussed and shown to be con-
siderably diferent than for dynamical systems with a finite number of degrees of freedom, to which the
method is usually applied. In particular, it is shown that it can be applied to dissipative fields excited by a
randomly varying force.

Three examples are treated in some detail: statistically uniform but nonisotropic fields; statistically non-
uniform, dissipative fields excited by a random force; and the scattering of monochromatic radiation by
inhomogeneities of the refractive index.

The method of ensembles, as applied to these problems, appears to have a mathematical foundation that
is rather simpler than in other cases that have been considered in the past, but several basic and unsolved
problems are mentioned.

I. INTRODUCTION

HE methods of classical statistical mechanics were
developed primarily to deal with the thermo-

dynamic equilibrium of systems with a 6nite number
of degrees of freedom. They have been extended to the
case of continuous media, but only by the device of
supposing a portion of the medium to be enclosed by
ideal, perfectly reflecting boundaries. They have also
been extended to include small departures from thermo-
dynamic equilibrium, but in the case of continua, no
methods similar to those of kinetic theory or general
statistics have been developed. The existing methods
are better adapted to calculating the constant proper-
ties of the medium than the statistical determination of
its more complicated modes of motion.

Other methods have been introduced into the theory
of turbulence, which do not require that the system be
in thermodynamic equilibrium. These methods consist
largely in the study of the correlation of two quantities
when measured at diferent points in space and time. ' 4

Since the interest has centered on hydrodynamic
problems, governed by nonlinear equations, progress
has been difFicult, and hampered by the fact that the
equations for the double correlation (Nv) also contain
the triple correlation (Nvm), etc.' Attention has been
centered on this diKcultyf and the search for valid
hypotheses to enable it to be circumvented. As a result,
only more or less conventional solutions have been

*On leave from the Scripps Institution. of Oceanography,
La Jolla, California.

' See references 2, 3, 4, or the review of J. E. Moyal, Stochastic
Processes and Statistica/ Physics, J. Roy. Stat. Soc. B11, 150
(1949).

20. Reynolds, Trans. Roy. Soc. (London) 186 (1895).
3 G. I. Taylor, Proc. London Math. Soc. 20, 196 (1922).
'T. v. Karmin and L. Howarth, Proc. Roy. Soc. (London)

A174, 192 (1938).
t This diKculty is more obvious than serious, as will be shown

in a subsequent paper.

obtained, and problems involving boundary conditions
or driving forces have been ignored.

When the same methods are applied to electrody-
namic' or acoustic' problems, the difriculty vanishes,
and other problems claim the attention. These are of
two kinds: the one has already been indicated, and
involves boundary conditions and driving forces. In
principle, these present no difficulty and it is merely a
matter of arranging the calculations systematically.
This is the primary topic of the following paper.

The second kind of problem is more fundamental. It
has been customary in the theory of turbulence, to
consider the averages to be temporal, rather than
ensemble averages (see reference 1). This is an attrac-
tive approach, but can be expected to encounter all of
the difficulties inherent in the ergodic theorem. How-
ever, these expected diS.culties do not obtrude them-
selves at once, and the ensemble average appears in the
calculation merely as a convenient device for the solu-
tion of the differential equations obeyed by the temporal
averages (see Sec. III, below). It is only when one
endeavors to generalize this method of solution that
the expected. diKculties arise (Sec. IX, below).

Let p(xt) be any field that obeys the equation

Lp= Bp/Bt,

L, being a linear operator that commutes with t and
8/Bt, and such that the eigenvalue problem

Lf= stuf—
has no discrete eigenvalues. This implies that any
boundary conditions are included in the operator I,
but that they are not stringent, as are for example,
those of a cavity with perfectly reflecting walls. If L
contains no frictional terms, the boundary conditions

5 C. L, Pekeris, Proc. Intern. Congr. Math. 1, 648 (1950).' C. Kckart, J. Acoust. Soc. Am. 25, 195 (1953).
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must be such that energy can be dissipated by radiation
to in6nity, and may include the condition for "out-
going waves" (see Sec. VIII). In dealing with problems
such as this, it has been customary to introduce addi-
tional, artificial boundary conditions, until the spectrum
of Eq. (2) becomes a line spectrum and the system can
be considered closed. At the end of all other calculations,
these arti6cial boundary conditions are removed, which
is a difficult limiting process.

