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Theory of (d,p) and (d, n) Reactions*
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The theory of angular distributions in (d,p) and (d,l) reactions is developed by means of standard
Green's function techniques, thereby yielding a straightforward derivation of a formula originally deduced
by Butler. To minimize formal complications the particles are assumed spinless, and the nucleus replaced
by a center of force. It is shown that Butler s theory involves an approximation equivalent to Born approxi-
mation, which elucidates the agreement between the Butler and Born approximation derivations of the
stripping formula. A discussion relating to the success of the theory is appended.

I. INTRODUCTION in6nity. We have been careful to obtain the cross section
by a mathematical procedure which corresponds evi-
dently to the experimental situation. To amplify this
remark, denote the wave function of the final nucleus
in a (d,p) reaction, in which the neutron is captured
into a bound state, by p(r&). Then the probability of
finding the proton at r~, with the neutron bound in its
final state, is

~

J'dr~q*(r~)4(r~, ri) ~'. The experiment
measures the Aux a,t infinity of protons whose energy
corresponds to leaving the neutron in state y(re),
which flux per unit solid angle is (jg/3f) ~A(n) ~',
where the scattering amplitude A (n) in the direction n
is given by

~ 'HE theory of (d, p) and (d,e) reactions given by
Butler' has been the subject of a number of

theoretical papers. ' ' Butler's original deduction of the
angular distribution in stripping involved fitting to-
gether at the nuclear radius the solutions interior and
exterior to the nucleus; it is fair to call complicated the
procedure by which Butler obtained the cross section
from his solution. Succeeding theoretical studies have
been of two kinds: (u) attempts to simplify and clarify
Butler's calculation of the cross section, but retaining
his basic idea of htting together the interior and exterior
solutions" and (b) assuming the Born approximation
matrix element for the reaction after which Butler' s
formula is obtained by more or less direct integration. "
Since Butler's calculation does not seem equivalent to
the Born approximation, it is somewhat surprising that
the Born approximation gives Butler's result. ' Austern'
has attempted to explain this agreement.

In subsequent sections we shall rederive Butler' s
result by means of standard Green's function tech-
niques, thereby automatically and obviously satisfying
the boundary conditions at infinity and at the nuclear
radius. To minimize formal complications we consider
the following idealization of the stripping problem:
A deuteron, spinless, composed of spinless neutron and
proton, impinges on a fixed center of force which is the
initial nucleus. ' At in6nity the solution 4' must be of
the form

(2)

and rJ approaches infinity along n. We always employ
the definition Eq. (2) of A(n) to evaluate the cross
section.

Using Eq. (2) in the integral equation for the problem
leads in a very straightforward way to the Born ap-
proximation matrix element, for which no satisfactory
justification has been given previously. In so doing we
illuminate the reason for the agreement between the
two seemingly different methods (a) and (b) above. Our
integral equation is the same as that obtained by
Austern, ' but his not using the definition (2) for the
scattering amplitude caused him to overlook the fact
that not all the terms in his equation yield protons at
infinity, in (d,p) reactions. This statement will be
further ampli6ed below. Finally we append some dis-
cussion concerning the success of the theory.where QD is the incident plane wave of deuterons on the

initial nucleus, and 4 is everywhere outgoing. In the
problem at hand this means: let the energy have a
positive imaginary part; then 4 is everywhere outgoing
if it remains bounded as r~ or rI or both approach

II. THE INTEGRAL EQUATION

We fix our attention on (d,p) reactions, i.e., we seek

outgoing protons whose energy corresponds to leaving
the neutron bound to the center of force. The Hamil-
tonian is

*Work done in part at the Sarah Mellon Scaife Radiation
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of Naval Research and the U. S. Atomic Energy Commision.' S. T. Butler, Proc. Roy. Soc. (London) A208, 559 (1951).
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(3)&= 2"iv+2'p+ &r+ &n+ l'n r,

where T represents kinetic energy, U~ and V~ are the
interaction of neutron and proton, respectively, with the
fixed center of force, and-V~~ is the neutron proton
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interaction. ' The solution satisfies

(II E—)4=0,
with N of the form given in Eq. (1) and

QD
—eix ~ (rp+rN) /22e (rp rN)

(4)

(5)

Fquations (1) and (7) imply that the difFerence
between rJ 2 and QD is everywhere outgoing. Rewriting
Eq. (6) as

(TN+ TP+ VN E)4D (VN VNP)4'D (14)

it follows that'

te is the ground state of the deuteron, and QD satisfies fD 4'0+ G (VN VNP)4'D (15)

