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This theorem can be exploited to give a uniform ex-
pression for the results of all problems involving transi-
tion probabilities. Thus, in the integration over the
extended region in (44), it is supposed that the current is
constant in the exterior region. If we were to replace these
constant currents by currents decreasing adiabatically to
zero at in6nity, the nul. l contribution from the external
region would not be affected. But we would have suc-
ceeded in substituting for the original problem one in
which the current vanishes on the boundaries of the
extended region. Accordingly, we can integrate by
parts in (44) and regain the form (33) appropriate to
null currents on the boundaries. The most general
problem requiring the evaluation of transition prob-
abilities between stationary states, involves initial and
final currents that are time-independent with respect
to different reference systems. When modified with the
aid of the adiabatic device, this situation also falls into
the class of problems covered by (34).

The adiabatic device is also applicable to eigenvalue
problems. Thus, we can use the transformation function
(34), appropriate to zero current on the boundary
surfaces, to construct the energy eigenvalues for the
situation of a time-independent current. %'e suppose
that the current, which is zero on the surface 0:„,grows
adiabatically and maintains a constant value between
surfaces 0-2 and 0-~, and reduces adiabatically to zero on
0-„. The designations o-+„refer to the fact that the
adiabatic theorem involves the limit of in6nite temporal

separation between cr„and a.~, and between 0.~ and o-

Then

(no„)n'o. „)=8(n, n') exp[i% p+iP(n)(x„—x )j,
where Lreversing the integration by parts in the 6rst
term of (46)$,

'VPp= —Jt dxpE(0, xp),

and

exp(i% p) =exp~ —i dxpE(O, xp)
I

(
Xexp( —iE(0) (tt —tp)) exp~ —s dxpE(0, xp) ~.

On recalling the composition property of transforma-
tion functions, we recognize immediately that

(ntr, ~n'o-p) =8(n, n')
Xexp' —iE(0) (tt —tp)+ iP (n) (xt—xp) ],

which shows that, in the presence of a time-independent
current, the energy eigenvalues of the radiation 6eld
are displaced by E(0).

The methods discussed in this paper and illustrated
for the electromagnetic 6eld are equally applicable to
other Bose-Einstein systems, such as the symmetrica1
pseudoscalar meson 6eld.
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The leading term of the potential of o.der 4e, e an arbitrary integer, of the pseudoscalar theory with pseu-
doscalar coupling is computed by a meth'od v hich takes advantage of the special pair character of this term.
It is shown that the coefficients increase with n as n f I,

'n —1) t; thus, despite the decreasing ranges, the unre-
normalized potentials grow enormously with n, even in the nonrelativistic domain. The breakdown of the
expansion in p/3E for a given order is also indicated. A weakness of the discussion is that it does not include
radiative corrections.

I. INTRODUCTION

'"X a previous paper, ' it was shown how the rela-
~ - tivistic two-body equation could be made the ex-
clusive basis for the discussion of nuclear forces in the
nonrelativistic domain. The methods developed were
extensively illustrated by the computation of various
terms of the two-, three-, and four-body potentials in
the symmetric pseudoscalar theory with pseudoscalar
(direct) coupling. No serieus attempt was made, how-

~ Jr. Fellow, Society of Fellows.
' A. Klein, Phys. Rev. 90, 1101 (1953).Hereafter referred to as A.

ever, to present theoretical evidence that would render
plausible the implied modeP of, for example, the neu-
tron-proton system.

To justify the model, there are at least three points
that require serious investigation: the hard core, higher
order potentials, and radiative corrections. One should
like to justify the assumption of a hard core, a sine
qla non, because of the singular character of the poten-
tials in the asymptotic region. On this matter, we shall
be silent. Even assuming a reasonable cut-oG radius,

P M. M. Levy, Phys. Rev. 88, 725 (1952),
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pr&0.5, one must show that the potentials of higher
order than those taken into account become progres-
sively smaller in the nonrelativistic domain. In view of
recent discussions of the S matrix, ' one would tend to
be skeptical of this possibility.

