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The arguments leading to the formulation of the action principle for a general 6eld are presented. In
association with the complete reduction, of all numerical matrices into symmetrical and antisymmetrical
parts, the general Geld is decomposed into two sets, which are identified with Bose-Einstein and Fermi-Dirac
6elds. The spin restriction on the two kinds of fields is inferred from the time reRection invariance require-
ment. The consistency of the theory is veri6ed in terms of a criterion involving the various generators of
in6nitesimal transformations. Following a discussion of charged 6elds, the electromagnetic 6eld is introduced
to satisfy the postulate of general gauge invariance. As an aspect of the latter, it is recognized that the
electromagnetic Geld and charged, delds are not kinematically independent. After a discussion of the field
strength commutation relations, the independent dynamical variables of the electromagnetic Geld are
exhibited in terms of a special gauge.

HE general program of this series' is the con-
struction of a theory of quantized fields in terms

of a single fundamental dynamical principle. %'e shall
first present a revised account of the developments
contained in the initial paper.

THE DYNAMICAL PRINCIPLE

The transformation functions connecting various
representations have the two fundamental properties

where J'dP' symbolizes both integration and summation
over the eigenvalue spectrum. If b(n'IP') is any in-
finitesimal alteration of the transformation function, we

may write

or
bS' pt=bW p,

.

the infinitesimal operators bS" p are Hermitian.
The 58" p possess another additivity property re-

ferring to the composition of two dynamically inde-
pendent systems, Thus, if I and II designate such
systems,

and if 8W p and 8W„p are the operators characterizing
iIdinitesimal changes of the separate transformation
functions, that of the composite system is

bW p=bW p'+BW p"

Infinitesimal alterations of eigenvectors that preserve
the orthonormality properties have the form

bW, =hW„s+8Wp„ (2)

which serves as the definition of the infinitesimal oper-
ator b8' p. The requirement that any infinitesimal
alteration maintain the multiplicative composition law
of transformation functions implies an additive compo-
sition law for the infinitesimal operators,

where the generator G is an infinitesimal Hermitian
operator which possesses an additivity property for the
composition of dynamically independent systems. If the
two eigenvectors of a transformation function are varied
independently, the resulting change of the transforma-
tion function has the general structure (i), with

If the n and P representations are identical, we infer
that

8W =0,
The vector

bW p=G —Gp.

which expresses the fixed orthonormality requirements
on the eigenvectors of a given representation. On
identifying the e and p representations, we learn that

8Wp = —bW p.

The second property of transformation furictions
implies that

' J. Schwinger, Phys. Rev. 82, 914 (1951),Part I.

can be characterized as an eigenvector of the oper-
ator set

u= (i—iG )n(i+iG ) = n.—bn,

with the eigenvalues o.'. Here

bu= —i[n, G.j.
This infinitesimal unitary transformation of the eigen-
vector 0 (a') induces a transformation of any operator
Ii such that
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One type of change of the general transformation
function consists in the introduction, independently on
0-1 and on 0-2, of infinitesimal unitary transformations
of the operators, including displacements of these sur-
faces. The transformations will be generated by oper-
ators 61 and G2, constructed from dynamical variables
on 0& and 0-2, respectively, and

~~12 Gl 62 ~ (6)

When the transformation function connects two differ-
ent sets of operators on the same surface, which are
subjected to infinitesimal transformations generated by
G and G, respectively, we have, referring to (5),

6W= G—G. (7)

Since physical phenomena at distinct points on a space-
like surface are dynamically independent, a generator t

We write this in the form

(~'IF
I
~")—(~'IF

I
~")= (~'I (F—F) I

~"),

or, in virtue of the infinitesimal nature of the trans-
formation,

8 (a.' I
F

I
a")= (n'

I
bF

I
a"),

where the left side refers to the change in the eigen-
vectors for a fixed Il, while the right side provides an
equivalent variation of the operator F, given by

SF=F E= —i[F, G.].
If the change consists in the alteration of some

parameter r, upon which the dynamical variables de-
pend, and which may occur explicitly in F, we have

F=F (BF), —
=F+0,F B,F, —

where 8,F is the total alteration in F, from which is
subtracted B,F, the change in F associated with the
explicit appearance of 7, since the latter cannot be
produced by an operator transformation. We thereby
obtain the "equation of motion" with respect to the
parameter z,

8,F= B,F+i[F, G,j. (3)

For dynamical systems obeying the postulate of local
action, complete descriptions are provided by sets of
physical quantities, t, associated with space-like sur-
faces, 0-. An infinitesimal alteration of the general trans-
formation function (i ~'a&

I
f2"0,) is characterized by

~(fl +Ill 2 02) =~(t i Oil~W12lt 2 02) (4)

Here the indices I and 2 refer both to the choice of
complete set of commuting operators i, and to the
space-like surface 0-. Ke can, in particular, consider
transformations between the same set of operators on
different surfaces, or between different sets of commut-
ing operators on the same surface, as in

must have the additive form

G= t dtrGcp) (h) = do'„G (h)
0' ol ~

where dtT is the numerical measure of an element of
space-like area and G&0& (h) is to be regarded as the time-
like component of a vector in a local coordinate system
based on 0- in order to give the surface integral an
invariant form. If one can interpret. G„(h) on 0~, and
on o-2, as the values of a vector defined at all points,
the difference of surface integrals in (6) can be trans-
formed into the volume integral

8W12=
p 0'1

(dh) B„G„(h),

(8„=8/Bh„).

A second type of transformation function alteration
is obtained on considering that the transformation con-
necting i ~, 0.~, and f2, 02 can be constructed through the
intermediary of an infinite succession of transformations
relating operators on infinitesimally neighboring sur-
faces. According to the general additivity property (2),

F1

6Wg2= Q 5W.+g., ..

Therefore

bW, +~...——

~
(dh)SZ (h).

p0$

8W~2 —— (Ch)82(h).

The combination of these two types of modifications
is described by

p
0'1

~W„=G,—G,y (Ch) SZ(h),

which involves dynamical variables on the surfaces 0.1,

cr2, and in the interior of the volume bounded by these
surfaces. On the other hand, we can write this as the

where 88',+~„, characterizes a modification of the
transformation function connecting infinitesimally dif-
fering complete sets of operators on the infinitesimally
separated surfaces 0. and ~+do.. If the choice of inter-
mediate operators depends continuously upon the sur-

face, we shall have

85'„,=0,

and, referring again to the dynamical independence of
phenomena at points separated by a space-like interval,
with the consequent additivity property, we see that
big, +~...will have the general form

rr+d 0'
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volume integral-

which indicates, conversely, that any part of h2(x),
possessing the form of a divergence, contributes only
to the generation of unitary transformations on 0.1
aiid 02.

The fundamental dynamical principle is contained in
the postulate that there exists a class of transformation
function alterations for which the characterizing oper-
ators bW» are obtained by appropriate. variation of a
single operator W12,

(iW12 ~ (W12) ~

Of course, this principle must be implemented by the
explicit specification of that class.

The operator 5 12, the action integral operator, evi-
dently possess the form

where 5W12——8(W12) and the objects of variation here
are 01, o.2, and the dynamical variables of which g is
a function.

The latter statement is the operator principle of
stationary action. It asserts that W» must be stationary
with respect to variations of the dynamical variables
in the interior of the region defined by 01 and r2, since
G1 and G2 only contain dynamical variables associated
with the boundaries of the region. This principle implies
equations of motion for the dynamical variables, that
is to say, field equations, and provides expressions for
the generators G1 and G2. The class of variations to
which our postulate refers can now be de6ned through
the requirement that this information concerning 6eld
equations and in6nitesimal unitary transformations be
self-consistent.