(TN+ TP+ VNP E)4'D (6) so that Eq. (7) becomes

Using an obvious symbolic notation, the solution
satisfies the integral equation:

%=fp G(VP—+VNp)%, (7)
where

(TN+ Tp+ Vv E)gs —0, —— (8)

(TN+Tp+VN E)G=1=—f'1(rp rp')o(r—N rN'). (9)—

The solution to Eq. (7) satisfies the boundary condi-
tions at the nuclear radius, and satisfies the boundary
conditio+ at inanity if G is the outgoing Green s func-
tion, which is 8

G(rp, rp', rN, rN')

=+1,g(E ))y(rN, )—) q *(rN', )t). (10)

In Eq. (10) the sum over )t includes an integration in
the continuum )t)0. 22(X) are the complete set of
eigenfunctions of the neutrons in the 6eld of the initial
nucleus:

(TN+ VN —)I.) g ()t) =0.

+=PD G(VN VNP)4'D G(VP+VNP)+ (16)

Equation (16) is identical with Au stern's integral
equation. '

Since VNp does not aPPear in Eq. (8), Ps may be
said to represent a combination of free space proton
functions and of neutron functions p(rN, )~), which at
in6nity looks like an incoming plane wave of free
deuterons, but in which the neutrons and protons
propagate independently of each other. In order that
a neutron be captured it is necessary that the proton
remove the excess neutron energy. But Eq. (8) contains
no neutron-proton coupling. Consequently it is to be
expected that fs makes a vanishing contribution to the
scattering amplitude, in (d,p) reactions.

This plausible argument can be made rigorous. Sub-
stitute Eq. (16) in Eq. (2). Using Eq. (5) it is seen that
the term in QD vanishes exponentially as rp~ao, since
both p and m are bound states. The terms in 6 simplify
with the aid of Eq. (10) and the'orthonormality of the
set vr(X). Letting rp—+~, there results

g(E—)i) is the outgoing free space Green's function for
the proton, ' i.e., A (n) =At(n)+A2(n), (17)

1 2M
A i(n) = —— drpdrNe —'~'p

4x k2 &

(Tp —E+)t)g (E—)t) = 6 (rp rp'), — (12)

X p*(rN, )tr) (VN —VNP)&D, (18)r~—r~'

1 2V exp[i(E—))*'~rp rp'~]—
g(rp —rp') =— (13)

4x k'

In Eq. (13), M is the mass of proton or neutron and
Re(E—X)&)0 when E is imaginary.

7 The discussion and notation of this section parallels that in
K. Gerjuoy, University of Pittsburgh Precision Scattering Project
Report No. 3 (unpublished).'It is apparent that G, given in Kq. (10), satisfies Kq. (9) and
is outgoing in the protons, in the sense which has been explained
in the previous section. It is possible to prove that G is also out-
going in the neutrons, despite the fact that it seems to contain,
through q (r~), both incoming and outgoing spherical waves in r~.
It must be granted that some mathematical questions concerning
the proof are not altogether settled, but its essential correctness
seems established. The proof is contained in a report in preparation
by B. Friedman and K. Gerjuoy, on the subject of many-particle
scattering problems. Related problems are discussed in B.
Friedman and E. Gerjuoy, Research Report No. CX-4 (unpub-
lished) and in Harry K. Moses, Research Report No. CX-5
(unpublished) both issued by New York University, Washington
Square College of Arts and Science Mathematics Research Group.' In order that Eqs. (10) and (12) yield a convergent result in
Kq. (7},Coulomb forces must be neglected or replaced by screened
fields. We are also ignoring some formal difFiculties connected
with the fact that V&p is a function of rz —r& only, and does not
approach zero along all radii of an infInite sphere in the six-dimen-
sional r~, r~ space.

1 2M
A2(n) = ——,drpdrNe ''p-

4m h'&

k'k' IE'EC'

+)tr =E= + e,
2M 4M

(20)

where, referring to Eq. (5), e is the energy of the
deuteron in its ground state.