In an effort to obtain a de6nite result, we have focused
attention on the potentials of order 4e in the symmetric
ps —ps theory. In Sec. II we compare the fourth- and
eighth-order potentials, each computed to relative order
p/M compared to the leading term of the given order
All but the p/M term of eighth order were calculated
in A, and the latter is obtained here by the same three-
dimensional methods, Because of its coeKcient and func-
tional dependence, this term proves to be larger in
magnitude than the "leading" term for signi6cant
separations of the two particles, heraMing a breakdown
of the expansion in powers of p/M for a given power of
g'/4m. This tendency is evident even in fourth order,
where the combination of two-pair and one-pair poten-
tials effectively cancels, so that there is no possibility
of fitting the singlet e—p scattering data' with their
sum.
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Fr@. 1. Plot of the leading terms of the fourth-, eighth-, and
twelfth-order potentials for g'/4n-= 10. The unprimed potentials
are generated by matrix elements with the maximum number of
pairs, the primed potentials by matrix elements with one pair
fewer.

'C. A. Hurst, Phys. Rev. 85, 920 (1952); S. Hori, Progr.
Theoret. Phys. 8, 569 (1952); V(. Thirring, Helv. Phys. Acta 26,
33 (1953).' Contrary to what was implied in the concluding discussion of
A. The remarks there are applicable if one includes the terms of
relative order (p/M)2 compared to the two-pair terms. As indi-
cated by our later discussion, these may be the decisive terms
anyway because of radiative corrections to the pair terms.

In Sec. III a method is presented which, although not
a rigorous one, renders plausible nevertheless a definite
result for the 2e-pair potential of order 4e, e arbitrary.
Aside from the satisfaction of achieving an analytic
form for this term, the main result, based upon the com-
binatorial aspects of the problem, is that the coeScients
increase with e as e!(e—I)!. This dependence soon
overwhelms the reduction brought about by the higher
powers of the effective coupling constant, ' (g'/4m)
X(p/2M) and by the decreasing range of the functions
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FIG. 2. Diagrams representative. of the four types of
four-pair matrix elements in eighth order.

involved, even for pr 1, and is aided in this at dis-
tances pr&1 by the increasingly stronger singularities
at the origin. The mere enumeration of possibilities also
makes it apparent that the breakdown of the p/M ex-
pansion becomes progressively worse for higher order
terms, though the methods employed do not su@.ce to
determine the exact coe%cients.

A weakness in the above discussion is that it refers
only to "bare" potentials, i.e., the possible damping due
to radiative corrections has not been taken into ac-
count. It has been pointed out by Wentzel' and more
recently by Brueckner, ~ however, that nucleon self-
energy eHects may severely depress virtual nucleon pair
formation. Although it is hardly possible to alter the
conclusions of the previous paragraph on the basis of
their work alone, one can, in an optimistic moment,
envisage that at the very least the strong damping of
the pair terms may serve to reduce the effective coup-
ling constant to the point where the theory approaches
the probable asymptotic status of electrodynamics. '
For the no-pair terms have a reasonably small effective
expansion parameter s (g'/4m) (p/2M)'(0. 1.It is hardly
more likely, however, that higher order potentials of
the no-pair variety form a convergent sequence than
do the terms discussed in this paper. It would appear,
therefore, that the justification by meson-theoretical
methods of an adiabatic potential based upon low order
terms only has yet to be provided.

The appendix contains a derivation, by the methods
of Sec. III, of the n-pair term of the m-body force.

II. EIGHTH-ORDER POTENTIALS

We begin this section with a statement of results
and shaB discuss some of the relevant aspects of the

'Assuming g'/4+~10. If gs/4m) 15 (g'/4m)(p/2M))1 and the
situation is so much the worse.

6 G. Wentzel, Phys. Rev. 86, 802 (1952).' K. Brueckner, Phys. Rev. 90, 4/6 (1953).' F. J. Dyson, Phys. Rev. 851 631 (1952).
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FIG. 3. Diagrams representative of the three-pair matrix ele-
ments in eighth order. Diagram (a) is one of six possible configura-
tions, determined by the position of the pair vertex relative to the
single vertices and by which particle has the single vertices.

derivation thereafter. It was shown in A that to relative
order ii/M the fourth-order potential consists of two
terms, the two-pair term (x= pr),

V4(x) = —3p(g'/4s. )'(p/2M)'(2/rr)Ei(2x)/x', (1)

and the one-pair term'

V4'(x) = 6ii(g'/4w)'(ii/2M)'(1+1/x)'e "'/x' (2)

In eighth order the corresponding potentials are the
leading four-pair term, also derived in A,

Vs(x) = —6p(g'/4w)'(ii/2M)'(2/w)Ei(4x)/x', (3)

and the leading three-pair termi

Vs'(x) = 24ii(g'/4w)'(p/2M) (1+1/x)'e 'x/x'. (4)

Equation (4) can be derived by the method employed
in A, and it will be indicated below that it is the only
term of its order which need be considered in the non-
relativistic dom»~