There exists much freedom within this class, as may
be inferred from the remark that two Lagrange func-
tions, differing by the divergence of a vector, describe
the same dynamical system. Thus

yields
Z(2:)= Z(X) a„f„—(pp),

W12 W12 (Wl W2)

The Hermitian requirement on bW12 is satis6ed if W12
is Hermitian, which implies the same property for 2 (x),
the Lagrange function operator. In order that relations
between states on o-1 and o.2 be invariantly characterized,
the Lagrange function must be a scalar with respect to
the transformations of the orthochronous' Lorentz
group, which preserve the temporal order of 01 and 02.
A dynamical system is specified by exhibiting the
Lagrange function in terms of a set of fundamental
dynamical variables in the in6nitesimal neighborhood
of the point, x. Contained in this Lagrange function
will be certain numerical parameters, which may be
functions of x. Any change of these parameters modifies
the structure of the Lagrange function and is thus an
alteration of the dynamical system. Accordingly, in-
finitesimal changes of the dynamical system are de-
scribed by

6W12=

where 62=5(Z), and the numerical parameters are the
object of variation. This form is in agreement with (8).
For a 6xed dynamical system, W» can be altered by
displacing the surfaces o-&, 0-2 and by varying the dy-
namical variables contained in the Lagrange function.
The transformation function (f ol

~

lf'2"a2) describes the
relation between two states of the given system so
that a change in the transformation function can only
arise from alterations of the states on a1 and f72. Hence,
for a fixed dynamical system we must have

~W12 Gl G2)

'This name was suggested by H. J. Bhabha) Revs. Modern
Phys. 21, 451 (1949).

where, on each surface,

W=)I do„f„=) dof(p).

Accordingly, the stationary action principle for W»
is satisfied if it is obeyed by W», since

~~12 ~1 ~2 ~

Here
~W1 61 ~1) ~W2 62 ~2)

define 61 and 62, which are new generators of infini-
tesimal unitary transformations on a.1 and a.2, respec-
tively. The latter equations possess the form (7), and
thus characterize transformation functions connecting
two different representations on a common surface.
Indeed, with a suitably elaborate notation, we recognize
in (9) the additivity property of action operators,

W(f1&1) $2&2) WQ l(rip t 1(Tl)+W(f 1(Tlat i 2(12)

+W(f2(12 $2&2)
where, for example,

Wl W(flol i 1(71) W0 1&1 f 1&1)
and

W2=W(t 2o2, t'2o2).

To be consistent with the postulate of local action,
the field equations must be differential equations of
finite order. One can always convert such equations into
systems of 6rst order equations by suitable adjunction
of variables. We shall designate the fundamental dy-
namical variables that obey 6rst-order field equations
by x„(x), which form the components of the general
field operator x(x). With no loss in generality, we take
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y(x) to be a Hermitian operator,

~.(x)'= X.(*)

If the Lagrange function is to yield field equations of
the desired structure, it must be linear in the first
derivatives of the 6eld operators with respect to the
space-time coordinates. Furthermore, if these field
equations are to emerge as explicit equations of motion
for field components, that part of the Lagrange function
containing first coordinate derivatives must be bilinear
in the field components. With these preliminary re-
marks, we write the following general expression for the
Lagrange function,

&= 2 (x@,~.x—~,x&&.x) —~(x), (1o)

in which a matrix notation is employed,

64~,x=x.P4)-~,x'

ment on 2 is satished if 3'. is a scalar,

and if
(12)

We shall suppose that the source possesses the same
transformation properties as the field. The condition
for the source term of the Lagrange function to be a
scalar is then given by

L'SI.=S (13)

Note that 5 " and 8" also obey Eqs. (12) and (13),
respectively, and that these equations can be com-
bined into

& '(8 '$„)&=r„,(8 '8,),
in view of the nonsingular character of 8.

For an infinitesimal Lorentz transformation,

The derivative terms have been symmetrized with re-
spect to the operation of integration by parts, a process
which adds a divergence to the Lagrange function, and
is thus without eGect on the structure of the dynamical
system. In order that 2 be a Hermitian operator, the
general function K must possess this character,

~(x)'=~(x),

f
Xp —Xp EpvXV+ Epv Epv Evpv

the matrix L can be written

L= 1—i-', e„„S„„,
where

Spv Spv j py v=0 ' '3

The infinitesimal version of (13) is

(14)

and the numerical matrices 5„;p=0, 1, 2, 3 (x4 ixo, ——
84=i50) must be skew-Hermitian,

8 t=S "*=—8 p=0, 1, 2, 3.

ol

tv»+ —i

(»..)t= (»..),
Although we are interested in complete dynamical

systems, it is advantageous mathematically to employ
devices based upon the properties of external sources.
Accordingly, we add to (10) a term designed to describe
the generation of the field y(x) by an external source
P(x), which is to be regarded as a field quantity of the
same general nature as g(x),

~...,..=-,'(Ãx+x«). (11)

This is a Hermitian operator if Q is a Hermitian matrix,

For the source concept to be meaningful, all compon-
ents of x must occur coupled with the source com-
ponents in (11), which requires that P be a non-
singular numerical matrix.

An orthochronous Lorentz transformation

'x„=r„,x„+t„,
r~r= j., r &0,

induces a linear transformation on the field com-
ponents,

'x= Lx= xL",
where L must be a real matrix,

L* L,

to maintain the Hermiticity of p. The scalar require-

in which the complex conjugate statements refer to the
components indicated in (15). Similarly,

@„S„),—S„gt5„=i(t'„i5„—5„„5i)
and

t +-'&„,S.&3= i(~„&+-'@,,—~„&-'&&).

If one views 'x= (1—i-', e„g„.)y as a field in the original
coordinate system and thus subject to the same de-
pendence upon that coordinate system as p, it is
inferred that

L—'S„„L=r„),r„„S),„.

For infinitesimal transformations, this reads

zt Syvv SXKj—6pKSVX &VKS~x+8viS~K 5~xSvK ~

In performing the variation of the action integral,
we shall treat the two types of quantities, coordinates
and field variables, on somewhat the same footing,
although the former are numbers and the latter oper-
ators. We introduce an arbitrary variation of the co-
ordinates, bx„, throughout the interior of the region,
but subject to the condition that the boundaries remain
plane surfaces,

8„8x,+8„8x„=0, (17)

on cr, and 0.2. The field components x„(x) are dependent
both upon the coordinate system and the "intrinsic
field, " Under a rotation of the coordinate system, the
field components are altered in the manner described
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by (14). Accordingly, we write the general variation of
the field as the sum of an intrinsic field variation, and
of the variation induced by the local rotation of the
coordinate system,

B(x)=Sx-i-', (B„»„)s„„x,
where the antisymmetry of 5„, ensures that only the
rotation part of the coordinate displacement is effective.
For the source field, a prescribed function of the
coordinates, we have

and we have employed a notation for the symmetrical
part of a tensor,

5(„B„i= -', (S„B,+S.B„).

