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The connection between the conservation law for angular momentum and the anisotropy observed in
cosmic-ray stars produced by energetic primaries is investigated. A model is proposed which is probably
reasonable for noncentral nucleus-nucleus collisions and may have some meaning for nucleon-nucleon
collisions; it is based on assuming that the disk-shaped “interaction volume” consists of many zones acting
independently. If equilibrium is reached within individual zones, the particles emerging from one zone
ought to be distributed isotropically in its center-of-mass frame. In a noncentral collision these frames will
in general, in accordance with the conservation of momentum, be different for different zones. Some anisot-
ropy in the total angular distribution follows, but on this model it could never reach the degree frequently

observed.

I. INTRODUCTION

N Fermi’s statistical theory of high-energy processes!
it is postulated that the outgoing particles corre-
spond to a state of equilibrium within the interaction
volume V. Once the particles kave left V' their coupling
is supposed to cease. The number and angular distribu-
tion of the particles depends on V and on the energy and
angular momentum deposited therein. Fermi took V to
be independent of the initial impact parameter, more
especially to be a flattened ellipsoid of revolution with
its axis, the length of which depends on the collision
energy, parallel to the direction of approach of the
particles. This simplification seems reasonable in the
domain of small impact parameters; but as these
approach the transverse radius of the ellipsoid, the
predicted measure of anisotropy tends to infinity. This
is clearly brought about by the simplifying geometrical
assumptions, and one must ask oneself whether, on
replacing them by less crude ones, the theory will
still account for the considerable anisotropy found in
recent experiments.>? One might try to check this by
having V depend on the impact parameter (increasing
with it) while otherwise taking over Fermi’s whole
formalism. We are indeed convinced that on doing this
and admitting even a rather weak increase of the
transverse dimensions of V' one would find the peaking
predicted for large impact parameters greatly reduced.
However, as Fermi has pointed out, it is difficult to
specify shape and size of V in a realistic and unambig-
uous way. Therefore we have tried to find another
method, not dependent on precise assumptions concern-
ing V, and which may yet enable us to estimate what
maximum anisotropy can reasonably be explained from
the assumption of a flattened interaction volume and
the conservation laws.
To avoid misunderstanding we should here say that
we do not question Fermi’s basic principle : we definitely

1 E. Fermi, Progr. Theoret. Phys. 5, 570 (1951) ; Phys. Rev. 81,
863 (1951). :

2 M. F. Kaplon and D. M. Ritson, Phys. Rev. 88, 386 (1952).

3Lal, Pal, Peters, and Swami, Proc. Indian Acad. Sci. 36, 75
(1952).

follow him in asserting that the conservation of angular
momentum will, for a flat interaction volume result in
some anisotropy of the total angular distribution.
However, we think we can show that this anisotropy
may be very much weaker than on Fermi’s original
estimate. Consequently we doubt that an explanation
of the observed, strong anisotropy is possible on this
basis. ‘

Below we carry out an investigation of a model
similar to Fermi’s but based on the hypothesis of
“local interactions.” (This is explained below.) We
find that this model gives only negligible “peaking”
(even for the largest impact parameters), although all
conservation laws are satisfied.

II. EVIDENCE OF ANISOTROPY

We are concerned with the angular distribution in
cosmic-ray stars produced by primaries with an energy
of a few thousand Bev or greater. The shower or jet
part of such a star consists of tracks which do not allow
identification of the particles. The only data with
direct bearing on the interaction are in most cases the
angles between the tracks in the laboratory frame.
These are not sufficient to determine the center-of-mass
frame (c.m..) of the process. For the majority of
observed jets there is no Lorentz-frame in which the
angular distribution is spatially isotropic. Usually it
proves possible to find a Lorentz-frame in which the
distribution is more or less symmetric with respect to a
plane normal to the path of the primary. It is often
thought that this amounts to finding the c.m.f. In most
cases, however, it is known that the colliding entities
are by no means identical (nucleon-nucleus collision).
It is then unlikely, @ priorz, that the angular distribution
in the real c.m.f. should exhibit forward-backward
symmetry. One could only, e posieriori, admit this
symmetry if it were found that the distributions are
isotropic in the c.m.f. But this is, experimentally, not
the case. Therefore this procedure for guessing the c.m.f.
and all conclusions based on it should be regarded with
some caution.

