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Consideration of a number of problems which arise in the analysis of angular correlation and angular dis-
tribution data is given. These include corrections for finite angular resolution. For a source of constant
stréngth the questions of determination of most probable counting rates, their associated errors and the
determination of the most probable coefficients in the Legendre representation of the data, as well as the
errors in the determination of these coefficients, are exammed A brief discussion of the corrections for a

decaying source is also presented.

I. INTRODUCTION

HE importance of measurements of angular dis-
tributions in nuclear reactions and of angular
correlation in nuclear cascades has become more and
more evident in recent months. As experimental pre-
cision improves, the need for a systematic discussion of
methods of evaluating the data becomes more pressing.
Certain aspects of some of the problems which arise
have been discussed.! However, a number of questions
arise having to do with angular resolution corrections,
determination of counting rates and errors in the co-
efficients, in terms of which the data are finally repre-
sented. The analysis of these problems is presented
herewith, and the application of the results to angular
correlation measurements has been made and described
in an accompanying paper.?
In succeeding sections we take up the following prob-
lems. The effect of the finite solid angle of the detectors
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F16. 1. Geometry for finite resolution in angular correlation. The
notation also applies for singles counts as in angular distribution
measurements. The azimuth angles ¢; and ¢» are measured with
respect to the cylinder axes 4; and 4., respectively.

1 H. Fraunfelder in Annual Reviews of Nuclear Science (Annual
Reviews, Inc., Stanford, 1953), Vol. 2.

?E. Klema and F. McGowan, this issue [Phys. Rev. 91, 616
(1953) 1.

on the correlation function is treated in Sec. II. The
results are, of course, also applicable in angular dis-
tribution measurements where only a single-counting
rate need be determined. In Sec. IIT the question of
determination of counting rates at each angle and
assignment of weights to each determination is treated.
In Sec. IV a discussion is given of the least squares fit
of the data in terms of a series of Legendre polynomials,
or if desirable, any other functions of the (scattering)
angle ¢ or angle between the two radiations. This in-
cludes an account of the statistical errors in the coeffi-
cients as well as a method whereby the existence of other
types of errors may be detected. Finally, in Sec. V the
question of a decaying source is briefly considered.

II. ANGULAR RESOLUTION CORRECTION

The results of an angular correlation measurement are
most conveniently expressed in terms of a Legendre
polynomial expansion. That is, the coincidence counting
rate per unit solid angle sindddde (where the angles
represent the relative orientation of the propagation
vectors of the two radiations) is proportional to

W @)= :V:‘,n a,P,(cosd). (1)

When the detectors for the two radiations subtend
finite solid angles ©; and Qs at the source, it is advisable
to modify the theoretical correlation and compare this
smeared correlation with the measured one. The ge-
ometry envisaged is shown in Fig. 1. The detectors
(scintillation counters) are assumed to be crystals cut
in the form of right circular cylinders with the base
oriented towards the source. The source, at the origin,
is on the intersection of the axes of the cylinders. In
this case, as the following shows, the form of the correla-
tion function is unchanged® and each coefficient «,
becomes multiplied by an attenuation factor for which
one can obtain an exact and very simple expression.
Taking into account the absorption of the radiation

3 This fact, which is e priori evident, was also brought out by
S. Frankel, Phys. Rev. 83, 673 (1951) and by E. L. Church and
J. J. Kraushaar, Phys. Rev. 88, 419 (1952). While the geometry
considered here is a special one, the results presented below may
constitute an incentive for the use of such wherever it is convenient
to do so.
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ANGULAR CORRELATION AND DISTRIBUTION DATA

in each crystal, we introduce the following notation.
The distance from the source to the front face of each
crystal is %, the thickness is ¢, and 7 is the radius of the
crystal. If x(B) is the distance traversed by the radia-
tion incident on the crystal at an angle B with the axis,
the absorption is proportional to (1—e~7%). Then the
measured correlation function would be

fdﬂldﬂgw (17’) (1 — e—f.l'l) (1 — —"r.‘cg)
W)= e
fd91d92 (1—e ™) (1—e722)

where x; and . refer to the two crystals, dQ; and dQ.
are the solid angle elements for each radiation, and ¢’
is the angle between their propagation vectors, while
¢ is the angle between the cylinder axes.