The expression for 52 is

B~=B84B.x-B.N.Bx-B~+l(BN~+P~x)
+».k(x&BA+ BA&x)+B.[2 (x@.Bx—Bx@.x)j

Hence, on applying the principle of stationary action
to coordinate and field variations, separately, we obtain

B(P) =Bx„B„P.

b(dx) = (dx)B„Bx„,

6(B„)= —(B„bx,)B„

AVe also remark that

(18) BP'..= 2(xIBA+B.Ãx),

~~=BULB.x-B.84Bx+-', (Bx~&+&»x), (»)
while the surface terms yield, on cr& and 0.2, the in-
finitesimal generator

whence
B(B.x) = B,B(x)—(B.».)B.x (19) «.[-', (x@.Bx-Bx@.x)+T.,~'j

The Lorentz invariance of 2 produces a significant
simpli6cation, in computing the contribution to B(Z)
from the coordinate induced variation of y. Thus, if
B„bx„were antisymmetrical and constant, its coefFicient
in the variation of the Lagrange function would vanish
identically, save for the source term since the rotation
induced change of P is not present in (18).Accordingly,
for the general coordinate variation of (10), there
remains only those terms in which 8„5x„is differentiated,
or occurs in the dilation combination, B„bx„+B„bx„
Both types are contained entirely in (19), which
leads to

~(~) =~~—k(B.».+B».)k(x@.B.x—B.x&,x)
—i2 (B.B.»i)kx(&»S.i+5"@,)x

—-'(B.B .) (Ã5,. —5,'5).
In virtue of the symmetry of the second derivative,

(B„BAx),)x(@,S,i+S,it@„)x
= (B„(B&x+B»„))x(5&„i,+5„~5„)x~—(Bgxi+Bihx„)B„[x(S,S„i+5„),t5„)xj, .

The operator 3C is an arbitrary, invariant function of
the field x. If its variation is to possess the form (21),
with bx appearing on the left and on the right, the latter
must possess elementary operator properties, character-
izing the class of variations to which the action prin-
ciple refers. Thus, we should be able to displace 6y
entirely to the left, or to the right, in the structure of BK,

~~= ~x(Bi~/Bx) = (B.3'-/Bx)~x,

which defines the left and right derivatives of 3'. with
respect to p. In view of the complete symmetry between
left and right in the process of multiplication, we irifer
that the expressions with bx on the left and on the right
are, in fact, identical. The field equations, therefore,
possess the two equivalent forms

25„B„x= (B,X/Bx) 8&, —
—B„x25„=(B,X/Bx) )8, —

and 6 can be equivalently written

where the last step expresses the result of an integration
by parts, for which the integrated term vanishes, since
the dilation tensor is zero on the boundaries (Eq. (17)).
Collecting the coeScients of B„bx„ into the tensor T„„,
we have

«.[x@.~x+ T,.»,j

«„[ BxS„x+T„.ba:.j—
(22)

8 (Wig) = (dx) [hd+ (B„lx.)T„„j

p&1

(dx) [BZ bx„B„T„,+B„(T„„Bx„)j—,

In keeping with the restriction of the stationary
action principle to fixed dynamical systems, the ex-
ternal source has not been altered. If we now introduce
an infinitesimal variation of $, and. extend the argument
of the previous paragraph to Bg, we obtain the two
equivalent expressions for the change induced in W~2,

where
&1 &I

T,.= &4.—k(x@i,B.ix—B(.x@.)x) BiWi2 —— (dx)6$8x = (dx)x»j.
—i-,' ($85„,x—xS„,f8&)

+i—,Bi[x($&„Si„&+Si&„tm»)xj, (20) The corresponding modification in the relation between
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states on 0.
~ and on 0-2 can be ascribed to the individual

states only if one introduces a convention, of the nature
of a boundary condition. Thus, we may suppose that
the state on 02 is unaGected by varying the external
source in the region between o-~ and 0-2. In this "re-
tarded" description, 8~$ ~2 generates the in6nitesimal
transformation of the state on gi. An alternative,
"advanced" description corresponds to —8~8 ~2 generat-
ing the change in the state on 0-&, with a fixed state on 0-~.

These are just the simplest of possible boundary
conditions.

The suitability of the designations, retarded and ad-
vanced, can be seen by considering the matrix of an
operator constructed from dynamical variables on some
surface cr, intermediate between o-~ and cT2,

(fi'~)IF(~)lf 2~ )2

f
(t- ' lr'.)e'8-'. IF( ) ll".)e"(|-"-ll ".).

J

An infinitesimal change of the source $ produces the
following change in the matrix element,

~i 0 i'~il F(~) I
&2"~2)

= (Pi'o i I (BiF (0)+ib)Wi.F(o)+iF(o)b(W.2) I
g2"~g)

=0 ' l(~~F( )+~(F( )~P' )+)ll "~2)

in which we have allowed for the possibility that F(a)
may be explicitly dependent upon the source, and intro-
duced a notation for temporally ordered products. The
matrix element depends upon the external source
through the operator F(o.), and the eigenvectors on Oi

and o.2. One thereby gets various expressions for 8iF (0),
depending upon the boundary conditions that are
adopted. Thus, if the state on 0.2 is prescribed, we find

biF (r)),.g= a)F (r)+ i (F(0)5)W]2)/ iswi2F (0)—
(23)= BiF(o)+i[F((r), 8(W,2),

which only involves changes in the source prior to, or
on 0.. The opposite convention yields the analogous
result

5iF (0')),a» = 8~F(a)+i (F(~)8iW i2)+ iF (0)6W,2—
=a,F(~)—iLF(~), S)W,.).

Note that

~F(-)7:-~F(.))'.='LF(-), ~II 7

The operator G of Eq. (22) consists of two parts,

G=G„+G„
where

to plane space-like surfaces, limiting displacements to
in6nitesimal translations and rotations,

8$y = 6y+ EpySpy

with the associated operators, the energy-momentum
vector

~v=
I

doPTPv)
J

and angular momentum tensor

~Ape &p, ~ 'Av &u~) p,

The operator G evidently generates the infinitesimal
transformation of an eigenvector, produced by the
displacement of the surface to which it refers. With the
notation

we have

iS„e(i-'~)=P„e(l-'~), iS„e(l-'~)t=e—(I'~)tP„,

9„8(t'~) =J„,e(f'~), -Q„„e(t'~)t=eg'~) IJ„„.

If F(0) is an arbitrary function of dynamical variables
on 0, and possibly of nondynamical parameters de-
pendent on 0, we use the notation

~*F( ) =(,~,+l .,~..)F( ),
l9yF (0') = (EyBy+ 2 6)yyByy)F(0')y

to distinguish between the total change on displace-
ment, and that occasioned by the explicit appearance
of nondynamical parameters. On referring to Eq. (3),
we see that

8„F(o.)= B„F(o)+i[F(o),P„),.

b„„F(o)= a„„F(~)+i[F(a),J„„).
The proper interpretation of the generating operator

G„can be obtained by noting its equivalence with an
appropriately chosen infinitesimal variation of the ex-
ternal source. Consider the following infinitesimal sur-
face distribution on the negative side of o-,

@~5=@w)~x~(~io)), (24)

which is not incompatible with the operator properties
of these variations. We have assumed, for simplicity,
that the equation of the surface o- is x(o) =0. With this
choice,

Gg= ~«)yTyy5$y= fyPy+ 2 ElyyJyy. 8iW)2 ——)I «xgio)8x =G~.

The latter form of G, is a consequence of the restriction The change that is produced in x can be deduced from
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the variation of the field equatons,

28„B„Box BI—(B)X/Bx) = 8—B(
= —@(o)BxB(*(o)).