Equations (1)—(4) are plotted in Fig. 1, together
with Vi2(x), the leading six-pair term of twelfth-order,
which is derived in the next section. The graph is con-
fined to the region @&1.5. Several facts emerge clearly.
It is seen first that the sum of V4(x) and V,'(x) is much
smaller in magnitude than V4(x) and becomes repulsive
for x(0.75. There is then no hope of 6tting the singlet
rs —p scattering data with such a potential. Further, it
is seen that Vs'(x) is almost uniformly larger than
~Vs(x)

~

and that their sum is of greater magnitude
than the corresponding fourth-order result. We are
confronted with a breakdown of the significance of a
factor of p/M in front of a potential, which is due, as
will be seen below, to the greater number of ways of
realizing a matrix element with the fewer number of
pairs; there is also no evidence of the convergence of the
power series in g'/4w. In fact, the opposite tendency is
evident upon comparison of V8 and V~2, with the latter
predominating for x(0.9. The nonconvergence indi-
cated here wiH be established in the next section.

We turn now to a consideration of the features asso-
ciated with the derivations of Eqs. (3) and (4) which

'The existence of this term has been questioned by some au-
thors. Eq. (2) has been independently verified by Dr. S. Drell
using a method based upon the canonical transformation of Dy-
son, F. J. Dyson, Phys. Rev. 73, 929 (1948).The universal agree-
ment of the existence of the term in the neutral theory would seem
to guarantee that there is a corresponding term in the symmetrical
theory.

will form the basis of certain generalizations of relevance
in our later work. To derive Eq. (3), for example, we
recorded all possible four-pair matrix elements involv-
ing at most one pair at a time. These could be enumer-
ated without ambiguity by reference to the 4. distinct
Feynman diagrams of eighth order for the exchange of
four mesons. One then finds only four distinct sets of
matrix elements in the nonrelativistic limit, pr'ototypes
of v, hich are given in I'ig. 2. In order to clarify the essen-
tial features, we have preferred to use the pictorial
representation associated with the equivalent pair
theory.

According to the theory of A, matrix elements of the
type of Fig. 2(a) were not considered since they were
reducible in the three-dimensional sense de6ned there.
It was next found that the sum of aB matrix elements of
types (b) and (c) were canceled (in the nonrelativistic
limit) by iteration of velocity-dependent corrections"
to the leading two-pair fourth-order potential. Equa-
tion (3) then resulted from the summation of all matrix
elements of type (d), those for which, in the terminology
of pair theory, "the meson lines form a closed perimeter.

The cancellation of the matrix elements represented
by Figs. 2(b) and (c) is a phenomenon which has been
found to occur in every analogous situation encountered
in our calculations. "Although it hardly appears possible
within the present context to prove" that it will always
occur, that it shouM happen is eminently reasonable
upon physical grounds; for both (b) and (c) can be re-
garded as retardation corrections to (a), so that one
might expect them to disappear in the adiabatic limit.
In any case, in our work in the next section we shall
consider only potentials of order 4e in which all 2&z

lines are connected and thus form a perimeter.
In the derivation of Eq. (4) one encounters a similar

situation. Thus, it is matrix elements of the kind repre-
sented by Fig. 3(a) that add up to Eq. (4), whereas
those like Fig. 3(b) can be canceled if one defines a
suitable unperturbed problem and then considers ve-
locity-dependent corrections thereto. It is clear that as
one pushes the computation of potentials to higher
order in g'/4w and IJ/M, one must suitably extend the
set of potentials to be included in the unperturbed non-

/
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/
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Fro. 4. Diagrams illustrating part of four-pair matrix element
with two pairs allowed at a given time Ldiagram (a)j which is
not canceled by leading four-pair terms because of its relation to a
Ldiagram (b)j reducible four-pair term.

"See Sec. IV C of reference 1."G. Wentzel, Helv. Phys. Acta 15, 111 (1942).
~ It is easy enough to verify, however, that the signs are always

appropriate for the concellation. This problem is under further
investigation. See Y. Nambu, Prog. Theoret. Phys. 5, 614 (1950).
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relativistic problem. Thus, one considers here, for the
6rst time, velocity-dependent corrections to the one-
pair fourth-order potential.