The required integrals are of the form

= f 19,42 P 1 (cos8') (1— ) (1—=),  (3)
and .
x(B)=tsecf for 0LB<Ltan[r/(h+1)]=4,
x(B)=r cosB—hsecf for B'<B<Ltan™(r/h)=7,

where v is the half-angle subtended on the front face.
Using the addition theorem

4r 1
Pi(cost)=—> V™ (1) Y ~(2),
2041 =

the integration over ¢i, the azimuth of direction of
radiation 1 can be carried out since #; is independent of
¢1. Then only the m=0 term contributes and

I,= 21rf sinB1dB:1 P (cosBy) (1—e~7%1)
0

+r
X f f sinfdfd s Py (cosh) (1—e~7+2).
-

Here 6 is the angle between radiation 2 and the axis
of detector 1. Applying the addition theorem once
more to the spherical triangle formed by the axes of
the two detectors and the direction of radiation 2 so that

Pi(cost) = Pi(cosBsz) Pi(cosd)+ - - -,

the dots indicating azimuth dependent terms, we have
on integration over ¢, for which the azimuth de-
pendent terms do not contribute,

I;=47*P(cos®)J (1) J1(2),
where '

.
Jz=f‘Pl(cosﬁ) (1—e7*®) sinBdpB. 5)
0

The result (4) confirms the statement made above with
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TaBLE I. Attenuation coefficients Ji/Jo for angular distribu-
tion measurements. For angular correlation measurements these
coefficients should be squared or a product of two coefficients
should be taken.

7 (cm™) h=7 h=10 h=7 h=10
0.123 0.95931 0.97823 0.86873 0.92865
0.130 0.95927 0.97821 0.86862 0.92863
0.150 0.95917 0.97818 0.86833 0.92850
0.200 0.95887 0.97808 0.86758 0.92818
0.300 0.95851 0.97790 0.86620 0.92759
1.00 0.95565 0.97672 0.85737 0.92383
2.00 0.95311 0.97567 0.84938 0.92049
3.00 0.95172 0.97510 0.84508 0.91863
5.00 0.95039 0.97457 0.84096 0.91695

10.0 0.94925 0.97410 0.83746 1091551

40.0 0.94830 0.97373 0.83457 0.91432

regard to the angular dependence of the correlation
function. Of course, ¢ represents the angle between
detector axes. The attenuation factor is

Q= (J1/Jo)? (6)

for similar detectors and for v rays with similar ab-
sorption coefficients. For a single detector, as would be
used in an angular distribution measured, with the
data represented by Eq. (1), the attenuation factor
would be simply

Qi=J1/Jo. (6a)
For full absorption (x7— ) we have
Jv Pra(x0)—xoPi(%0)
- ) (6b)

Jo (l+1) (l—xo)

where xp= cosy.

In Table I numerical results are given for the case
h=Tand 10 cm, =2.54 cm and r=1.9 cm, for /=2 and
4 (Qo=1) and several values of the absorption coeffi-
cient 7 ranging from 0.123 cm™ to 40 cm™. These
values are pertinent to the experiments of Klema and
McGowan.? While the individual J; vary appreciably
with absorption coefficient, the ratios J;/J, are much
less sensitive.

In the sequel it will be assumed that these angular
resolution corrections have been made so that, for the
considerations given below, no further reference to this
effect need be made.

III. COUNTING RATE DETERMINATION .

For both angular distribution and angular correlation
measurements one wishes to fit a counting rate u;, de-
termined at each angle of observation ¢, by a function
of the form exhibited in Eq. (1). There are three main
questions: (1) the evaluation of the coefficients a,,
(2) the evaluation of the errors in these coefficients,
and (3) the determination of the maximum order of the
Legendre polynomial »,, assuming that no a priori in-
formation on this point is available. The latter question
is best discussed after questions (1) and (2) are clearly
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explored. The importance of the maximum »(=w,) in
angular distribution measurements is pointed up by
the dependence of », on the angular momentum of the
incident beam of particles.* Its importance for angular
correlations rests on the fact that », <27, 2L;, 2L,,
where j;, L., L are, respectively, the intermediate
state angular momentum and the angular momenta of
radiations 1, 2. )

For the determination of the counting rate u;, at a
fixed angle, we consider two possible procedures: (a)
The detector(s) is exposed to the radiation(s) for time
intervals #y, #3- - -£; and the number of counts (singles
or coincidences) obtained during each time interval is
recorded. (b) The detector records a given number of
counts #; and the time {; required for this is recorded.
For the angular distribution case we clearly deal with
a source of- constant strength. For certain correlation
experiments this assumption may be made with ex-
tremely negligible error.? Consequently, the fact that
the detectors may not have 100 percent efficiency is a
trivial effect: the counting rate given below is multi-
plied by 1/, where 7 is the pertinent efficiency. We
consider the case of a decaying source in Sec. V. The
possible presence of an appreciable background count
would alter the results given below. This question is
considered elsewhere? and will not enter in the following.