There are also reasons for doubting the validity of
these procedures. The statistical mechanics of closed
systems has been developed with special reference to
thermodynamic equilibrium, and its postulates are not
certain to be applicable under other conditions. To
emphasize the lack of equilibrium, a "driving force"
will be added to Eq. (1), so that it becomes

Lp= Bp/Bt+a(xt), (1.1)

the function a being given as part of the data of the
problem.

The usual method of solving such problems is to
expand both p and a as Fourier integrals. This implies
that the time averages of p' and a' are zero. This is not
permissible if one wishes to deal with statistically steady
states, for which these and other time averages are
finite. The objective of the following paper will be to
develop methods for calculating such averages without
solving the more difficult problem of finding an analytic
expression for the solution that is being averaged. This
is essentially the basic idea of the Reynolds' and v.
Karman4 approach to problems of turbulence.

II. CONVOLUTION AND CORRELATION

In the following, much use will be made of the two
limiting processes, '

P= {PP'I r)
Q=(aP'I r)
Q'= (Pa'

I r)
A = {aa'I r} or

(PP'I r),
&aP'I r),
&Pa'I r&,

Then, ignoring any difficulties that may arise in con-
nection with such equations as

If p is a solution of Eq. (1.1) for a given a, and if
both can be expressed as ordinary Fourier integrals in
the time, then the convolutions (aa'I r), {pa'I r),
(pp' I r) will be finite and the corresponding correlations
will be zero. Such solutions will be called Class I (I for
integrable). If both p and a can be expressed as a
Fourier (or similar but more general trigonmetric)
series, the correlations will be similar series in the
delay time ~, while the integrals defining the convolu-
tions will diverge. Such solutions will be called Class AL
(averageable, line spectrum). There will certainly be
other solutions for which the correlations are finite,
but which do not have pure line spectra; these will be
called Class AC.

It is this Class AC that contains the solutions that
are of interest in statistical mechanics. There are no
simple general methods for representing them ana-
lytically, nor is it necessary to find such methods.
It is typical of statistical mechanics that its objective
is the calculation of averages (including correlations)
rather than the determination of detailed dependence
on time and space.

In the present case, this is relatively simple, for the
correlations satisfy a set of linear equations that are
readily deriveable from Eq. (1.1). It is also important
to note that the convolutions satisfy exactly the same
set of equations. Let

and

T

{f(x, t)) = lim ~ f(x, t)Ct

L&pp'I )=((LP)P'I ),

it is found that these fields are governed by the equa-
tions

With their aid, one may define the convolution of two
fields f(x, t) and g(x, t) as

(fg'lr) ={f(»t)g(x' t —r)}, (5)

and the correlation as

(fg'I.&= &f(x, t) g(x', t—r)) (6)

It is important to note that both the convolution and
the correlation depend on the two points x and x' in
space, as well as on the delay time r. If the fields f and

g each have n components, the symbols here defined
have e' components; they are 6elds in the seven-dimen-
sional space x, x', r.

7 In symbols such as {f(x,t)}, t is a bound variable, while x
is free; f 1 is a definite integral over t, and ( ~ ) is very similar.

LP=+BP/Br+ Q,

L'P = BP/Br+Q', —
L'Q= —BQ/Br+A,

(8)

LQ'= +BQ/rir+A,

the operator L acting on x, L' on x'. Because the oper-
ator L includes boundary conditions, these equations
are more elaborate than this formal notation indicates,
and moreover they are not the only conditions to be
satisfied. From Eqs. (5) and (6) it follows that

(fa'I.) = {a'fl —), &fa'I &= &a'fl —), (9)

so that the following symmetry conditions are required:

P(x, x', r) =P(x', x, r), —
Q(x, x', r) =Q'(x, x', —r),
A (x, x', r) = A (x', x, —r).
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It is both natural and convenient to suppose that all
these functions are real. Then it follows from Eqs. (3)
and (4) that

for all real values of 9. From this, it is seen that the
Schwarzian inequalities

P(x, x, 0)+2OP(x, x', r)+O'P (x', x', 0) )~0,
P(x, x, 0)+2OQ'(x, x', r)+O'A(x', x', 0) &~0, (8.2)