A few anal remarks are in order. The assertion that
Kq. (4) is the only p/M "correction" to Eq. (3) must
be substantiated by a proof that there are no four-pair
static potentials of relative order p/M. One method of
procedure would be to fall back upon the pair analogy.
Kith the pair method of computation one merely never
sees such terms, at least in fourth order. By our tech-
niques, the proof consists in demonstrating that the
first-order expansion of the pair denominators of the
leading pair terms cancels the nonrelativistic limit of
matrix elements which can have two pairs at a time,
as was shown to be the case in fourth order in A. This
occurs in eighth order everywhere except where the
leading pair matrix element is a reducible one, but the
p/M term with which it should combine is not. Thus,
one can think of a matrix element with overlapping
pairs, such that when one removes the overlap, there
remains an intermediate state with only two nucleons
and no mesons as illustrated in Pig. 4. The matrix ele-
ments related to Fig. 4 (a) give rise to a large p/M
potential given by

Vo&'& (x) = —36@(g'/4~)4(p/2M)'(2/m)'

X[Z,(2x))'/x'. (S)

But even this potential can be omitted in the adia-
batic limit if one considers velocity-dependent correc-
tions to the leading two-pair potential of fourth order
which arise from the expansion of pair denominators"
and uses the iteration method of A. If one were to ex-
tend these methods to four-pair terms of still higher
order in IJ/M, one should be led to the conclusion that
the largest pair contribution to the potential of order

4e accounts for the complete moeretaitvistic potential
of that order arising from matrix elements with the
maximum number of pairs. The correctness of this
result will be assumed in the developments that follow. '4

III. POTENTIAL OF ORDER 4n

A. Preliminaries

YVe attack in this section the problem of obtaining
the potential of order 4e which is the sum of matrix
elements with 2e pairs. This problem has two aspects,
that of obtaining an analytic form and that of obtaining
the general coefficient. Since we are interested only in
the adiabatic limit, it is a more concise and useful pro-
cedure to define the potential directly from the appro-
priate form of the relativistic two-body equation rather
than through the intermediary of the three-dimensional
formalism. %e shall then rely on our previous experi-
ence, as discussed in the last section, to help us select
the terms of interest.

Our starting point is the equation"

[oW+ po —~,jp', W—po —En]p++ (x)

d4x'd'X' exp[iW(Xo Xo')—j
XI(*,*', X—X')y~(x'), (6)

from which we have eliminated negative-energy com-
ponents of the wave function by the method explained
in A, and therefore the interaction kernel I(x, x';
X—X') contains reducible elements in both the four-
dimensional and the three-dimensional sense. Multi-
plying through by the sum of the inverses of the opera-
tors that stand on the left-hand side of Eq. (6), we ob-
tain the equation

f
(W—2E„)p++(x)= (2~) ' d'p'd'x"d'x'd'X'e'""' *"&([-',W+ po' E$ '+p—W —po' —E j '}

Xexp[iW(Xo —Xo')$I(x", x', X—X')P++(x') = —i(2~) ' dy'd'x"d'x'd'X'

Xexp[ip' (r r") i(E„',—W) (
x—o—xo"

~

—]-exp[iW(Xo —Xo ))I(x",x; X—X )fy+(x ). (7)

According to Appendix A of A, the wave function
on the right-hand side of Eq. (7) can be represented as

P++(x)= (2n)-' "dp

Xexp[iy r —i(E,—-', W)
~
xo~ )y~~(y). (8)

"In all pre'vious cases it was only the energy denominator asso-
ciated with intermediate states without pairs that had to be con-
sidered, Here also is the 6rst instance of the relevancy of the
difference between the pair denominators of A and those of
I.Ivy, reference 2. The ambiguity, based upon the fact that our
representation is, in a limited sense, a mixed (free and bound)
representation, will be even more pronounced in higher order. The
remarks of the text are based upon the use of the Levy de-
nominators.

Taking the nonrelativistic limit consists in the observa-
tion that if the wave function @++(p) is negligible for
p&M, we may set E„Mand further, —ignoring the
binding energy, place E„—-', 8'—0. The wave function
P++(x') in Kq. (7) is then independent of xo, i.e., we
have neglected retardation eGects. If analogous ap-

'" This assumption may be unjustified, since if one examines the
Dyson-transformed Hamiltonian or the similar Foldy Hamil-
tonian, Berger, Foldy, and Osborn, Phys. Rev. 87, 1061 (1952),
one 6nds that the theory contains multiple-pair-vertices with
smaller effective coupling constants than the single-pair vertices
which generate 'the leading pair terms. The relation of the former
to the method of the next section is not completely clear. It is not
unlikely, however, that they account for terms like Eq. (5).