(a) Fixed Time of Counting

If the true counting rate for the source of given
strength is u, the probability for #; counts in a time
interval ¢; is given by the Poisson law:

Puy(n))= G tf)"je—»zi, )
n,- 1

<nf> = I"'tj, (73,)

o2(n;) = ((nj— (n;)*)=ut;. (7b)

The data, represented by the numbers #;, /; are fitted
by least squares. That is, u’ is determined so that

> w;(n;— u't;)?=minimum. (8)
The weights w; are inversely proportional to ¢%(n;) and
here, as well as in the following, the normalization of

the weights is irrelevant. We take w;=1/0*(n;)=1/ui;.
Then (8) gives

W =20 awit g/ 3 awit =3 ni/ 3t )

The weight attached to this determination of the count-
ing rate can be taken to be

w(p)=1/0*(u/)=N/n* (10)

using (7b). Here the index 7 refers to a particular
angle ¢;.

4 C. N. Yang, Phys. Rev. 74, 764 (1948).
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(b) Fixed Number of Counts

At the specified angle one measures the time ¢; re-
quired to accumulate z; counts. Let P,(f)dt be the
probability that the n#th count is recorded in the time
interval ¢ to ¢+dt. Then

t
P.()dt=dt f AP, ()K(Gt—1t); n>1, (11)
0

where the kernel K(t—¢)dt is the probability that a
single count occurs in the time interval t—¢ to {—¢4dt.
For a constant strength source this is

K(t—1t)=pertt—t), (12)
The solution of (11) with the condition P(t) =K () is

P.(t)=urtmlert/ (n—1) 1. (13)

Clearly P,(¢) is normalized to unity and
=1/, (13a)
o> ()= (=) =n/u> (13b)

The least squares fit of the data now takes the form
2_w;i(ti—n;/u")*=minimum,
where w;=1/¢%(¢;). This gives
W=2" wmnf/3 winsti=2 nj/2 t;. (14)

In both cases (a) and (b) the most probable counting
rate (for the given finite number of counts) is given by
the ratio of total counts to total time.

In order to determine the weight to be associated
with this counting rate determination the probability
that a sequence of /; measurements shall give T=3_¢;
= (3_m;)/u in an interval dT must be obtained. This
problem is slightly different from that considered in
(a) above since now the statistically varying quantities
{; are in the denominator of (14). The required proba-
bility is

TN i—le—yT
Pni(T)=pVi—r (15)
V:—1)!

from (13), and N;=3_;n;. Then the probability that a
measurement of the counting rate gives a value u’ to
pdy' is

P()du' = Pr(T)|dT/du'| = (No/wY:Pxi(T), (16)

and T=N,/y’. For convenience a subscript 7 is omitted
from u’ and u here and above. From this (normalized)
probability function we obtain

(i )= wiV i/ (Ni—1) = s, (16a)
o ()= ((u — (')
=uiN2/(N;—1)*(N,—2)~u?/N; (16b)
For the weight w(u;") we may take
w(p!)=N/u® (16c)
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In (16b) and (16¢c) we consider that N, >1 at each
angle. Of course, for N> we obtain (u')=pu and
a2(W)=0. In fact, P(u) is then equal to 6(u'—u), as
is to be expected. It will be noted that for large N;

there is essentially no difference between procedures
(a) and (b). .

IV. LEAST SQUARES FIT OF THE DATA

Once the counting rates are determined at each
angle, and thereby, the associated weights determined,
one may proceed to problems (1) and (2) mentioned
at the beginning of the previous section. A discussion
of problem (3) can then be given (see end of this section).

The determination of the coefficients e, is now to be
carried by replacing W (9) in Eq. (1) by p(#), or more
specifically,

pi=p () =2 ada, (17)

where A= or(cosd;) and ¢, may be taken to be P,
or any other function. In (17) the left and right sides
are not equal but what is meant is that the right side
represents u(J;) as closely as possible. The prime on the
symbol u’ has been dropped. The measurement of ¢, it
will be assumed, contains no error.

Let m be the number of angles at which data is taken
and ! be the number of coefficients a, which one as-
sumes. Then /=7,41 in the angular distribution case
and in the angular correlation case, since v is even,
I=%v,+1. In any case m > 1.