A(x, x, 0)+2OA(x, x', r)+O'A(x', x', 0) &~0,

are also required of the P, Q, and A fields. If (a)NO,
(p)AO, there are additional inequalities to be con-
sidered; ho~ever, it is no loss of generality to suppose
that (a)= (p)=0, because the Eq. (1.1) is linear, and
this can always be brought about by subtracting a
constant from the quantities concerned. This is a fun-
damental point in the following calculations, for the
inequalities that involve (p) are not satisfied by (p), in

general. Thus the formal identity of the equations for
convolutions and correlations depends on the elimina-
tion of the linear averages in this way.

While these many equations and inequalities are
complicated, it will be seen that their solution is quite
simple. Moreover, it will be possible to obtain solutions
that cannot be either the convolution of a Class I
solution of Eq. (1.1), nor yet the correlation of a Class
AI. solution. It does not follow that they are the corre-
lation of a Class AC solution, but there is a strong
presumption to this eGect.

III. SOLUTION OF THE STATISTICAL EQUATIONS

Since the Eqs. (8) to (8.2) are all linear, their solutions
will conform to a limited principle of superposition, the
limitation arising from the fact that the Schwarzian
inequalities are present. Let Pi, Qi, Qi', Ai, and P2,

Q2, Q2', A2, be two solutions; then P=c,Pi+c2P2. A

=ciAi+c2A2 will again be a solution if ci and c2 are
both real positive numbers. If both c~ and c2 are nega-
tive, P ~ A will certainly not be a solution; if one is

positive, the other negative, P A may or may not be
a solution.

This may be generalized: if P, -A, is a family of
solutions of Eqs. (8) to (8.2), q being a parameter or
parameters, and w(q) is any non-negative function of q,
such that the integrals

t'

w(q)P, dq, A = w(q)A, dq,

converge well, these integrals will again be a solution.
Now, let p„a~be a family of Class I solutions of Eq.
(1.1); their convolutions may then be substituted for
P, A, in Eq. (11), leading to

P=~ w(q)(q, p, 't, r)dq, A=~ w(q)(~.~'l~)dq (»)

Since the techniques for constructing Class I solutions
are well-known, the Eq. (12) provides a relatively
simple and systematic method of solving the Eqs. (8)
to (8.2).

In the next section, it will be shown that the functions
deined by Eq. (12) cannot always be the convolution
of any Class I solution, etc. ; this is not, as has been
remarked, proof that they. are then the correlation of a
Class Ac solution p, but if this is the case (as one may
be inclined to believe) then

&pp'I )= " (q)(p.p'I )dq, (12 1)

The operation of forming the time average is thus
replaced by the integration over q and t; this is analo-
gous to' Gibbs' ensemble average, and for that reason,
a family of Class I solutions with an associated weight
function will briefly be called an ensemble.

The weight function here appears as an arbitrary
function introduced in solving the statistical equations.
In general, it will be uniquely determined in specifying
the function A = (aa'

~
r). This function is appropriately

considered as part of the data of the statistical problem.
In the case of homogeneous problems, A =0 and other
data must be included in the formulation of the problem
in order that it have a unique solution: i.e., in order
that w(q) be determinate.

and that

a(x, t) =
) n(x, &o) exp( icot)d(o—

n(x, a)) =n*(x, —~),

(13)

(13.1)

while (by the Parseval theorem)

(aa'( r) = 2m ~~n(x, a&)n*(x', a&) exp( icd7)d&u (1—4).
The converse of this proposition is not as simple: let

A(x, x', r) be a real function of the seven variables
indicated, having the symmetry

A(x, x', r) =A(x', x, r)—
and satisfying the Schwarzian inequality

A (x, x, 0)+2OA (x, x', 7.)+O'A (x', x', 0) &&0; (16)

moreover, let

A(x, x', ~)= B(x, x, &o) exp( —kur)der. (17)

Then, because of the reality and symmetry of A,

B(x, x', cv) =B*(x,x', —co) =B*(x',x, (o); (18)