"The notation follows reference 1. In Eq. {6), p, po are to be
understood as diAerential operators.
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where

5 ~ 6

Fzo. 5.Eighth-order Feyn-
man diagram which con-
tributes to potential illu-
strated by Fig. 2(d).

V(r, r') = i
J
—"dtdt'd4X'

Xexp[i2M(Xp —Xp )7I(x x ' X—X ). (10)

proximations are made uniformly in the right-hand side
of Eq. (7), it is easily reduced to the form

(W 2E~)g—++(r) = i —' dtd4x'd4X'

Xexp[i2M(Xp —Xp )7I(x, x; X—X )P++(r ), (9)

in which we have recognized explicitly that the left-
hand side is independent of x0 and therefore renamed
x0" to t. %e are now in a position to recognize the po-
tential since the right-hand side of Eq. (9) has the form

l

U(r, r')P(r')dr',

When we introduce explicit forms for I(x, x'; X—X')
and make the requisite nonrelativistic approximations
in it, V(r, r') will reduce to the required V(r)8(r —r').

B. Fourth- and Eighth-Order Potentials

We illustrate the special use we shall make of Kq.
(10) by rederiving old results. Consider erst the two-

pair fourth-order potential. It will prove sufficient to
compute for a single Feynman diagram, Fig. 1(b) of A,
for example, and then to multiply by the sum of the
isotopic operators of all contributing diagrams which
we shall designate in the general case by T&, where / is
the order of the potential. Thus, for the two-pair part
of the fourth-order potential V we have

V (r, r') = —i( ig')'T4 —"dtdt'd4X' exp[i2M(Xp Xp')—76(X X' —', (x+—-x'))A(X X'+—', (x+-x'))

X (yg pG—(X—X'+ p (x—x'))yp)&'~(ypypG —(X—X'—
p (x—x'))7p) ', (11)

where ( ) denotes spin matrix element and G the value of the Green s function for negative values of its time
argument; the time integrations are also limited by this ordering. %e recall that

[II(y)+E„sgnt7
G(x) = dp exp[ip r iE„~t

)
7— +0

(2~)'~ 2E,

In the adiabatic limit, we set E„—M. For t&0, therefore, we obtain

(gpss, G (x)yp)——Q(r)e'~',

(12)

(13)

in virtue of the properties" of pp. Inserting Eq. (13) in Eq. (11) and imposing the spatial connections implied by
the 8 functions, we obtain

V (r, r') —+V4(r)5(r —r'),

f
V (r) = —zg T J~ dt ' dt (t )t )JI dt (t )t ) exp[i2M (t +t —t —t )7D (r, t t )A(r, t —t ). —

In Eq. (15) we have preferred to return to individual
time coordinates (t= t~—tp) as we shall do in all subse-
quent cases. Now the limitations on the allowed values
of t3 and t4 merely restrict us to the entire two-pair
potential, i.e., they specify the number of pairs associ-
ated with a single nucleon line. If we are to derive the
leading two-pair potential we should establish addi-
tional relationships between the time coordinates of the
two particles in order to ensure no overlap in time be-
tween the pairs. We would then be applying the method

"See Eq. (28) of reference I.

of Appendix A of A which subdivides Eq. (15) into the
sum of all its distinct three-dimensional matrix ele»»

ments. This is precisely what we must avoid if we are
eventually to obtain by reasonable labor a result for
arbitrary order. To carry out our program, we must in-
voke the special property of the pair interactions de-
scribed in Sec. II, that the sum of all pair terms yields
in the adiabatic limit o'nly the leadieg pair potential.
In short, no error should result from Eq. (15).

Introducing the four-dimensional momentum repre-
sentations of the meson propagation functions and re-
versing the orders of integration, we require the time
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integrals

00 F00 00

dt dto dt4 exp[iti(2M —koi)+A2(2M —ko2) —A8(2M —ko2) —zt4(2M —koi)7

=277(—i) (2M —k ) (2M —ko2) 'h(kpi kQ2) ~ (16)

e may replace 2M —kp by 2M since the poles thus neglected do not adequately account for the behavior at small
distances anyway because of previous nonrelativistic approximations. This replacement will be made in the future
without further comment. As a consequence of Eq. (16) we are left with

dkpg4 1
V4(r) = i — T4 dlridlr284&»+»~ '7

(2M)' (277) 7 ~ " (ko' —0772) (ko' —0722)

= —3p, (g2/477) 2 (ti/2M) 2 (2/77) Ei (2x)/x'. (17)

The integral involved is one of a class evaluated in the
appendix. We have also substituted the value T4=6
(two Feynman diagrams).