It can be shown that'

Ai(n)=0. (21)

The demonstration is trivial, involves merely elimina-
tion of VNP and VN by Eqs. (6) and (11),followed by an
integration by parts. Equation (21) remains valid when
the particles are not assumed spinless, and when m is

&& & (rN )tr) (Vp+ VNP)+ (19)

In Eqs. (18) and (19), )tr is the energy of the neutron in
its final bound state, k= kn, and
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not spherically symmetric, i.e., when V» is noncentral
and spin-dependent. 7

Equation (21) means that, as asserted previously,
$o—QD G(Viv V»)gn makes no contribution to the
scattering amplitude. In Born approximation we replace
4' by fD in Eq. (19). In this approximation, by virtue
of Eq. (18), we may replace V» by V&, without
additional error. This yields the starting point" for
the Born approximation deductions of the (d, p)
angular distribution. Our derivation may be compared
with that of Austern. ' It will be noted that the valid
use' ' of the Born approximation matrix element depends
on the plausible but not obvious circumstance that fo
makes no contribution to the scattering amplitude.

r~&a: (T~+Tp+V~ E)4=0, — (23a)

rz& a: (T~+Tp+ V~p —E)4=0. (23b)

Equations (23a) and (23b) may be expressed in the
form, valid for all r~, rp.

(T~+Tp+ V~ E)+=P&(V~—V»)+, (24—)

where we have introduced the projection operator P&'.

P&——0, r~(a; P& 1, r~& a. ——(25)

The integral equation equivalent to Eq. (24) is

4=go+ GP& (Vx Vzrp)+ =go GP&Vx—p+. (26)—
1

since V~=0 for r~& a. As in the preceding section Eq.
(26) leads to the scattering amplitude:

1 2M
A(n) = —— drp

4m A' ~ ~r~&a
drNe

—sk. r~

X oo*(r~, ) g) V~p%'. (27)

In Born approximation 4 is replaced by it& in Eq.
(27). Since the right side of Eq. (24) can be interpreted
as a source term, the Born approximation in the theory
of this section, i.e., the Born approximation in Eq. (24),
amounts to neglecting as a source of scattered proton
waves at infinity the term VzpC exterior to the nucleus.

III. BUTLER'S THEORY

Equation (16) remains valid whatever the forms of
Vp, V~ and V», subject to the remark in reference 9.
The special assumptions made by Butler' may, for
(d,p) reactions, be summarized as follows (u) Up ——0;
(b) within the nucleus, rw(a, neglect Usurp in the
Schrodinger equation for 4'; (c) exterior to the nucleus,
r~&a, assume V~ ——0; (d) for r~&a, 4' is of the form
given in Eq. (1), where C is composed of free particles
only, i.e., C satisfies, when r&) a,

(T~+Tp P)e= 0. — (22)

We shall see that assumptions (c) and (d) are not
entirely consistent. Assumptions (a), (b), and (c)
mean the Schrodinger equation for the problem is

(T~+Tp+ V~ P-)+= —P&Vv p—fn (30)

Equation (30) is an inhomogeneous differential equa-
tion, whose solution, satisfying the boundary conditions,
is

4= fo GP&UN''D (31)

Equation (31) is presumably the solution which is
obtained by fitting the exterior and interior solutions
at the nuclear radius. Comparing Eqs. (26), (27), and
(31), it is at once seen that the scattering amplitude in
Butler's theory is the same as the Born approximation
in Eq. (27), namely

1 2'
A (n) = —— drp ' dr~8

47r k' ~ ~r~&a

X oo*(r~, Xg) V kg). (32)

The Born approximation in Eq. (19) reduces of course
to Eq. (32) if the additional assumptions involved in
obtaining Eq. (27) are included in Eq. (19), namely,
Vp=O and V~p neglected for r~&a.

IV. EVALUATION OF SCATTERING AMPLITUDE

Equation (32) must be integrated over the region
r&-&a, and cannot be replaced by an integral over all
space, even though we seemingly derived Eq. (32) by
neglecting V~p for r~(a. V~p was neglected for r~(a
in Eq. (23a) only, which combined with Eq. (28) led
without further approximation to Eq. (32). In Eq.
(6) for gD no such assumption about V» is made.
Including in Eq. (32) the region r&(a would amount to
going back to the Born approximation of Sec. II, but
with Vp=O.