IV. MATHEMATICAL PROPERTIES OF
CORRELATIONS AND CONVOLUTIONS

If a(x, 3) is a real function such that (aa'tv) exists,
it can be shown that a has a Fourier transform n,
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because of the second of these equations, the integral
equation,

P

B((e)f(x, ce) = B(x, x', (e)f(x', ie)dx', (19)

with w=1/4m. Then Eq. (12) yields

P= N{p*p'I v.), , A = (R{a*a'Ir).
This can be used to generalize Eq. (12) into

will have only real eigenvalues, B(&v).
If A = {aa'

I r}, it will satisfy Eqs. (15) to (18) in-
clusive, and Eq. (19) will have exactly one eigenvalue

B(~)=2m l~(», ~) I'd»,

which is positive, and has the single eigenfunction
n(x, a) associated to it. Conversely, if Eq. (19) has just
one, positive and nondegenerate, eigenvalue, and if

f(x, ie) is the normalized eigenfunction, then

f
P='Gt w(q){p,*p,'I ~)dq, etc. (23)

hei(q) = w2(q, q2)dq2,

and thus enables one to make use of complex ensembles.
Another modification of Eq. (12) is obtained as

follows: with the ensemble p(q), a(q), construct an
ensemble p(qi)+p(q2), a(qi)+a(q2) with double the
number of parameters, and the symmetric weight
function w2(qi, q2) =w2(q2, qi). Using the abbreviation,

B(x, x', a&) =B(a&)f(x, ie) f*(x', &o)

and the function

n(x, (o) = LB(cv)/2m)&f(x, (a)

(20)
Eq. (12) yields

(20 1) Wile 1'e

P= 2Pi+2P2, etc. ,

will have the symmetry of Eq. (13.1). If, when this
function is substituted into Eq. (13) the integral con-
verges, the function A will be the convolution of the
resulting function a.

Next, let the function A be defined in terms of an
ensemble,

(q) { ~ .'I ~}dq (21)

it will then satisfy Eqs. (15) to (18) inclusive, with

B(x, x', a&) =2m ie(q)n, (x, a&)n, (x', ce)dq, (22)

provided the integrals of Eqs. (21) and (22) converge
well enough. A necessary condition that A be the
convolution of a real function a can now be formulated:
when the function B defined by Eq. (22) is substituted
into Eq. (19), the latter must have exactly one, non-
degenerate and positive, eigenvalue. This will certainly
not always be the case.

Thus, it has been shown that those solutions of Eqs,
(8) that are obtained by the method of ensembles are
not always convolutions. That they are not always cor-
relations of Class AI. functions follows, because if they
were, the function A of Eq. (21) could not be expanded
as a Fourier integral, and this is usually the case.

V. MODIFIED FORMS OF THE STATISTICAL SOLUTION

The restriction to real ensembles is often inconvenient.
It can be removed in various ways, one of which is the
following. Let p(x, t), a(x, t) be a complex solution of
Eq. (1.1) and construct the ensemble

p, =pe"+p*e " a, =ae"+a*e ",

Pi=) ~i(q){p(q)p'(q)lr}dq, (24.1)

P2= " ~~2(qi, q2)&p(qi)p'(q2) I~)dqidq2.

VI. STATISTICALLY UNIFORM FREE FIELDS

As a 6rst example of these methods, the homogeneous
Eq. (1) will be considered, under the assumption that
Eq. (2) has solutions of the form

f=expl e(~)q xj, (25)

as is frequently the case, ~ taking on all real values, and
k being a function of co, while q is a unit vector that
can be varied independently of co. If the function

g(q, &e) is appropriately chosen,

p(q) = g(q, &o) exp/i(kq x—cot)$dhe. (25.1)

will be an ensemble of Class I solutions. The element of
solid angle dq associated with the unit vector g can be

One can also construct the ensemble p (qi)+
+p(qz), a(qi)+ +a(q&), with Ã times the number
of parameters, and a symmetric weight function
ie(qi . q~). Then, if hei and ie2 are appropriately
defined, . Eq. (12) yields