We demonstrate next that the same technique easily
reproduces the potential Vp(x) of Eq. (3).We may begin
appositely by computing the quantity T8. This is best
done by reference to Fig. 2(d). The number of Feyn-
man diagrams that contribute (equally) to the poten-
tial represented by this figure is 2', for each pair-vertex

corresponds to two» vertices and the sequence of
these may be interchanged independently of all other
vertices. For the potential of order 4e, the result is 2'".
The reader will then easily convince himself that the
quantity T4„has the value 3)(2'", i.e., just three times
the value for the neutral theory. Thus T8 ——48.

We shall carry out the calculation for the interaction
of Fig. 5. We consider, therefore,

Vp(r, r') = —i( i g')4T8 dtd x—3' ' 'd'xodt7dtpd R'

X exp[zM(ti+t2 —t7—tp) jh(xi —x2)5(xo—xo) 5(xp —x4)6(x7—xo) ( )o&( )"&, (18)

( )&"= (ypypG (xi—xo)yoG+(xo —xo)yoG (xp —x7)70) &'&

( 2)'z—8(r—i ro)i'7 (ro—ro) ti(ro—r7) exp—[zM (t,—2to+2tz —t7) $, (19)

with a similar expression holding for ( }&27. Carrying out the spatial integrations, we find for the equation analogous
to (15),

V8(f) = zg Tp dtdto' ' 'dto(to) tl tl(t7 t7) tp' ' ')

Xexp[i2M'(ti+t2 —t8 —t4+to+tp —t7—tp)]5(r, ti —t2)h(r, to—tp)6(r, tz —t4)h(r, t7 to) (20)— .

The time integrations analogous to Eq. (16) will be done in two steps as follows:

pp ro
dtz exP[—zoo(kpo+k04)7 dto exP[AQ(k02+k04)7~

4 —~

(—z/2M)'2 (77)'8 (koi+k02+kpo+ kp4) 8 (koo+ k04) 5(k02+k04). (21)

The arrow is used in the last stage to indicate that it is a permissible step only in virtue of the symmetry properties
of the entire integral, Eq. (20). Physically, it corresponds to the fact that having established the pair-vertices by
prior time integrations, reversal of the time sequence of the two-pair-vertices of each particle leaves the inter-
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action [or Fig. 2(d)] invariant. '" As a consequence of Eq. (21), we are left with

g ~ ~8
Vo(r) = o ~dki dk4 exp[~(ki+ko+ko+k4) r]

(2M)4 (2x)" (2)'n~

'f~o[(~oo " )(~o "2}(~0 "3)(~o —~4o)] ' (22)

In the appendix it is shown that the integral

i 1
I,i=—— tdk, dk. oi exp[i(ki+ +koi) r]~ dko[(ko' &uP)— (ko' —cooP)] '= —(2/x) pE'i(2lpr)/r". (23)

~ (2m')"~

Equation (22) yields, therefore,
Vo(x) = —6p(g-'/4x)'(p/2M)'(2/n) Ei(4x)/x'.

C. General Result and Eq. (25) becomes

Qn the basis of the previous results, we conjecture V,„(x)= —~(g'/4 )'"(I"/2~)'"3
that the 2n-pair potential of order 4n has the form

Xn!(n —1)!(2/x)Ei(2nx)/x'" (28)

Here S4„is the number of distinct perimeters, for start-
ing with twelfth order, this number is greater than
unity and as .we shall see below increases rapidly with
e. Figure 6 shows two of the six perimeters in twelfth
order. In writing Eq. (25), we have assumed that each
perimeter contributes equally to the potential, at least
on the average. The inclusion of the factor 2 '" ' [see the
factor 2 ' in Eq. (22)] assumes that the contributions
from the time intervals between the established pair
vertices yield half a delta function each, again at least
on the average.

To find X4„, we ask for the number of ways of con-
structing distinct meson-line perimeters, starting from
e pair vertices for each particle. The result is

Ã4„——
~

([(n—1)(n 2)][(n—2) (n —3)]—
=-;n!(n-1)!. (26)

Ke then have

»'4.74.2 '" '=3Xn!(n —1)!, (27)

(b)
FIG. 6. Two of six twelfth-order perimeters.

'Vln detail, we carry out the sequence of transformations
k01~kos (and k1~k3), k02~k04 (and k2~k4) and then note
that k01+k02= —k03 —k04 in virtue of the integral with respect to
t. Half the sum of the original plus the equivalent transformed
expression yields the factor xb(ko&+k04). Similar steps provide the
other 8 function.