Evidently there is a discontinuity in bye, on crossing
the surface distribution 8$, which is given by

2$(o)Box]= —@(o)Bx

In the retarded description, say, 5~x is zero prior to the
source bearing surface, so that the discontinuity in b~p
is the change induced in x on (the positive side of) o.
Thus, the surface variation of the external source
simulates the transformation generated by G~, in which

8(o)x on o is replaced by

decomposition

5„=5„")+5„(o),
g (i)tr g (i)

g (»tr 9$ (»

Q=p(i)+p(»
Q(i) « —Q(i)

p(o) tr g(»

The matrices of the first kind are real (p=O, 3),
and those of the second kind are imaginary. We shall
not write the distinguishing index when no confusion is
possible.

According to this reducibility hypothesis, the field
equations in the two equivalent forms

28„B„x= (B(X/Bx) 8—&,

—2& "B x= (B.&/Bx) —+"5

8(o)x =5(o)x+8(o)B(x

=@(o)x o@(o)Bx
(25)

separate into the two sets

25„B„@=(BX/By) 8{—, (B(X/By) = (B,X/B(t),

The matrix 5(o) has been retained in this statement
since it is a singular matrix, in general. The number of
components of x that appear independently in (25)
equals the rank of the matrix g(o), and this is the number
of independent component field equations that are
equations of motion, in that they contain time-like
derivatives. The expression of (25) in terms of the
generator Gx is

2@„B„P=(BPe/BP) —St&, (B)X/BP) = —(B,X/BP).

Furthermore, the generator

f
G)t = «x@(o)Bx= «(—@(o)«Bx)x,

al

decomposes into G&+G~, where

I @(o)XI Gx]=to@(o)BX (26)

The factor of -,'that. appears in this result stems from
the treatment of all components of 5(o)x on the same
footing; we have not divided them into two sets of
which one is fixed and the other varied. * If I" is an
arbitrary function of $(o)x on o., we write

«P@«)~4 = "«(5&oÃ$)P,
aJ

r
«(—&(o)B&)|')4'.

J

(27)

LF, G,]=t(B~),=t-', B~,

in which the components of Q(»x are the objects of
variation. When the field equations that are equations
of constraint prove su%cient to express all components
of x in terms of I.(o)x, we can extend (26) into

(x Gx]=toBx.

Of course, one must distinguish between these varia-
tions, in which only the 5(o)x are independent, and the
independent variations of all components of x which
produce the equations of constraint from the action
principle.

In order to facilitate the explicit construction of the
field commutation relations, we shall introduce a re-
ducibility hypothesis, which is associated with the
Lorentz invariant process of separating the matrices
5„,8 into symmetrical and antisymmetrical parts. We
require that the field and the source decompose into
two sets, of the first kind x(')=g, $("=f', and of the
second kind, x('&=/, g('&=)&, as a concomitant of the

Eote added in proof:—Further discussion of this point wi11 be
found in a paper submitted to the Philosophical 3fagasine.

These results reRect the form assumed by the I.agrange
function~

~= l{4@„BA}+ol:4@„BA]—~(4, 0)
+-', {~~,~}+ll'~,~]

The equiva, lence between left and right derivatives
of the arbitrary function K, with respect to field com-
ponents of the first kind, and of the two expressions for
G~, shows that 8p commutes with all fields at the same
point. It is compatible with the field equations to
extend this statement to fields at arbitrary points,

L~( ), B~(*')]=LO( ), B~(")]=O,
provided the source components are included,

L|( ), B~(")]=t,( ), B~(")]=O.
It follows from (27) that the relation between P and
5$ is one of anticommutivity. The opposite signs of the
left and right derivatives of K with respect to P is then
accounted for by

Ltt'( ) B4'( )]={4'( ) B4'(*)}=O

provided only that BC is an even function of the vari-
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ables of the second kind. The inclusion of the source
components

p &r 1 p
o'1

h(W = (dx)x8bg= '

(dx) (8"bg)x,
0'2

decomposes into brW&p+6„W&p, where

and

brW&p ——
) (dx)q4Qf'= ) (dx) (8@)y,

0'g &r2

insures compatibility with the field equations. Ke have
now obtained the explicit characterization of the class
of variations to which our fundamental postulate refers„

Let us also notice that

which requires that the real, symmetrical matrix
iS&p)&P) ' be Positive definite.

We shall argue that the number of independent Geld
components of the second kind, the dimensionality of
'Pf&p)&'), must be even, 2&P&P). Let us imagine that, by a
suitable real transformation, 5&p)&P) is brought into
diagonal form. If the number of components in Q is
odd, the product of all these components at a given
point commutes with Q at that point. Thus, as far as
the algebra of operators at a given point is concerned,
this product is a multiple of the unit operator (the
necessary commutivity with Q at other points on 0.

can always be achieved), which contradicts the assump-
tion that all components of pt& are independent.

The relation between invariance under time reflection,
and the connection between spin and statistics, may be
noted here. The time reQection transformation

6„Wgg= J.,
p &rl

(dx)$8b» = (dx) ( 8bg)—g
I$4 X4) XIg Sgg)

induces a transformation of the GeM

L5(p)4 (*),&(x')5(o)2 =ip5(p) b.(x—x')

[5(p)4(x), 0(x')5&p)] =0,
(5(p)P(x), f(x')5&p)) =i25(p&b, (x x'), —

(28)

in which b, (x x') is the th—ree-dimensional delta func-
tion appropriate to the surface 0.. The numerical forms
of these commutators and anticommutators insures
their consistency with the operator properties of b5&p)P

and b5&p)f. The dynamical variables of the erst and
second kind thus describe Base-Einstein and Fermi-
Dirac fields, respectively, which are unified in the
general Geld x.

Since the rank of the antisymmetrical matrix 5(p) &'&

is necessarily even, there are an even number of inde-
pendent Geld components of the first kind, say 2e").
One can always arrange the matrix 5«)&') so that all

elements are zero beyond the Grst 2e('~ rows and
columns. We shall denote this nonsingular submatrix
of dimensionality 2n") by $&p)"), and the associated
independent components of @ by $. The first commuta-
tion relation of (28) can then be written

The matrix 8&p), associated with Fermi-Dirac fields, is
antisymmetrical and nonsingular. Hence the total num-
ber of field components of the second kind is even. If
we allow for the possibility that 5&p)&'& may be singular,
and arrange the rows and columns so that the non-
singular submatrix 5&p)&P) is associated with the inde-
pendent components Q, we obtain

We can conclude that source variations have the same
operator properties as Geld variations, as already ex-
ploited in Eq. (24).

The operator properties of 5(p)x on a given 0' call &low

be deduced from (26), with the results

such that
X . J4Xy

L "5 I. = —5 L '*5 L =5

L4"8L4——8, X(L4)&)=3'.()t).

The derivative term in Z is indeed invariant since the
matrices 5„&'& and 5„"&are real and imaginary, respec-
tively. We describe this by saying that the theory is
kinematically invariant under time reflection. In order
that it be dynamically invariant, 8C must be such that

Since K is an even function of the components of f,
the latter are to be paired with the aid of imaginary
matrices, characteristic of the variables of the second
kind. The source term is invariant if source and Geld
transform in the same way.