P= NPi+N(N 1)P2. —

Thus it follows that I'2 is itself a solution of the Eqs.
(8), (8.1), (8.2), even though superposition with nega-
tive coeKcients is not generally permissible. While
solutions of the form of Eq. (24.2) are useful, the
method of derivation shows that they need not be given
a special place in the general theory.
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used as wdq. Then Eq. (23) yields

where
(=x—x'.

is constructed, k now taking the place of q. Statis-
tically uniform solutions can be constructed as before,(,

I ) 2 I „I( )I, [k g ]d d (26)
but it is instructive to use Eq. (24.2) with w(ki, k,)
replacing w2(qi, q2). Then

Since this correlation depends only on the difference
x—x', it represents a solution that is statistically
uniform throughout space. The mean-square value of p
at any point in space is

(P')=(PPIo)=2 Igl'd dqj J

and is also independent of position. In most cases the
correlation of Bp/Bt with the gradient is associated with
the flux of energy; by differentiating Eq. (26) one
obtains

(('7P) (BP'/cjt)
I r) 2~~~ ~kql gl'cos[kq. ( cur]d—a&dq,

whence
f

((~p) (~p/@)) = 2~, ~&ql g I'd~dqj j
Although uniform, the Geld is thus not statistically
isotropic unless lgl is independent of q. More detailed
examples of such calculations are to be found in
reference 6.

The function
I g I' may be called the spatio-temporal

spectrum of p; in Planck's terminology, it is the
spectral component of the speci6c energy density. ' In
the above discussion, it appears as an arbitrary func-
tion, and would be rendered unique only by a more
complete formulation of the problem.

VII. DISSIPATIVE SYSTEMS

As an example of the treatment of the inhomogeneous
Eq. (1.1), it is simplest to take the case of a frictionally
dissipative system, for which the Eq. (2) has no real
eigenvalues. Then, to the function

exp[i(k~ x—k2 x' —&or)]dk~dk~da&, (28.1)

(pp'Ir)=2m(R„~)I ) w(kik2) Ig((v) I'Z(k, , ~)Z*(k„o))

.exp[i(ki x—k2 x'—a&r))dk~dk2d~, etc. (28.2)

Since these solutions depend on both x and x', and
not merely on x—x', they represent statistically non-
uniform solutions. Thus the mean square of p is

(p') =(pp'lo)

=2~N, w(ki, k,) Igl'Z(ki, co)Z*(k„(u)JJ~
exp[i(k& —k~) x]dk&dk2d~, (28.3)

and varies from point to point. Again, more detailed
examples of such fields have been given in reference 6,
though without using the systematic methods here
developed.

VIII. THE SCATTERING OF RADIATION BY
FLUCTUATIONS OF THE INDEX OF

REFRACTION

If a plane monochromatic wave passes through a
region in which the index of refraction varies irregularly
with space and time, the radiation will be scattered and
converted into nonmonochromatic radiation. This
process will be treated in detail as a last example of the
above methods. If the scattered radiation is p, and the
index of refraction is 1+a, while the incident wave is
po

——cos(x x—vt), with v=~c, the Eq. (1.1) takes the
form'

a=exp[i(k x—at)],
the Eq. (1.1) associates

(27.1) c '&'p/&t2 —PP=22a cos(x x—rt).

It will be supposed that the inhomogeneity a can be
represented by an ensemble of functions

p=Z(k(o) exp[i(k x—&at)] (27.2)
a, =ao(x —q, t), (3O)

the function Z having no poles or other in6nities for
real values of k and cv. The ensemble

a(k) = g(co) exp[i(k x—a)t)]d(o,

p(k) t Zg((v) exp[i(k x—(ot)]du),
ao(x, t)= I "A(k, o&) exp[i(k x ~t)]dkdku, (31)—

ao(x, t) having its maximum or center at the origin, and
q therefore being the point in space at which a~ is
centered. The vector q will be taken as the ensemble
variable; the significance of the weight function m(q)

(27 3) will appear below.
If

' M. Planck, Vorlesungee uber die Theoric der WDrmestrahlurIg
(J. A. Barth, Leipzig, 1912), Chap. I. ' Squares of a have been neglected.
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Eq. (12) yields

{aa'Ir)= (2»r)' I t I A(k, cv)A*(k', a)W(k —k')ah~

where
exp[i(k x—k' x' —~r)jdkdk'da&, (32)

W(n) = w(q) exp( —in q)dq/(2»r)'. (33)

If, moreover, W(n) has a narrow peak at n=O, it will
be justifiable to replace k and k', in the A factors, both
by

m= -', (k+k').