V (x)= —p(g'/kr)'"(g/2M)'"

N', „T,„2—' —'(2/m)E, (2nx)/x'". (25)
It can now be stated that in virtue of Eq. (23), there

remains but a single point that must be established in
order to completely verify Eq. (28); namely, that when-
ever we encounter an integral of the form

0

~ dte ""=x8(X)+iP(1/X) (29)

. which arises from time intervals between pair-vertices,
we can replace it by merely mb(X) as a consequence of
the structure of the entire expression of which it is a
part, as in Eq. (21). Unfortunately, we have been un-
able thus far to 6nd a general proof of this statement.
It is, in fact, not true in the simple form analogous to
Eq. (21).What appears to be true is that integrals con-
taining an even number" of linear denominators from
equations like (29) cancel out when one adds the analo-
gous contributions from different perimeters. This has
actually been checked in twelfth order, which is the
first nontrivial case. It appears to be a consequence of
the topological invariance of the group of perimeters
as a whole under the inversion in time order of selected
pair vertices, but we have been unable to relate this in
a general way to the structure of the integrals en-
countered.

We believe that this lack of rigor hardly invalida, tes
the general inference to be drawn from Eq. (28). Based
alone on the combinatorial aspects of the work, there
should be little doubt that the coefFicients of higher
order potentials increase so rapidly as to render un-
thinkable the convergence of the unrenormalized
potentials.

We have also tentatively applied the same technique
of calculation to the set of potentials exemplified by
Eqs. (2) and (4), where we claim no validity for it. It
is found that the method reproduces the correct analytic

Those involving an odd number vanish identically.
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form of the potential, but starting in eighth order, over-
estimates the coefficients. "Again, however, there can
be little doubt that the tendency toward breakdown of
the expansion in tt/M for a given power of g2/42r be-
comes increasingly apparent in higher orders.

Note added iN proof: —The central result of this paper, Eq. (28},
is incorrect. The correct result is obtained by replacing the factor
e1(e—1}1by 2'&" ')/m. A derivation of the correct general expres-
sion for the pair potentials as well as for certain other series of
potentials involving a restricted number of gradient couplings,
together with the sum of each series, will be submitted for publi-
cation shortly. The series of potentials for pair theory can also
be deduced directly from the work of reference 11. The "deriva-
tion" given in the present paper goes wrong only at the last stage,
Eq. (29} and associated discussion. The special results obtained
in Secs. II, IIIb, and the Appendix are, however, subject to no
objection. Our conclusions must correspondingly be modihed from
a bald assertion of nonconvergence to the statement that perturba-
tion theory yields a series of potentials with a Gnite radius of
convergence in inverse distance space. However, for values of the
coupling constant presently contemplated, (g~/4m}&10, there is
an important region outside the cut-off radius where the series
either doesn't converge or else the convergence is painfully slow.
This will be shown in greater detail in the forthcoming publication.

APPENDIX

In Sec. VI of A, the general character of the e-pair
term of the e-body force was established, and in addi-
tion speci6c expressions were given for the three and
four-body forces. %e are now in a position to obtain

X)

k(

Xp

yk~

Xn-i X

k n

n-i

Xn+
k 0

Xp+p X pQ ~)

Pro. 7. Representative diagram for the calculation of the
e-pair term of the n-body potential.

the result for arbitrary n by means of the technique
employed in Sec. III, which applies here without
question.

We recall that this force consists of (tz —1)!/2 terms,
each of similar structure, one for every possible pe-
rimeter. Furthermore, it is sufhcient to calculate for a
single Feynman diagram that. contributes to some
standard perimeter and multiply the result by T'

=3)&2", the isotopic factor for the perimeter. From
this single term it is a trivial matter of changing func-
tional arguments to obtain all (zz —1)!/2 terms.

Consider therefore the interaction of Fig. 7. In com-
plete analogy to Eqs. (18) or (11), it can be shown to
contribute the potential

Vn($1(2' ' ' (n-1 t (1 ' ' ' (n—1 ) = (—1)"(—2) (—Zg ) "Tn dtidto' ' 'dtndR eXPLZM (tl+t2+ ' ' ' tn+1 ' ' ' ton]

X~ (~1—2:n+2) &(*2—*n~o) ~(&n—~n+1)(VOVOG (»—*n+i)VO) "' (VOVOG-(~n —*2n)VO)'"', (A 1)

where $1 $„1is the sequence of independent coordinate differences, 20 which defines the particular perimeter
considered, (1——rl r2, $2———r2 —ro, („=r„—rl, and the time integrations are restricted by the condition that
only the tz-pair part is to be included (tl&t„+1, etc.). By means of the relationship,