A convenient measure for the anisotropy has been
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introduced by Kaplon and Ritson.? Let ¢, denote the
half-angle of the cone in the laboratory frame in which
the tracks of #V of all the IV particles in the jet are
situated. Form the ratio ¢34/¢1ys for the observed
distribution and, for comparison, for a distribution
isotropic in the same c.m.f. The quantity,

X (P3//' ¢1/4)0bserved’
: (¢3/4/¢ll4)isotropi:

is equal to 1 for distributions for which a Lorentz-frame
exists in which they are isotropic. For distributions
peaked in forward and backward direction in that
Lorentz-frame in which they are symmetrical with
respect to the transverse plane, X is greater than 1.
A large X manifests itself by the appearance of a
“double cone” in the laboratory frame. The wider the
outer, diffuse cone and the narrower the superimposed,
inner, dense cone is, the larger is X. In the cases of
interest the Lorentz-transformation relating the labora-
tory frame and the so-called c.m.f. is strong (y>>1) so
that, e.g., ¢34 is still a small angle. For a distribution
isotropic in the c.m.f. one has under these conditions,
as can be proved with the help of Egs. (5) and (8)
below ¢./¢p1-n=n/(1—n). (Here n stands for any
fraction not too near 0 or 1.) Putting #=23/4, one finds
(@3/4/b1/4) isotropie=3. Therefore one can in practice
evaluate X from

M

X =o314/3b1/a. (2

For the twenty everts in copper described by
Kaplon and Ritson? the quantity X has values varying
from 1.17 to 66, and X is in this set of events not signif-
icantly correlated with either the energy or the multi-
plicity. The Lord-Fainberg-Schein star* and the very
large star with an Mg primary described by Lal et al.®
both show X = 3. Two events in copper with « primaries
observed by Kaplon and Ritson? give X=1.17 and
X=2. The Bradt-Kaplon-Peters star’® has X =2.33.
In Fermi’s original paper! he obtained for median impact
parameter a distribution in agreement with that of the
Lord-Fainberg-Schein star, i.e., with an X~ 3.

Since nothing is known about the interaction laws,
there is no very convincing reason why peaking rather
than isotropy should be regarded as surprising and as
requiring a special explanation. The @ priori motivation
for requiring such an explanation is different for the
different authors. Without going into too much detail,
we should mention that besides Fermi’s argument
involving the conservation of angular momentum
several other explanations of the anisotropy have been
proposed. A number of investigators have put forward
the most obvious idea that the double cone may be due
to multiple scattering inside the target nucleus; those
particles which are scattered more often being deflected
more strongly from the direction of the primary. This

4 Lord, Fainberg, and Schein, Nuovo cimento 7, 774 (1950).
® Bradt, Kaplon, and Peters, Phys. Rev. 76, 1735 (1949).
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explanation does away with the assumption that the
jet is generated in a single act, and it denies the special
role of either the real c.m.f. of the jet or of the frame
(probably not identical with the c.m.f.) in which the
distribution is most symmetric in backward and forward
direction. Arguing from the opposite viewpoint that

. the peaking is a fundamental feature of interactions at

high energies, already present and perhaps most
prominent in the results of simple nucleon-nucleon
collisions, Heisenberg® has pointed out that it might
be explained in terms of the coherence of the waves
going out from the flat-shaped zone of interaction.