Using the notation,

n=k —k', g=x —x', r=-', (x+x'),

Eq. (32) then becomes

the integration over the auxiliary variable I also being
always from 0—+~. That this is a solution of Eq. (29)
is most readily seen by direct substitution on the left
side; the integration with respect to I can then be
performed, and the result is seen to be the right side of
Eq. (36). That this is the outgoing solution becomes
obvious on making the change of variable s= t—I, since,
then, the integration over s is from —~—+t, and is seen
to vanish identically for t = —~, but not so for i= + ~ .

The convolution of p» is then given by the ninefold
integral

fP» P»'lr)=2~6tfffff[B(q»~)B*(q k' ~)/
(kc+a)) (k'c+(o) ge'edkdk'd(Audu'/c',

where

O~= k x—k 'x car u(kc+(d)+u (k c+M).

{gg'
I
r )= (2»r)'w (r)

=w(r)4 (g, r).

IA(m, co) I'

)&exp[i(m g (o.7.)]dmd—(a, (34)

(34 1)

This must be multiplied by w(q) and integrated over
the variables q in order to obtain the correlation. Since
only the factors 8 depend on q, one may 6rst evaluate

C=2»r) B(q, k, a&)B(q, k', or)w(q)dq.

If the function c,» is normalized so that g(0, 0) =1,
then w(r) represents the mean-square fluctuation of the
refractive index at the point r. If the distance in which
this changes appreciably is much greater than the
dimensions of the region in which ao varies, the above
approximation is justified. The function

C'(m, ~) = (2~)'I A(m, ~) I' (35)

in the spatio-temporal spectrum of the fluctuation, and
is independent of position. "

To proceed further, it is necessary to determine p„
the outgoing-wave solution of Eq. (29) when a is
replaced by a~. The right side of that equation may be
written

Using Eq. (33), this is

C= 4v'(2»r)4I A (k—
»», a) —v)A*(k' —»», (o—v) W(k —k')

+A (k+»», co+ v) A *(k'+»», a)+ v) W(k —k')

+A (k—
»», (o—v)A*(k'+»», o)+ v) W(k —k' —2»»)

+A (k+»», co+ v) A*(k' —»», a)—v) W(k —k'+2»») }.
Because W(n) has a sharp maximum at n= 0, this is, to
a sufhcient approximation,

C= 4v4(2»r)'

X(LIA(m —u, ~—v) I'+ IA(m+~, ~+v) I'JW(n)
+A (m, ru —v)A*(m, a&+ v) W(n —2L)

+A (m, (q+ v)A*(m, u&
—v) W(n+2»») }.

2x'a»cos(»» x—vt)=R
~

B(q, k, +) The integration over ~ will be only from co =0—+~; if
A (k, ao) has a maximum at &u=O of width less than v,

(36) only the first term of this expression will contribute
appreciably to the integral, so that the approximation:

)&exp[i (k x ~t)$dkdku/c', —

may be used, Then one obtains

where the integration over &o (here and hereafter) is
from 0—+ only, and C= 4v'4(m —»», o) —v) W(n)

B(q, k, &o) = 2v'I A (k—
»», co —v) exp[ —i(k —»») q]

+A (k+»», co+ v) exp[ —i(k+»») qj}. (37)
(pp'1.)=4"~fffffl~( --,-- )/

The required solution is then
(me+&a)»)W(n)e'odkdk'd(ududu' (39).

P,= (R i[B(q, k, (u)/(kc+a)) j
~ exp Ii[k x—cot—u(kc —co) j}dkd&odu, (38)

"This results from the assumption that the members of the
ensemble diGer only as to their center. The introduction of addi-
tional ensemble variables would generalize the Eq. (35).