The correlation between spin and statistics enters on

However, this preservation of the form of the Lagrange
function is only apparent, for Gelds of the second kind.
Since —i5(p&& ' is a non-negative matrix, one can only
satisfy the first equation of (29) with an imaginary L4& '

which produces skew-Hermitian Geld components 'X(').
But the invariance of the Lagrange function is not the
correct criterion for invariance under time reflection.
The reversal of the time sense inverts the order of o-~

and 0-2, and thus introduces a minus sign in the action
integral, which can only be compensated by changing
the sign of i in (4). We shall describe this as a trans-
formation from the algebra of the operators X to the
complex conjugate algebra of operators X*. Since the
linear transformation designed to maintain the form of
2 (@, &&„p;P, B„f) has effectively replaced 2 with

2(P, &&„&&&&;i&J,i8„$), the criterion for invariance reads
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observing that an imaginary I.4 is characteristic of half- we have
integral spin 6elds. Ke can prove this by remarking
that all the transformation properties of L4 are satis-
fied by

4 62

(dx) ;f-x8 (x„a„—x„a„+iS„„)P

+ (x„a„x—„a„+zS„,)PSx]

In the absence of an external source, T„„is symmetrical
where 1.1 is the matrix describing the reflection of the and divergenceless, and I'„, J„v are conserved. For
first space axis. The latter form is a consequence of simplicity, we shall con6ne our verification to the situa-

tion of no source, in which the infinitesimal bP is dis-
L 1 S14L'1 S14~ tributed in the region between cr1 and o2. Hence

The essential point with regard to the reality of 1.4 is
that S14=iS10 is a real matrix, whence bzP„(o,) =—F61

(Cx) a.XSbg,

L4 =exp(zrzsi4)Li ——exp(2zrzsi4)L4.

Now S14 must possess the same eigenvalues as 5», say,
which implies that 1.4 is real for an integral spin 6eld,
and imaginary for a half-integral spin 6eld. The re-
quirement of time reQection invariance thus restricts
fields of the first (B.E.) and second (F.D.) kind to
integral and half-integral spins, respectively. This corre-
lation is also satisfactory in that it identifies the double-
valued, half-integral spin fields with 6elds of the second
kind, of which 8 is an even function.

%e have introduced several kinds of generators of
infinitesimal transformations. A criterion for consistency
is obtained from the alternative evaluations of the
commutator of two such generators,

$G, Gz]=i(SG,)z —— i(bG—,).,
namely

QG.) +(aG ).=0.

As a 6rst example, we consider the two generators

Gv &v+v(ol)+z&vv~vv(ol)v

F61

(dx)XSag,

F61

bZJ„„(oi) = — (dX) (X„a„—X„a„+iS„„)XSbt.

The consistency requirement

(aGz).=

then demands that

4 6~

(dx) (bx) gQ& = b zG. ,

—(ax).=z„a.x+zev. (x a. x.a +—isv„)x, (30)

which is indeed true in virtue of the equivalence be-
tween (Bx(x))„ induced by the displacement bx„, and
'x(x) —x(x), induced by the coordinate transformation
'x„=x„+»„.

Alternative forms of I', and J„„are convenient for
testing the consistency of G and G„. The following
relations derived from (16),

x@.a,x—x@,a.x =zx(@iS,.—S,'@~)»x,
a.x@.x—a.x&.x= za~x(W.S.,—S„'@~)x,

enable us to write T„„as

T..=&4.—2(x@.a.x—a.x@.x)+a.~...+p...
where

in the retarded description. In preparation for the test, i i2ar S 2S to~Sgpv= $~) v=&4X(2g4{paiv)M2a) {v ~y)
we remark that —@is„.—S„.t 5~)x,,

F61

~.(~i) —&.(~z) =

and that

6g

(dx) a„T„„ p„„= @ts„„x—(aix/ax)+ (ape/ax)s„„x].

In virtue of the antisymmetry of s),„„in the first two
indices, 8),sq„, is automatically divergenceless and does
not contribute to the energy-momentum vector I'„,

d+PL~av v 2 (X@vavx a NPvX) +pv ]&v

J„.(oi) —J„.(oz) = (dx)aiba), „,J„ but does enter in

Since

F61

(Ch) )x„azTz „

hvar Tip+ Tpv Tvv]

T„„—T„„=—z-', HAS„,X—XS„„ting),

J„.=) doff —',x5y(x„a„x„a„+iS„.)x-—
+ Z (XVav XvaV+Zslvv)XSiX+hVpi v hvpgV]

+ (do'vhv do'vhv) Z. —
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The components of I'„ in a local coordinate system are (&, (x—x') and therefore vanish when multiplied by
x(1,)

—x(@'. Furthermore,

P(o) = da[3c—x@(&oB(y)x —k(Ãx+x&g)7,

&(~)= '

d L
—x&(o)~(~)x+p()(&)7

while those of J„„are

&(o)(i) =x(o)J'(a) — dox(&)[&—
~ (xS(&)(&(&)x

—(I(&)x~(i)x) 2 (Ãx+x&k) 7

r
d(Tx(@«)S(o)(i)+S(o)(i) ~(o))x (32)

or

—,'(&„(e„E'„+-,'e„„J„„)= —
) da (()x).5(o)(&x,

[~(x), x (*')Ã(0) =ki((~.&/(Ix)(&. (x—*'),
and

5(())[x(x'), Se(x)7= 2i((I&X/(Ix)l& (x—x'),

from which we obtain

[K, X(p) (p) 7 = 2ip(p& (i) =0.

With this information, the proof is easily extended to
all components of p„„.

The consistency of the generators 6, and 6, requires
that

J(g)(i) = dr[ —xS(p) (x(i)B(i)—x(i)8(t)+is()o(&))x

+x(i)p(0) (i) x(&)p(0) (&)7.

The quantity p, „ is closely related to the infinitesimal
expression of the scalar character of BC,

X(y—i-,'e„,s„,x) —3'-(x) =0.

We can, indeed, conclude that

p„„=0,
if 3C is no more than quadratic in the components of
various independent'fields. We shall also prove this
without the latter restriction, but, for simplicity, with
the limitation that there are no equations of constraint.
The commutation relations equivalent to (30),

'5xPp
J

d(TB,x25(o)5x,

|I)Jpp= do'(xp8p xpBN+ispp)x25(0)8x)

which can now be verified from the expressions (31)
ail(i (32)& wltll p(p) (y&

=0.

CHARGED FIELDS

Our considerations thus far specifically exclude the
electromagnetic field {and the gravitational fieM). We
introduce the concept of charge by requiring that the
I agrange function be invariant under constant phase
(special gauge) transformations, the infinitesimal ver-
sion of which is

imply that

where

I x &.7= —&c&.x

[x, J„,7= i(x„B, x—,8„+is„—,)x,

[„,x„„7=s„„x,

'x= (I—i»&)x.

Here Q is a constant, and 8 is an imaginary matrix
which can be viewed as a rotation matrix referring to
a space other than the four-dimensional world. The
invariance requirement implies that

1V„„=J„„x„P„+x,P„. —

This enables one to express the scalar requirement on 3C

in the form

[x,N„,7=0.
The components

A'(0)(.) = d~'(x(~) —x(.)') [X(x')—2 (X&(&)~(i)'x

—(&(i)'x&(i)x) —k Rx+x+h)

«x(@(o)S(0)())+S(o)&a) S(0))x&

do not involve 'the unknown p(0~(~). According to our
simplifying assumption of no constraint equations, the
commutators (anticommutators) of all Geld components
at x and x' contain the three-dimensional delta function

and that

gt=php —i

(Ph) (=gb

[b, 8-'5„7=[h, s„.7=0,

X(x—i»Bx) —X(x)=0.
We now write the general variation as

b{x)=bx —i-', (a„bx„)s„„x—9) hx,

where Q, , characterizing a local phase transformation,
is an arbitrary function of x, consistent with constant
values on o-~ and on 0-2. The additional contribution to
(&(Z) thereby produced is

j„a„»—i-', (g8$x —x8hg)»,
where

j,=—ix@,hx
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is the charge-current vector. The stationary action
principle requires that

~.~.=-'!(«~x—x~ht),

and yields as the phase transformation generator

(33)

G&,=)' do.ujuSX=QQ„

where Q is the charge operator.
The integral statement derived from (33),

p&1

Q(. ) -Q(")= (d )'-;(.~~~- «~x),

becomes the conservation of charge in the absence of
an external source. If an infinitesimal source is intro-
duced in the region bounded by o-& and 0.2, we then have,
in the retarded description,

lP&(-)@. 'A(+)3+4L4(+)@., 'A(-) j,
—iek(&(-)@A(+)—4(+)@A(-)),

(36)

(37)

algebras are involved, the 6eld contains particles with
charges 0, ~e.