III. MODEL OF THE INTERACTION

Fermi and Heisenberg have pictured ‘“extreme-
relativistic” (E>>M¢?) nucleons as disk-shaped objects,
flattened in their direction of motion according to the
ratio Mc*/E. In dealing with the collision of two such
disks and the insuing splash of matter they have used
a mixture of arguments based on the ‘“particle’” and the
“wave” picture of quantum processes and have am-
plified these by certain assumptions about the con-
sequences of ‘the “strong coupling” of the mesonic
fields. With Fermi’s approach, one difficulty which
presumably has occurred to many and is mentioned by
Lewis” is the clash between the assumption of equilib-
rium within the whole of V and the velocity of
propagation of action within V, which one will be
inclined to assume <c¢. The interaction volume has no
“walls” which hinder the particles to escape; this is
inherent in the physical picture and is also implied by
Fermi’s use of wave functions corresponding to free
particle states. Hence the concentration of energy will
only exist for a time of the order (R/c). (M¢*/E), which
is short compared to the time (R/c) approximately
required so that action should spread across the disk.
Thus, if one assumes that the coupling of the outgoing
particles ceases (equilibrium frozen) when they leave
the interaction volume, one can hardly avoid assuming
at the same time that the processes in different zones
of the interaction volume are physically independent if
the transverse distance in between such zones is large
compared to the depth of the interaction volume along
the line of approach of the initial collision. (Whether
such a split into independent zones might occur in
Heisenberg’s model depends on the field law assumed;
more specifically on when the nonlinear character of
the wave propagation ceases to be important. If this is
soon after the waves start to spread out from the
initial disk, the split into independent zones will occur.)

One may now consider amplifying the Fermi-Heisen-
berg disk-model by a postulate of “independent zones.”
This, in effect, we will do. However, the piling of more
assumptions on to a perhaps rather uncertain basis
must cease at some stage or be compensated for by

8 W. Heisenberg, Z. Physik 133, 65 (1952).
7H. W. Lewis, Revs. Modern Phys. 24, 241 (1952).
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establishing a more secure foundation. Since we are
not in a position to provide additional support in the
shape of theoretical arguments, we will try to get on
firmer ground by restricting our claims as to the
applicability of the model. We will consider (non-
central) nucleus-nucleus collisions and leave open the
question of how far the model may apply to nucleon-
nucleon interactions (see Appendix).

For a heavy nucleus, divisibility into subsystems is
quite a reasonable assumption, and indeed independent
of whether the nucleus is Lorentz-contracted or not.
On the other hand, in a noncentral collision between
two heavy nuclei the ratio of the initial angular momen-
tum to the total energy and proper mass is even larger
than for a noncentral nucleon-nucleon interaction at
the same specific energy. Thus Fermi’s fundamental
idea should apply for complex collision partners at
least as well as in the case of the nucleon-nucleon
interaction. Finally, it is known from experiment?® that
energetic nucleus-nucleus collisions may give rise to a
strongly anisotropic distribution of the outgoing
particles.- We may therefore expect that the more
surveyable nucleus-nucleus process can be used to
test the working of Fermi’s basic idea. In carrying
through the computations and making the comparison
with experiment there is, of course, at the back of our
minds the hope that this more surveyable problem
may tell us something, by analogy, about the nucleon-
nucleon case.

We make the following assumptions. The system of
the two colliding nuclei consists of many independent
zones. For every zone we assume isotropic evaporation,
even if the total collision is noncentral. Two reasons
can be given for this. First, the zone, in contrast to the
whole system, is not essentially flat-shaped. Second,
if the zones are small compared to the whole system, the
angular momentum deposited in every zone, with
respect to an axis through the center of mass of the
zone, is negligibly small. (On decreasing in thought the
size of the zone the angular momentum deposited in it
goes more quickly to zero than the mass of matter in
the zone.) Therefore we do not have to worry about
conservation of angular momentum when dealing with
an individual zone. The angular momentum of the
whole system is automatically conserved if the energy-
momentum four-vector is conserved for every zone
individually.8 If the total collision is noncentral, the

" c.m. frames of different zones are, in general, different.