As a consequence, it is not legitimate, in Eq. (32),
to replace V» by V~, since this substitution is justified
only by Eqs. (18) and (21) in which the integrals are
extended. over all space. That Eq. (32) involves V»

But this is exactly the approximation which is implied
by Eq. (22), in which V»C is neglected for rz&a.
Consequently, the fact that Butler's solution' is
equivalent to the Born approximation theory of this
section is no longer surprising. In fact Eq. (22) implies,
using Eas. (1) and (6),

(Tx+ Tp &)+—= (T~+Tp P)4—D
= —U~pea. (28)

Equation (28) may be rewritten as

r~&a: (T~+Tp+V~p E)%'—
= V»(+—Ita) = VxpC' (29)

Equation (29) is not identical with Eq. (23b).
It has been Eqs. (23a) and (28) whose solutions have

been fitted at the nuclear radius, ' ' ' not Eqs. (23a) and
(23b). Recalling V~ ——0 for r~& a, Eqs. (23a) and (28)
are equivalent to
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rather than V~ is desirable, as it enables us to avoid
such difhculties as those of Daitch and French' who
obtain the angular distribution by neglecting the con-
tribution from r~(u to the overlap integral between
p*(r~, X~) and a spherical Bessel function. Because
q (r~, X~) is a bound state, decreasing exponentially for
r»a, it is hard to justify their approximation.

We proceed now to evaluate A (n) from Eq. (32), to
satisfy ourselves that it leads without further assump-
tions to Butler's angular distribution. The evaluation
is straightforward and doubtless can be done in a
number of ways. We have found it convenient to intro-
duce in Eq. (32) replacing ri, the riew variable
r=ri —r~, and to make use of Eq (5.) and the fact
that V» is a function of r only. Then

1 2M
2 (Il) = —— dr V~i (r)w(r}e"&xi

4m

X ' dr~e"" &x "i'p~(r~& Xi). (33)
~r~)a

In the integral over r in Eq. (33), we use

L
—(a'/iV)a, +V~p(r))w(r) = ew(r) (34)

to eliminate V~i, integrate by parts (justi6ed because
w is a bound state), and employ Eq. (20), obtaining

d'I V ~~ir ~ (K/2 —R}

(K k)2
~

l ifriiig'~ ~ (xl2—&i (35)2'
From Eq. (11), for rv) a, where V~=0, we find

h2

(K—k)' e" "q*(r~ X)
2M

k2
tei~~'&x &imp~ —@*hei» ix i ig. (36)

2M

Hence, using Green's theorem in the integral over r~,
expanding expl irN (K—k) $ in spherical harmonics
with K—k as the polar axis, and writing

~l(rN) Vl (~x) px)|
Eqs. (33)—(36) imply

t9

Ji(IK—
klan~)

Bf~

Equation (37) is valid for m =0, with Y& (8~, pz) quan-
tized along K—k. The integral vanishes for the other

values of the magnetic quantum number. Equation
(37) yields Butler's angular distribution, as has been
previously' pointed out.

V. SUCCESS OF THE THEORY

rx &a: (Ter+ Tp+ V~I E)%=—V~z). (38—)
With these assumptions, V» is nowhere neglected. If
P& is replaced by 4' on the right side of Eq. (38), we
obtain the presumably correct Eq. (4), with of course
V&=0. Thus Eq. (38) amounts to neglecting V&C as a
source term, in the region r~&a.

Without going into as many details as previously,
assumptions (a')—(c') imply the solution 4 is

(39),+=Pa—GiV~4n,

where G~ is the outgoing Green s function satisfying

(T~+Tp+ V~p E)Gi = 1. —(40)

It appears to be established that Butler's theory
accounts for the observed angular distributions in (d,p)
reactions. The success of the theory remains surprising,
in view of the relatively low energy deuterons which
have been used in the experiments. We have seen that
Butler's assuinption (d), Sec. III, is equivalent to
neglecting as a source of proton waves the term V~pc
exterior to the nucleus, and that this neglect is identical
with the Born approximation. It is well known that the
Born approximation is often much better than ex-
pected; the theory of angular distributions in (d,p)
reactions seems to be another such case, and we oGer
no explanation.

Assumption (b), Sec. III, led to Eq. (32) being inte-
grated over r~&a rather than over all space, as in Kq.
(19).In a sense neglect of V~i for r~(a can be thought
of as an an impulse approximation, i.e;, the neutron-
proton forces do not have time to act in the interval
that the deuteron overlaps the nucleus. But this inter-
pretation is hard to justify, since V» is not smaller
than V&, and since the deuterons are slow. In any
event it is dificult to see why neglect of V» for r&&u
should lead to a better result than including it. Inte-
grating over all r~ in Eq. (32) permits Vzi to be re-
placed by V&, as we have seen, and leads to a modified
angular distribution which, however, is generally not
very different from Butler's original form. It is douIitful
that the available data are accurate enough to choose
between the two possibilities: integrating oyer r~&a
and integrating over all r~. With better data on selected
nuclei in which the differences between the two forms
are emphasized, together with comparisons of absolute
cross sections with the theory, a decision between the
two alternatives may be feasible.