To present 8 as a diagonal matrix, we must forego the
choice of Hermitian field components. Thus, for the
example of a charged F.D. field, where the field com-
ponents decompose into f(i), P(2), corresponding to the
structures (34) and (35), the mutually Hermitian con-
jugate operators

tp(+)
——f(i) —ip(2» p( &

g——(i)+if(q),

are associated with eigenvalues +e and —e, respec-
tively. On introducing these 6eld components, the
derivative term in the Lagrange function, the electric
current vector, and the commutation relations, respec-
tively, read

'(Q(&i) =

I

whence
=iLQ(~i), Gth,

Lx, Q7=&x.

This commutation relation also follows directly from
the significance of G~, indicating the consistency of the
latter with G~.

We shall suppose that the matrix 8 is an element of
the algebra generated by 8 'Su and Su„. It follows that
8 corn~utes with 8, and therefore that the latter is
explicitly Hermitian,

gt h

Such an antisymmetrical, imaginary matrix possesses
real eigenvalues which are symmetrically distributed
about zero; nonvanishing eigenvalues occur in oppo-
sitely signed pairs. Since h commutes with all members
of the above-mentioned algebra, the charge-bearing
character of a given field depends upon the reducibility
of this algebra. Thus, if the algebra for a certain kind
of field is irreducible, the only matrix commuting with
all members of the algebra is the symmetrical unit
matrix. Hence 8=0, and the field is electrically neutral.
If, however, the matrix algebra is reducible to two
similar algebras, as in

and
8 'S„=-i7„,

This yields the following forms for (36), (37), and (38):

454'7u~ "u4'] 4l "A"7ur'j)
(39)

ekC47. , 0j,
and

{7(o)$(~),7(0)f(~')}= {4(*)7(o),g(&')7(0) }=0,
(40)

To express the now slightly obscured symmetry be-
tween positive and negative charge, we call P( &

the
charge conjugate field

(4I)

{@(OA(+)(~),~(+)(~')@«)}
= {@(o)4(-)(~), ~(-) (~')@(O)}=01

(3g)
{@(o)~(+)() ~'(—)(&)@(0)}

= {@(0)4'(—) (&) ~'(+) Y)@(0)}=i@(0)~.(~—*').
There is evident symmetry with respect to the substitu-
tion P(+)~P( &, e~—e.

Since/(+) and P( ) are Hermitian conjugate operators,
we can arbitrarily select one as the primary non-
Hermitian field. We shall write

t'gu 0 )
(34) and state this symmetry as invariance under the substi-

tution P~P', e+-+—e.
The matrices p„; p, =0, .3, obey

the matrix 8 exists and has the form (with the same
partitioning) 7„(=87„8-',

and(0 —i~
h=eI

Ei 0)
7tr 5g7g i (42)

since they are purely imaginary matrices. One should
This describes a charged field, composed of particles also recall that P is an antisymmetrical, imaginary
with charges ~g, the eigenvalues of h. If three st.ilar matrix. If we were to depart from these special struc-
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tures by subjecting all matrices to an arbitrary unitary
transformation, we should find that the only formal
changes occur in (41) and (42), where the matrix Q
appears modified by an orthogonal, rather than a
unitary transformation. Hence, in a general representa-
tion these equations read

y "=—C 'y„C,

where C still exhibits the symmetry of P, appropriate
to the example of a half-integral spin 6eld,

The commutation relations (40) are in the canonical
foryn which corresponds to the division of the inde-
pendent field components into two sets, such that one
has vanishing anticommutators (commutators, for an
integral spin field) among members of the same set.
The generator of changes in f and f, Eq. (27) in the
notation of the charged half-integral spin field ex-
ample, is

G(4, 0) = li ~d~(47(o)&4 ~A(o4),

which can be deduced directly from the Lagrange func-
tion derivative term (39). Associated with the freedom
of altering the Lagrange function by the addition of a
divergence, are various expressions for generating
operators of changes in the field components. Thus, we
have the following two simple possibilities for the
derivative term and the associated generating operator,

kB7. »A'j

G(4') = i d&7(p)V)

'2= Z+ j„B„X.
The addition of the electromagnetic 6eld Lagrange
function,

~emf= p fop) A))} 4 jF))v) &pA) ByA))}

+gF„P+J„A„, (43)

provides a compensating quantity through the associ-
ated gauge transformation

'A„=A„—B„X.

The term involving the external current J„is effectively
gauge invariant if

O„J„=O,

since the modi6cation is in the form of a divergence. In
the same sense, there is no objection to employing a
form of the Lagrange function in which the second term
of (43) is replaced by

—,'(B„F„„A„}.
We write the general variation of A„ in the form

(44)

(')(A„) =()A„—(8„8x„)A„
=8A„ip(8„8x, B„t')—x„)A. p(—8„8x„+8,8x—„)A „,

THE ELECTROMAGNETIC FIELD

The postulate of general gauge invariance motivates
the introduction of the electromagnetic 6eld. If all
6elds and sources are subjected to the general gauge
transformation,

'y= exp( —iX(x)b)x =y exp(iP, (x)8),

the Lagrange function we have been considering alters
in the following manner,

and
2 L~~A74) 4 3)

G(f) = i do+7(p)—f

which ascribes to A„ the same transformation properties
as the gradient of a scalar, thus preserving the possi-
bility of gauge transformations under arbitrary coordi-
nate deformations. In a similar way,

8(F„,) =SF„„(8„8x))F)„(B—„bx))F„),. —
Evidently G(f), for example, in the generator of

alterations in the components 7(p)p, with no change in

$7(p). The associated commutation relations,

$7(p)P, G(P)]= i7(p)bf,

L4'7(p) G(4')l= o

are satisfied in virtue of (40), and, conversely, in con-
junction with the analogous statements for G(P); imply
these operator properties of the field components. The
connection with the generator in the symmetrical treat-
ment of all field components is given by

G(4, 4) = 'G(4)+-'G(4)-
which indicates the origin of the factor (I/2) in the
general Eq. (26).

With regard to the derivation of the electromagnetic
field equations from the action principle, it should be
noted that general gauge invariance requires that the
sources of charged fields depend implicitly upon the
vector potential A„. We express this dependence by

S ~(x') = (dx)(cg(x')/W„(x))W„(x).

Since -the in6nitesimal gauge transformation, W„=
—B„Q(, must induce the change ()$= iQ, 8$, we le—arn
that

a„(hg(x')/hA„(x)) = —ibad(x)b(x —*'). (43)

One obtains the following held equations on varying
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F„„and A„ in the complete Lagrange function,

Ii„„=B„A„—8„A„, (46)

If 8J„has the explicitly divergenceless form

bJ„=8„5M„„, M„,= —M,„,

where
8.F"=i.+4+J' (47) where 8M„„vanishes on o.i and a2, we find that

k„(x)= —,
'
J

(dx')L(bg(x')/BA „(x))8x(x')

+x(x')+(8$(x')/8A. (x))j
is the contribution to the total current vector associated
with charged 6eld sources. We derive from (45) that

But the total current vector is divergenceless in conse-
quence of the electromagnetic field equations. Therefore

&1

5gW)2= ~ (dx) ',8M„-„F„„,
4~2

which makes it unnecessary to introduce an external
source that is directly coupled to the field strength
tensor F„„.