A qualitative understanding of the way in which
peaking can come out of these assumptions may be
obtained by looking at the picture of a star described
by Dainton and Kent.’ In this event, a very heavy
(Z=13+1) and slow (=0.55¢) primary closely passes

8 This is, in fact, only true if the individual zone is infinitesimally
small. Since, physically, this is not allowable, and is not meant
here, there is a residual angular momentum to be conserved in

every zone. Still, this neglected part is small compared to the part

we take into account.
9 A. D. Dainton and D. W. Kent, Phil. Mag. 41, 963 (1950).
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a heavy nucleus in the emulsion. The resulting excita-
tion leads to the disintegration of the primary into six
a’s as well as to the evaporation of particles from the
nucleus in the emulsion. Both these processes can be
assumed to proceed isotropically in the respective
center-of-mass frames. Since the evaporation velocity
of the o’s is only a few percent of ¢ one observes the
six o’s from the incident nucleus forming a narrow
forward cone in the laboratory frame. The particles
from the emulsion nucleus go off in haphazard direc-
tions. Because of the low velocity of the primary
the geometry of the event is not obscured by relativistic
effects.

IV. ANALYSIS OF THE MODEL

We carry out most of the analysis in the laboratory
frame and, unless otherwise specified, all quantities
used below refer to it. The nucleus initially at rest in
this frame will be called the target and the bombarding
particle the primary. All our considerations in this
section refer to a single zone. Let u; and u, denote those
parts of the mass of target and primary which belong
to this zone and put w,/m;=¢. M shall denote the
nucleon mass, and we define I'=E'/Mc?, where E' is
the total primary energy. Assuming I">>1 one finds from
a simple application of the relativistic transformation
laws that the center-of-mass frame of the zone moves
with respect to the laboratory frame with velocity
B¢ such that

B= I‘l»‘p/ (Fl-‘p‘f‘llt) . (3)

Under the condition 1/T<K¢g<T we get fory=1/(1—3?)?%
the approximation ‘

v=(Cpp/2u0) = (Tg/2)% )

As explained, we assume that the particles originating
in a zone are emitted isotropically in its c.m.f. Then
their normalized integral distribution law is, in this
frame,

n(¥) = (1—cos?)/2. (5

We have to transform this distribution into the labora-
tory frame, where the angles will be denoted by ¢. By
vc we denote the velocity of the particles in the c.m.f.
of the zone and we put G=1/(1—1)% We will for the
moment proceed as if one could ascribe to all particles
the same value of » and G.° The velocity four-vector
to be transformed is

Gvcosd, Guvsind, 0, G. (6)
The transformation parameters are 8, v and the trans-

10 The average value of G can be estimated from the energy
balance of the event if the primary energy is known. In events
with large primary energy and large multiplicity 1<&(G)av<7.
We will show later that certain properties of the angular distribu-
tion are not sensitive to the individual G’s.
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formation reads
G'Y cosp=1(Gv cosd+BG),
G’V sing=Gv sind,

7
0=0, (7
G'=v(G+BGv cosd).
Dividing, we find
sing sind
®

y—=—,
cos¢ cosd+SB/v

We put sing=2, express cos¢ by it and express sind by
cos?. We now have a relation between z and cos® which
we can use to substitute a function of z for cos? in (5)
and thus obtain the transformed distribution. Actually
(8) is a quadratic equation for cosd, with two roots, say,

cosd= A (z)£4/B(2). 9)

The two roots arise in a natural fashion: To a given
value of z=sing must correspond two values of ¢
between 0 and 7; and to these, two values of & and of
cos?. In the high-energy stars one has 8/9>1; then the
function B(z) is positive and correspondingly the roots
are real only for values of z up to a certain z=2zmx<1.
. This means that the transformed angular distribution
reaches the value 1(“all particles”) at the corresponding
angle ¢=arc sinzm.x. Two different domains of the
cos? space are mapped on the domain 0<2<2max such
that cos¥=1 and cos¢=—1 both correspond to z=0.
Therefore the transformed angular distribution reads

n(¢)=3[1— (A++/B)H+-3[1+(4—+/B)], (10)
n(¢)=1—+/B. (10a)