The coefficients «a, which are the most probable
values for the given data, are determined from

2 awi(ui— 2 aond n)?=minimum,
yielding the normal equations
2 awi(pi— 2 aand ) Aiy=0. (18)

Here w; is given by (10) or (16¢). Equation (18) and
subsequent results are more compactly expressed by
introducing matrix notation. We define a square (/X/)
matrix C whose elements are

Cry =2 awiAnAiy=Cy.
That is, _
C=AwA,

where w is the diagonal (mXm) matrix with elements
w; and A is the mX! matrix (nonsquare, in general).
The tilde means transposed. Further let & be the /
component vector

£=Awy,
where u is the m component vector with components
;. Then .
Ca= &
or, in detail,
ar=2_,Cry ey (19)

Of course, C! is constructed by forming a matrix k
whose A, » element is the cofactor of Cy, in the deter-
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minant |C| and dividing by |C|. Note, that k like C
is symmetric.

Equation (19) gives the coefficients aa. It is seen
that the normalization of the weights does not enter;
that is, if w;=50/0%(u;), the constant b cancels out.
From (19) we observe that « is a linear homogeneous
function of the counting rates u;. Hence, due to the
existence of a variation in u;, expressed by the mean
square deviation ¢%(u;), there will be a corresponding
mean square deviation in ax. Writing

arn=2_:Brawi,
where
BMI= Z va)\—lA vy
we have
o?(an) =2 :Bawio? (ui)

=03 i Cn I A A sy

=bC )\)\—1.
Consequently, if we define a matrix G by

Gry=2iAdaAiy/* (1) =Gy,

o?(an) =G (20)

That is, the mean square deviation of the coefficient
ay is given by the A\, A diagonal matrix element of the
inverse of G and this does not depend on the normaliza-
tion .5 However, o?(a) is linear homogeneous in the
o%(u;) as it should be.

Now the square error given by (20) is a measure of
the deviations to be expected on purely statistical
grounds. Of course, in an actual experiment other sources
of error may exist. A clue to the existence of extraneous
errors is provided by comparing (20) with the mean
square error defined in a different manner. This mean
square error, to which we now turn our attention, is
based on a comparison between the true coefficients,
which we denote by &\’ and the least squares value ax
given by (19).

Consider the residuals E; between the measured
values of u; and the true values represented by > a4 ax.
For convenience we reduce the equations to the form
in which the weights are effectively unity by introduc-
ing the notation

then

2i=wis, (21a)
an=wldn, bu=w}B. (21b)

Then, the residual E; are given by
Ei=% a\'an— 3. (22a)

The residual between the measured values and the
least squares curve are

€;= Zxa)\di)\—zi. (22b)

5 The result expressed by Eq. (20) is not new. However, it has
been reproduced here for two reasons. First, it seems not to be
widely known and secondly the customary derivations of the
result are somewhat beclouded by a cumbersome notation. The
same remark applies to the result given in (30) below.
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We make use of the following:

> i@ivei= 2 aoanCon—E,=0, (23a)
Ziai)\b'yi =3 i(ln\z WCoy 10, = 00, (23b)
Zieib‘yi:ZieinCv‘yﬂla'iv:O, (23(:)
where the last result follows from (23a).
Then, from (22a) and (22b),
S i(Eei—ed) =2 a(an’—ar)ane;=0,
by (23a). Also, using the above,
Z'zf (Ei2 - eiEi) = Zi(Ei2"‘ 6i2)
=2 (=) Ean, (24)
and
S i(Ei—e)byi=2 iEdyi=2 a(an’— an)aindi
=a,—ay, (25)

by (23c) and (23b).

If a large number of measurements of the coefficients
a, are carried out and the values of (a,'—a,) is
squared and averaged over this sequence of experi-
ments, we would obtain the following for the mean
square difference of true and least squares coefficients

((a., - a7°)2>m = Zij<EiEj>Avb*/ibw‘-

Here, and below, { ) is used to denote the average
over a large number of experiments. Now, since E; and
E; are uncorrelated (if i 7)

(EiEJ‘>Av= <E12 >Av5-;j= €0y
Hence

((a»,— 0‘70)2>Av= é Zib712= €Cyy (26)

To calculate the mean square residual €2, we have from
(24) and (25) that

S (Ed—vd) =Y riEEban.
Then, taking averages in the above sense,
@=L {vn=€eLnbran=1¢,
from (23b). Hence
é=3 v/ (m—1).

Since one does not carry out the large number of ex-
periments envisaged in the averaging process, the mean
square (v#)a is replaced by the sum of squares of the
actual residuals:

S (o= a0i(ui— Laand a)? =2 v,

where a) are the most probable (least squares) co-
efficients from (19). Inserting (19) in (28) we find

Ziﬂg: Ziwi#i2— o &

@7

(28)

(29)
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The mean square error in aj is then
((ar— a)®)a =D 02/ (m—1) 1O, (30)

where the result (29) is to be used. Since this result is
independent of a normalization constant b, one may
use w;=1/0%(u;) throughout. It is clear that for the
purpose of quoting mean square errors like that given
in (30) one should have an excess of points of observa-
tion, i.e., m>1.