The special nature of the electromagnetic 6eld' is
apparent in the form of the operator (52) generating
changes in the local electric 6eld components. Since one
of the field equations is the equation of constraint

8(~)F(o)(~)=j(0)+&(o)+J(o) (54)

which is in agreement with (33).
After removing the terms in 8(Z, () that contribute

to the 6eld equations, we are left with

8(Z, p) =-,'{bj„,A „} 8„(F„-„8A—,)+A„8.J„bx,
——,'(8„bx„+8„8x„)(-,'{j„,A„}—-,'{F„)„F.})

—(8„8x„)J„A„(48)
in which

—,'{bj„,A„}= —ibx5„8{x,A„}= i{A„—, x}S„QX.
This term alters the field equations of charged fields,

2@ (8 x—i@'{A x})= (8«/8x)
—(8„y+i-',{y,A„}B)25„=(8PC/8)() —$8.

%e. have anticipated that not all components of A„
commute with y. The tensor T„„is now obtained as

+k{F"F i} 5{i(.A )} J.A.—(49)—
where . stands for (20), but with 2 the complete
Lagrange function. The action principle supplies the
differential equation

8„T„„=,'(x88„$+8„$8-x)+A„8,J„. (50)

the three variations bF{0~{I,~ cannot be arbitrarily as-
sign. ed; the electromagnetic field and charged fields are
not kinematically independent. This is evidently an
aspect of the gauge invariance that links the two types
of fields. Alternatively, we see from (51) that A(0) is
not a dynamical variable subject to independent varia-
tions. But there is no field equation that expresses A{0)
in terms of independent dynamical variables, in virtue
of the arbitrariness associated with the existence of
gauge transformations. Furthermore, a variation of
A{~~ in the form of a gradient, that is, a gauge trans-
formation, yields a generating operator which, in con-
sequence of (54), no longer contains electromagnetic
field dynamical variables. Thus, in either form, (51)
or (52), there iare only two kinematically independent
variations of the electromagnetic field quantities.

%'e now apply these generators to deduce commuta-
tion properties for the gauge invariant fieid strength
components. According to the eCict of a variation
8A{~), upon the local components of Ii„,we have

LF(o)&~)i G~j=0
t F(&)(~) G~j=i(8())~A(&) 8(&)8A(»)i

whenceThe divergence term in (48) yields the infinitesimal
generator

t F(o)() ) (x)i F(0)())(x )1=0i (55)

G/ J d(J)iF)iy5A p — l&F(0)(i)8A (i)i

while the Lagrange function with the derivative term
(44) would give In using Gp, we must restrict the electric field variation

according to

and
(51)

P'( )()(*) F(o)( )(*')j
=i(~(i)( )8())—6())( )8(i))~.(x—x'). (56)

f
Gp= City&OF@, vA v d&~P{0){I(;)A{I(;)~

J
(52) ~{I)&p{0){a)=0,

which is identically satis6ed on writing
The change iri the action integral produced by a

variation of the external current J„is given by
~~{o){&)= ~{&)~~(A:){&)7 ~{&){&)

= ~{&){&)~

4II')2= ) (Cx)8J„A„
Papers dealing with the situation peculiar to the electro-

magnetic Geld are legion. Of the older literature, the closest in
spirit to our procedure is that of W. Pauli, IIandbuch de I'hysik
(Edwards Brothers, Ann Arbor, 1943), Vol. 24.
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This yields the form

G) =~ d&2F(»«&~~&»()) ~

The expression of changes induced by 5F(p)(~),

LF(»()) i G)"3

LF&o)(», G)")=i()F&o)(k),

then provides the commutation properties

LF (),F- -(')j=o,
I F(o)(»(x), F())(-)(x')j

i(()(»())(I(vtv) ~()v)( )(I()))~ (*
(57)

A change in the external current, of the form (53), yields

())v bMF)iv (7)v4EJv+&)vf)MJ)i

= 8„()),()M„),—B„Bg()M„)„(59)

where, in the retarded description

8MF„„(x)=i F„„(x), (dx')-,'()cV),„(x')F),„(x')
&r2

p 0'1

(dx')-,'BM),„(x')q+ (x x')i—

&&2'"(.) F .(*')3,

and g+ is the discontinuous function

G~—
~ d0'ko™(»(&)F(&)(&) ()')N(p)(»F(p)(» j

The alteration produced in the Geld components follows
from the field Eq. (47), and the form of (46) given by

Thus,

&I)vFv) +~vF) )i+ (I)F)i v
=0. (58)

&I(o)(~F(p)()) &~(o)()))= (I(»&F(»(&)+&)(»()~(»())i

~(P)~~(I )(l) = ~(l)&~(P) (a)
—~(k)&~(P) (l) &

which yields the i lowing discontinuities in 8F„„on
crossing the surface,

()F(o)&))j= &(»&~(» ()),

~F(»())3 ~())~))i(p)(» &)(»~~(o)())

In the retarded description, these discontinuities are
the actual changes in the Geld components on 0-. On
referring to the general formula (23), we obtain

(I(»&rn(»()) =irF(p)())i G j
~())~~(o)(» ~(»~~(p)()) =~Ã(»()), G-j

In view of the arbitrary values of bm„„on 0., these equa-
tions imply field strength commutation relations, which
are identical with (55) and (57).

We give a related procedure which also illustrates the
possibility of evaluating commutators of field quantities
at points in time-like relation. The two field Eqs. (47)
and (58) can be combined into (we incorporate k„
with j„)

~~'F"=~.(i +~.) ~.(i.+~.). —

where the latter is equivalent to (56).
An alternative derivation employs an infinitesimal

change in the external source, distributed on (the nega-
tive side of) 0', x&p) =0,

bM„„=Bm„,f')'(x(p)),

for which the associated generator is

))+(x—x') =1, xp) xo'

=0, xp(xp'.

We have a similar expression for ()Mj„(x).On comparing
the coeKcients of 8M),„(x') in (59) (our two treatments
employing external sources are thus distinguished by
surface and volume distributions of ()M„„,respectively),
we find

—
&)),'r)~(x —x')iLF„,(x), F),„(x')j

B„r)~(x—x')i[j„—(x), F),„(x')j
+ p)„)N(x—x')iL j„(x),F),„(x')j
= (~vip))iO)v ()vv~iv&)k

+S„„a„a,)S(x—x'). (60)

The value of i(F„„(x),F),„(x')), for equal times, is then
obtained from the coefficient of the di6'erentiated delta
function of the time coordinate, with the anticipated
result.