(vov G-(. — + )v )"' (vov G-(~.— .)v )'"'

~( i) t')(rlnr 1). . .t)(r r2 ) .0tM(tt —tn+t). . .0iM(tn-ttn) (A 2)

Eq. (A.1) is reduced to a point potential,

V-(4 6.—1 (1' 8 -1'j~V (51 ( -1)t)(41—(1') ~(K -1—5.-1') (A.3)

Vn((1 (n 1) = (—z)"—'g'"2 „dt2 dt 2npehx2M2(t +1+t2

tn+1 ' ' 't2n) jk(Fit tl tn+2) ' ' 'D($nt tn tn+1) ~ (A.4)

Introducing four-dimensional momentum representations of the 6 functions, we encounter the time integrations

dt, dt„dt„+1.. dto„expI itl(2M kol)+ —+it„(2M—ko„)

zt„+,(2M k,„) it„—+,(2M k„—) ——it, „(2M——k, „—, )j
= (—i/2M) n(22r) " 'B(kol —ko2)&(k02 —koo) ' ' 1) (ko n 1 kon) ~ (A 3)—

"One cannot, in full justice, rule out this possibility for Eq. (28).' Note that g„ is not independent of the other g;, but satis6es 5;g;=0.
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As a consequence of Eq. (A.S), Eq. (A.4) has been reduced to the form

(g' ) " t' 1 l " ( 1 ~
" 1

I „((,."(,)=i(—1)-] —[ ( ) r„( )
—,dk, . . .dk„

E4mJ (2M j (2s') 2n&

&(exp[i(k, gg+ +k„g )]) dko[((o~' —ko') ((a '—ko')] '. (A.6)

It remains only to demonstrate that, for e&2,

iI =—— dkq ~ dk„exp[i(ki pi+ '+k '0 )] dko[(roP —ko')'''(&~' —ko')] '
~ (2~')""

1(2/—)I: [I (4+5+" +f-)]/66" k., (A7)
in order to establish the result"

V„(g) g„g)= (—1)" '3&(2"-'(g'/4')" (p/23II) "(2/x)Eg[p(gg+ +$ )]/p" '$g (A.8)

in agreement with a previous derivation. "
We may remark that the same method suKces to derive the p/M corrections to Eq. (A.8) which are analagous

to the one-pair potential of fourth order, but we shall not go into detail. We turn rather to the proof of (A.7).
We employ spherical polar coordinates for the three-momentum integrations and immediately carry out the

angular integrations. We are left with

i f'2)" 1
In

(
—

[
———

' dko dkiki si uk~a~. dk„k„s.i nkvd N[(coP —ko') . (co~'—ko')] '.
x (m) $y$o $„& „&o

(A.9)

Next, consider the factors

[~ o k 2]—1[~ 2 k.2]—1—[k o k 2]—I{[~2 k 2]—1 [~ o k o]—1) (A.10)

By means of the formula
t
"sin(ikey)kdk

=-', 7r coslkgP, g) 0,
k' —kg'

(A.11)

we can carry out the k& integral in the 6rst term and the k2 integral in the second term. We label as k the remaining
one of the momenta k~, k2 and combine the two terms again, with the result

i ~2~
"-' 1

,I„=—
~

—
~

— ' dko ' kdk sink()~+go)kodko sinkoPo [(aP—ko') (oooo —ko') (ro
'—ko')] ' (A.12)

n &or~ fifo ( ~- ~o

We now perform the same sequence of operations with the factors [(aP—ko') (oooo —ko')] ' and so on, a total of
(e—2) such sequences for Eq. (A.11), until we have reduced its structure to

Z 2 1I
ir~64. k "o

F00

dkk sink((i+ +(n) dko(~' —ko') '= —p(2/vr)Ei[p(&i+ +(„)]/gg g„. (A.13)

The last form which is the result desired follows from the equations

and

dko[ooo irl ko'] = i/a7&r,
— —

I
"dkk sink($g+. +g„)

=~E.t.(&+ +s )].

(A.14)

If we take e even and set P;=r for all i, we obtain Eq. (23) of the text.

"The demonstration holds also for @=2, if we agree that there is only half a perimeter in this case and consequently halve the
result. For instead of 2"=4 Feynman diagrams, we have only two, the "ladder" and "crossed-quantum" diagrams.