Making the change of variables

v=u —u', 0 =-',c(u+u')

and, in O~, the approximations

4=m+-', n. mi, k'=m ——',n mi, mi=m/m
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(pp I
r)= (8v'/c [C (m —k, (u —v)/

( mc +(o)') w(r om—~)

~
I sin[2o. (m —cg/c) )/(mc —~) I

cos[m ( oor jdm—dkodo. (41).

If the point r is well outside the scattering region, the
factor w(r —om&) will be different from zero only when
0- is very large; this entails that the factor immediately
following w will have a sharp maximum at m= a&/c. The
integration over m can therefore be performed with a
high degree of precision by replacing m by &u/c every-
where except ln this factor; then

(pp'~ r)= (27rx4) ' 4[(co/c)mq —ic, oi —v]5(r, mq)

~ cos[(co/c) (m~ g
—cr) 7dm~d&o, (42)

where dm~, is the element of solid angle associated to
m~, and the "optical depth" is

S(r, mg) = w(r omg)do. —-(43)

The scattered radiation therefore consists (to this
approxims, tion, at least) entirely of free waves traveling
with the velocity c—in marked contrast to the Ructua-
ations of the index of refraction, that involve waves
of all velocities. The intensity of the scattered radiation
is obtained by setting )=0, r=0 in Eq. (42) and is a
function of r; the radiation 6eld is therefore not homo-
geneous. The spatio-temporal spectrum also depends
on r, in contrast to that of the fluctuations causing the
scattering. The scattered radiation is not monochro-
matic, even when the direction of propagation is dis-
regarded, but does have a peak at ~= v. Apart from
these generalities, the Eq. (42) contains information
concerning the line shape and other coherence proper-

Eq. (39) becomes

(pp'I r) = (4v4/c)haft J'JfJJ''
[4'(m —x, (o—v)/(me+a&)~78" (n)
.exp{t'[n r+m (. oor+v(mc oo)—

+o.n mb))dmdndardvdo. , (40)

the integration over v being from —2o/c —++2o/c and
that over 0. from 0~~. The integrations over e and v

can then be performed at once, leading to

ties of the scattered radiation, which it would not be
be profitable to discuss here.

IX. SOME UNSOLVED PROBLEMS

It appears that the ensemble method, as described
above, is capable of yielding useful results in many
problems. However, as has been noted, it evades the
analytic representation of the solution being averaged.
There are many reasons why it would be desirable to
have such representations. %ithout them, it is difficult
to understand the precise relation between the ensemble
and the physical reality whose average is being cal-
culated. It is almost certain that there will be many
Class AC solutions that yield the same correlations:
do these dier only in the arrangement of one and the
same set of events, or, are there more fundamental dif-
ferences? Is it justified to consider the ensemble as an
artificially ordered set of Class I solutions, whose
random superposition in space-time constitutes the
Class AC solution? How does the weight function enter
into the analytic representation of the Class AC solu-
tions? One may attempt to answer these questions on
the basis of common sense, but reAection always raises
doubt.

Another set of problems arises when one considers
higher-order correlations, such as (f(x, t) g(x', t r)—
XIt(x", t—o)). Such correlations occur in the formula-
tion of many physical problems. 4 and the complete set
of all orders presumably determines the Class AC
solution uniquely, in some sense of the word. If one
attempts to generalize the method of ensembles so that
these higher correlations may be calculated, many dif-
hculties arise. These are connected with the generaliza-
tion of the Schwarzian inequalities. There are not only
a great number of such inequalities, but there are some
that are satisfied only by correlations, and not by con-
volutions. For this reason, it has not been possible to
extend the method of ensembles in this direction.

The reason for these diTiculties is not too clear. In
one sense, they exist in even the simplest case, for
(1)=1 while {1)= ~, and this prevents one from cal-
culating (p) by the method of ensembles. Yet, as has
been shown, this does not prevent the calculation of
(pp' { r) by that method, providing that (p) =0. There-
fore, it is possible that some, at least, of the higher-
order correlations can be calculated by this same
method, providing sufhcient ingenuity is exercised. It
is also possible that the difficulty is more fundamental,
and that the higher correlations can be calculated only
after an analytic representation of the field has been
found.