An alternative means (to that in Sec. III) of con-
verting the Schrodinger equation of the problem to an
inhomogeneous diGerential equation is to replace the
assumptions (a)—(d) of Sec. III by: (a') Vi ——0; (fi')
assume V~=0 for r~) a; (c') for r~(a%' satisfies
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To determine the scattering amplitude in closed form
we must express Gt in terms of G, Eq. (9), enabling us
to employ the orthonormality of the set io(X). From
Eq. (40) the integral equation for Gt is

Gt ——G+G(VN —VNP)Gt. (41)

Substituting Eq. (41) in Eq. (39), the scattering am-
plitude A (n) is seen to be

1 2'
A (n) = —— I drNdrpe '"'Pq *(re, )r) VNPD

47r Jt' "
1 2M

dr~drIdr~ drI e '"'I'
4x k'&

X q *(rN )tf)[V&(rN) Vip(rp rN)]

XGt(rN, rN', rp, rp') VN(rN')lbD(rN', rp'). (42)

Equation (42) can be approximated by ignoring the
term in G&V&PD=QD 4, Eq. —(39), which vanishes ip
the Born approximation 4'= gD. In first approximation
therefore A(n) of Eq. (42) is identical with the Horn
approximation to Eq. (19) with VP ——0. Other equally

reasonable ways of estimating Eq. (42) lead to the
same conclusion.

The above discussion demonstrates that a variety of
different approaches can lead to angular distributions
resembling Butler' s. This helps to make understandable
the success of this theory in accounting for observed
angular distributions. As a corollary, the success of
Butler's theory with presently available data does not
strongly support his particular model.

We consider the physics of the (d,p) reaction still
somewhat obscure, and until this is elucidated we see
no good reason why Butler's original formula Eq. (32)
should be superior to, say, the Born approximation in
Eq. (19) or to Eq. (42) including the second correction
term.

We add that it seems possible to carry through the
calculations of this paper including spin without making
the approximation that the nucleus is a center of force.
By this means we would arrive at the selection rules, '
but would not otherwise add enough to the simpler
theory we have presented to warrant the extra formal
complications. The chief .desideratum of a more careful
discussion would be to arrive at an improved estimate
of the magnitude of the cross section, ' ' "but this we
are not yet prepared to do.
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The Correction for Finite Angular Resolution in Directional Correlation Me'asurements~

J. S. LAwsoN, JR., AND H. FRAvENRELDER
Unioersity of Illinois, Urbane, Illinois

(Received March 30, 1953)

The correction of a measured directional correlation function for the finite angular resolution of the radia-
tion detectors (scintillation counters) has been investigated experimentally in the case of the Ni~ y —y
cascade. The results show that the correction factors depend upon the pulse-height selection. The signi6cance
of this result for precision measurements is discussed.

INTRODUCTION

EVENT developments in the measurement of di-
rectional correlations, such as the investigation of

mixed multipole transitions and the influence of ex-
ternal fields, have revealed the need for higher pre-
cision. Because the obtainable accuracy is in most
cases limited by statistical errors, one tries to increase
the number of measured events (coincidences) by using
radiation detectors with high counting efFiciency and
large solid angles. The measured data then have to be
corrected for all deviations from an ideal arrangement, '
especially for the finite angular resolution of the radia-
tion detectors (solid angle correction).

*Assisted by the joint program of the U. S. Once of Naval
Research and the U. S. Atomic Energy Commission.

'H. Frauenfelder, Annual Eemm of nuclear 5cience (Annual
Reviews, Inc., Stanford, 1953), Vol. 2, p. 145.

The present paper is confined to the discussion of
this correction and its experimental investigation. The
work originated from a precision measurement of the
directional correlation of the Ni" y —y cascade. ' We
found there that the measured directional correlation
function depended strongly on the settings of the pulse-
height discriminators in the counting system. In order
to explain this result, we assumed tentatively that the
effective solid angle depends on the pulse-height selec-
tion and started measuring directly the angular resolu-
tion curve of the radiation detectors. Once the effective
angular resolution curves were known, the calculation
of the correction (for our very small source) was
straightforward. It showed that the discrepancy actu-
ally was due to different solid angles. This result proves
that a solid angle correction without experimental de-

s SteiIen, Lawson, Frauenfelder, and Jentschke (to be published).