The actual expression for B is found from (8) by simple
algebra. We obtain then

n(z)
2= 1)+H1= (1= [1—2(P=1)/ (= 1]
) 2y =1D+1 '
All the particles appear within the angular domain
z=sing<[(G*—1)/(»—1) ]%. (12)

The relation (11) is cumbersome but exact, that is, it
holds for all values of v and G provided v>G. For
v>>1 it is easily simplified to read

2y +1-[1-2%"/ (1) ]}
n(z)= > .
22?41

or

(11

(13)

If we restrict ourselves to the dense center-part of the
distribution, that is, to the angular domain << (G*— 1)}/
7, we can further simplify and obtain

n(z) =2/ (Z¥*+1). (14)
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The simple approximation (14) gives =1 only for
z=o0, instead of for z=(G*—1)¥/y. However, the
numerical error in the whole region where the exact
distribution does not vanish is very small. If we take,
e.g., G=10 (which is a small-to-moderate value) and
v very large, the limit of the exact distribution defined
by (@—1)}/v=4/(99)/v gives, on using (14), #=0.99
instead of the exact value #=1. It is of interest to note
that the approximation (14) conserves the property
¢n/¢>1_,.=n/(1——n), or, more SPeCiaHY; <i"&/4/¢‘1l4=3;
X =1 of an isotropic distribution subjected to a strong
Lorentz transformation; thus we may use (14) in a
treatment of the X measure of anisotropy of Kaplon
and Ritson. Finally, after having obtained (14) we
may now drop the assumption of a single value of G.
The central part of the distribution (13) is approximated
by (14) and this evidently does not depend on the G’s.
Also, since (14) is a small-angle approximation anyhow,
we may put z=sing~¢.

V. LIMITS FOR THE ANISOTROPY BY SUPERPOSITION

If we wanted to obtain the total angular distribution
of the event in the laboratory frame we would have
to sum or integrate over all the zones. Every zone
would give a contribution according to (14), with a
value of v depending by (4) on the ¢ of the zone. The
contribution from every zone would have to be multi-
plied by a weight equal to that fraction of all the particles
in the event which comes from the zone. For a central
collision of two nuclei of equal weight all ¢’s are 1 and
(14) gives the total distribution, X being equal to 1. The
wider the variation in ¢ for the different zones is and the
larger the contributions to the total multiplicity (i.e.,
the weights) of those zones which have extreme values
of ¢ the larger an X (the stronger anisotropy) one may
expect for the distribution resulting from the summing
or integrating procedure. If ¢ varies within a certain
range only, from ¢1 to ¢.=#¢; say, the maximum
anisotropy formally possible will arise if there are just
two zones, of weight § each, with values of ¢ as defined
by the limits of this range, i.e., ¢1 and gs. The corre-
sponding X is an upper limit for the anisotropy possible
on our model in an event where ¢ varies within the range
from ¢; to g2 .We will now find such upper limits for X,
based on shifting all the weight to the extreme values
of ¢. (We have met, in the Dainton-Kent star, with an
event—albeit at much lower energy—where two zones
actually suffice for a reasonably exact description.) To
the limiting values ¢; and go=#¢; will from (4) corre-
spond two values vy; and v. such that vy2=#v2 The
distribution of maximum anisotropy compatible with
this range of ¢ or v is, using (14) and writing v for vy,

1 ¢272 ¢2t2’)/2
n(p)= _[ 1 ] .
oy +1 ¢y’ +1

5 (15)

We may now find the value of X corresponding to a
certain value of /. We may presuppose that # is fairly
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large compared to 1 so that the second term in the
bracket will with increasing ¢ tend towards 1 much
faster than the first term. The values of ¢ for which
n=1 and for which #=% can then be found in close
approximation by putting the second term in the
bracket and the first term in the bracket equal to 3,

respectively. The results are ¢i4=1/(vf), dza=1/7.