In the approximation that neglects the dynamical
relation between currents and 6elds at points in time-
like relation, the differential Eq. (60) has the solution

))+(x—x')i)F„,(x), F),„(x')j
= (~vX&))i&)v ~vv&))vp)X ())v) ()v&)v+())iv&)v()X)Dvet(X X )i

where D„~(x—x') is the familiar retarded solution of

—&))PD„t——1) (x—x'). (61)

Had we employed the advanced description, g+ would
be replaced by —q, where

)) (x—x')=0, xp)xp'
—1) gp+xp p

and the advanced solution of (61) would appear. Sub-
tracting these two results, we Gnd

i)F„.(x), Fg„(x')j
= (~A&)iv&)v f)vv(I)i&I) t))i)«Iv&Iv+~iiv(Iv(I))D(X X )i

in which D(x—x') is the homogeneous solution of (61)
provided by

Dret Dad v.
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8(fg) A (» Oo (62)

The kinematical relation between the electromagnetic
field and charged 6elds, on a given r, is most clearly
indicated in a special choice of gauge, the so-called
radiation gauge,

The resulting commutator

i[A(»(x), P(o)()) (x')]
=b(»())b (x—x') —{t(»&)«)'&.(x—x')

= (b&»«)b (x-x'))' )v

With this choice, the constraint equation for the electric is also consistent with the transverse nature of A(». The
Geld reads remaining commutation relations are

(I(»F(p) «&
= —&&(»'A (m =Am+ J(m

so that the scalar potential is completely determined by
the charge density,

A (p& (x)= d&T'Sv (x—x') (j(p) (x')+ J(p& (x')),

YVe shall use the device of the external current to
derive the commutation relations between the electro-
magnetic 6eld tensor and the displacement generators
P., J„„.According to (49) and (50),

S (x—x') = (I/4m')[(x(o) —x(»') ]
Evidently, A(p) does not commute with the components
of charged fields. In this gauge, then, the dependence
of the electric field upon the charged fields is made
explicit through the decomposition of the electric held
into transverse and longitudinal parts,

~(p) (A:)
= ~(p)A (» ~(»A (o)

=P(o)(»( +P(o)(»( )

The inference that the transverse fields are the inde-

pendent dynamical variables of the electromagnetic
6eld in this gauge is con6rmed on examining the gener-
ators Gg and Gp. Indeed,

G+ —
) d&JP(o) {»bA (» ~ — do F(p& «) ' 'bA (»,

4

6p = dobF(p) (A,,)A (» = d0.6F(p) (y) (~)A (g),

P„(~,) —P„(~,) = (dx) [ +A),a,J),],
4 (r2

p
(rl

J„,(o g) J„v(ap) =— (dx) [ ~ ~ +A&, (x„8„—x„8„)J),
(r2

+A„J„—A„J„],

4IP, (~))=—
(r2

(dx)-,'RV)„B„F),„,

b~J„„(&T,)= — (dx)[-,'bM), „(x„8„—x„o)„)F&,„
(r2

+be�)„F„, b&),„F„),]. —

in which we have indicated only the terms containing
the external current. We consider an in6nitesimal
change in the latter possessing the form (53). In the
retarded description, the resulting changes of P„and
J» on a-~ are

(dx)-', bM), „F),„,

in view of the transverse nature of A(», Eq. (62). We When exPressed in terms of the generator

can now derive the commutation properties of these
dynamical variables from

LA(»v G&]=ibA(»)

[P(p)(» v G) ]=obP(p)(»

[F(m(»' 'i G~]=0v

[A(», Gp]=0, the following commutators are encountered,

on taking into account the restrictions

~(»~A(» = ~(»~~(o)(»' '=O~

produced by the transverse nature of these quantities.
The Lagrange multiplier device permits us to deduce
that

i[A (» (x) i F(m())( ) (x')]=b(»())b. (x—x')+ p)())'l&(»

The divergenceless character of the transverse electric
field supplied the information

8()) 9(»= 8(»b (x—x ),

i)F),„,P„]=8„F)..
p[P kv) Jvv]= (xo(I v 'xv&lv)F), v+bvvF)vt

b„„F„),+b„),F,„—b, ),F„„. —

Finally, we remark that the extension of (31) to
include the electromagnetic Geld, in the radiation
gauge, is

F(p) = d&[p (F«)(»' ')'+4 (F(»()))'
aJ

+~—x@(»(()(»—ihA (»)x
whence I

X(»= —8(»Sv(x —x ). —J(»A (»+ p (J(o)+J(m)A «) —p (Ã){+%6)]v
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of the independent 6elds yields

+(A) = d(rL2f~(o)(I) i ~(&)(I)) X@(o)()(&)Xj

In arriving at the expression for E~Q), the noncommu-
tivity of A(Q) with x must be taken into consideration,
but produces no actual contribution. A variation of each

~&~=g d(rL~~(o)V)' '(I~~(A) —~~(A)(I~~(o)(A)I' '

3X2 t(o) ~AX ji

which conhrms the consistency of the translation gener-
ator with the various field variation generators.
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In this paper we discuss the electromagnetic field, as perturbed by a prescribed current. All quantities of
physical interest in various situations, eigenyalues, eigenfunctions, and transition probabilities, are derived
from a general transformation function which is expressed in a non-Hermitian representation. The problems
treated are: the determination of the energy-momentum eigenvalues and e'genfunctions for the isolated
electromagnetic:Geld, and the energy eigenvalues and eigenfunctions for the Geld perturbed by a time-
independent current; the evaluation of transition probabilities and photon number expectation values for
a time-dependent current that departs from zero only within a finite time interval, and for a time-dependent
current that assumes non-vanishing time-independent values initially and Gnally. The results are applied
in a discussion of the infrared catastrophe and of the adiabatic theorem. It is shown how the latter can be
exploited to give a uniform formulation for all problems requiring the evaluation of transition probabilities
or eigenvalue displacements.

INTRODUCTION

K shall approach the general problem of coupled
6elds through the simpler situation presented

by a single field which is externally perturbed. In this

paper we illustrate the treatment of a Bose-Einstein

system by discussing the Maxwell 6eld with a pre-
scribed electric current. A succeeding paper will be
devoted to the Dirac 6eM.

The solution to all dynamical questions is obtained

by constructing the transformation function linking

two descriptions of the system that are associated with

diGerent space-like surfaces. Thus, for a closed system,
the general transformation function can be expressed as

where the y are a complete set of compatible constants
of the motion, in terms of which the energy. -momentum

vector P„can be exhibited. In the y representation, the
e8ect of an in6nitesimal translation of 0& is given by

3,(p'~I
I
p"~,)= o(p'~,

I r„se„lp"~,) =o&„'&e„(7'~I
I
v"~,),

where P„'=P„(p'). Accordingly, if or is parallel to oo,

and is generated from the latter by the translation X„,
we have

(p'~II p"~,) =s(p', p") exp(ir„'x„),

and

This shows how a knowledge of the transformation-
function that. relates two conveniently chosen repre-
sentations on parallel surfaces yields all the eigenvalues
and eigenfunctions of P„.

Another illustration of the utility of transformation
functions relates to the situation in which the same
system is externally perturbed, in the interior of the
space-time region bounded by 0.1 and a2. The trans-
fOrmatiOn funCtiOn (y'(rr

I
y"o o), inferred frOm the

knowledge of (t I'oI If&"(I&), then yields the probability
of a transition from the initial state y" to the final
state y',

p(v', v") =
I
(v'~Ilv"~o) I'.

Representations of particular convenience are sug-
gested by the characterization of the vacuum state for
a complete system. The vacuum is the state of minimum
energy. H this natural origin of energy is adjusted to
zero, the vacuum can be described as that state pre-
senting identical properties to all observers, P„%Q
=J„„%'Q=o,and is therefore independent of the surface
0.. Now, if the general field component x is analyzed
into contributions of various frequencies, X&Q, we have
LX)io, &oj=PoXI o, or &oXIo=XIo(&o Po)—
relation, involving a positive frequency, po) 0, is