Therefore
X =o314/3p114=1/3. (16)

Checking these last approximations shows that the
error of (16) is smaller than 1 percent for all {>6,
X>2.

We must now consider what effective range of ¢ is
physically reasonable. This depends on the distribution
of matter density one chooses to attribute to the disks,
and on the dependence of the number of particles
produced in a zone on the collision energy and “the
proper mass initially deposited in it. One can hardly
avoid assuming that the number of particles from a zone
depends on these quantities in such a manner as to
become very small when they do. If this is granted,
and furthermore if the matter density in the disks is
chosen so as to give the original collision-partners a
more or less uniform density inside and a fairly sharp
boundary, the effective range of ¢ cannot be large.
We estimate on the basis of some graphical work that
in a collision with large impact parameter (r=R)!
appreciable contributions to the total multiplicity may
at most come from zones with ¢ values ranging from
% to 6. Correspondingly, the upper limit for X is, from
(16): X<2. (By contrast X~3 is, on Fermi’s original
estimate, the expected value for median impact pa-
rameter.) Thus, if we make what seem the most natural
assumptions about the weight of the zones as a function
of ¢, we get very little peaking. Turning to the large
values of X observed in nucleon-nucleus collisions? and
considering a value X=20 (which is quite frequent),
it is evident from (16) that to explain it with our model
we would have to require ¢ to vary from a value gmin
<1/60 to a value gmax>60. That the effective range of
¢ should have such a huge span seems quite impossible,
however strange and (from our present knowledge)
unexpected a law for the weighting of the zones one
might choose.

VI. CONCLUSIONS

We have pointed out a model of the extreme energy
nucleus-nucleus collision which (a) operates with a
flattened interaction volume and (b) satisfies the con-
servation laws. This model fails to give appreciable
peaking, even for the largest impact parameters. Conse-

1 Tn Fermi’s notation.
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quently we feel it is deubtful whether conservation of
angular momentum is a good explanation for the peak-
ing, even for events which may be nucleon-nucleon colli-
sions. In terms of our model, the origin of the peaking
must be in the individual zones: Our initial assumption
of isotropy for the particles from one zone must be
incorrect. This seems to imply that equilibrium is not
even reached within a zone. If this conclusion holds
for nucleon-nucleon-collisions, it contradicts the basic
assumptions of the statistical theory.

Any theory of the peaking must not only explain the
strong anisotropy, but also the large variation in
anisotropy which is observed. This was indeed a strong
point of the Fermi theory. If we can no longer ascribe
the variation in anisotropy to different impact param-
eters, we must attribute the fluctuations in the
angular distribution to the nature of the interaction
itself. For this reason we believe that Heisenberg’s
explanation of anisotropy (wave coherence and a flat
interaction zone) is not satisfactory. It does lead to
strong anisotropy, but it cannot explain, so far as we
can see, strongly varying anisotropy.

It seems to us that the best hope for an explanation
of the angular distribution in extreme energy stars lies,
after all, in assuming a cascade process and renouncing
the idea that the jets are generated in a single act.
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APPENDIX

We briefly indicate one of the difficulties the conception of
independent zones meets with if applied to nucleons.

The interaction volume has the depth s=R/¢, with ¢=E/Mc?.
The volume of one zone must be of order of magnitude s3. The
number of zones must be of order of magnitude £. Thus, with
increasing primary energy the number of zones increases more
quickly («#) than the energy itself («£), and the energy de-
posited in one zone must decrease. Therefore, the higher the energy,
the less it seems justified to use statistical arguments if they are
to refer to a single zone. For suitably high energies (£>103,
E’>10%ev), one is led to the picture that in most of the zones
nothing at all happens, while in some of them one single out-
going particle appears. Such a picture, while not necessarily
wrong, is yet quite different from what one would expect for
“strong coupling” interactions.