From the manner in which the result (30) is con-
structed it would seem that essentially all sources of
error are included and not just the statistical errors
a2(us). In fact ((en— ax®)?)a is independent of the size
of the o?(u;) and depends only on ratios of these mean
square deviations. Thus, a comparison of (30) and
(20) would serve to indicate the importance of non-
statistical errors. A value of e appreciably greater than
unity implies that errors other than those due to a
finite number of counts, taken in the whole experiment,
are of importance. If one can be reasonably sure that
systematic errors are eliminated, a value of e much

"greater than unity would presumably imply that the

function used in the least squares fit is incorrect. A
possible procedure would be to increase v, by one unit,
or by two units for the correlation experiment, and re-
analyze the results. When au,~0, that is, when
am?/o*(awm)~1 with the assumed »,, one can take
the maximum » to be this value of », decreased by one
(or two) units. Of course, for most practical cases of
angular correlation it is necessary to distinguish only
between »,,=2 and 4.

V. MEASUREMENTS WITH A DECAYING SOURCE

In the foregoing it was assumed that for an angular
correlation, the lifetime of the source is large compared
to the time of measurement. This assumption is well-
fulfilled, for example, in the cases studied by Klema
and McGowan.? If this is not the case corrections must
be made for depletion of source strength during the
course of the measurements. The explicit problem con-
sidered in this section is the optimal procedure for de-
termining the lifetime of the source.

Consider a source which initially has N radioactive
nuclei. In most cases NV is essentially unknown and is
eventually eliminated from the final results. The pro-
cedure considered is that one records the time intervals
at which %, 2%, - - -¥n counts are obtained. For a source
with N’ radioactive nuclei, the probability for a decay
between time ¢ to {+dt is

pdt=N"poeN sty (31)

For the moment we assume detector efficiency n=1.
The probability P(n,V;{) that the nth count occurs
in the interval dt¢ at ¢ is obtained from the integro-
difference equation (11) with the kernel

K(t—#)= (N—n+1)poe~ N—ntDuot=t"),
The solution of (11) is subject to P(1, N; £) = Npee~Vrot,
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Then the required probability is®
N !#0
(m—1)I(N—n)!

X [1 — 8—uut]n—le—(N—n+1)uut_

P(n,N;t)=

(32)

For nuet<<1 and <KV this reduces to (13) with u= Nu,.

For the sequence of events that # counts are col-
lected in 7, to 7,+d7s, s=1-- -7, so that nr is the total
number of counts recorded, the probability is P(ry,
19+ *To)dridTe- - -d7, and

P(ry, 72 1) =] P(n, N—sn+n; 7,)
s=1

nkal [—% (V—ns+1
) (=t T —Z, (W=nst Lo ]
XTI [1—esors]t. (33)
s=1

The most probable counting rate po is obtained by
eliminating NV from the equations

dP/dN =0, 9P/du,=0.
These give .
nr 1 r
Mo Z TstﬂOT;

= (34a)
y=1 ]V— 11-+- 1 s=1

and

r MoTs 1 r
=3 =—yA—7+> (N—ns+1)uors}.

s=1¢tTs—1 p—1 s=1

(34b)

Introducing

,
> 57

1
)=
T s=1

the resulting equation, after elimination of V is,

g [T {r)+r+ (n— 1)@ —wu T 1=1.

v=1

(35)

The given data fix T, (r) and P as a function of wo. Then
the root of (35) fixes the most probable counting rate u,.

The result (35) may be considered in the case #=1. Then we

obtain from (34b)
(r/poT) = (N+1)=—~{r). (362)
If in (34a) the sum is replaced by an integral (corresponding to
replacing N! by N logN —N), one has
(N —nr) /Nze T,

6 This result has previously been given by N. Hole, Arkiv.
Mat. Astron. Fysik 34B, No, 12 (1948).
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Using this result and =1 in (36a) there results
1 1 1
m—m—;(r-l-l—(r))- (36b)
If we introduce
te=2 Ti,
1
this becomes
1 1 1 L
P (36¢)

Equation (36¢) is in the form given for this case by Hole® and
Peierls.”

Since #r is usually a very large number compared to
unity, the sum involved in (35) is rather difficult to
evaluate. Replacement of the sum by an integral is
permissible, leading to a comparatively simple result
for o, only if the summand never becomes large. This
corresponds to values of N>>nr. Then, with n>>1,

(n— 1)+ r+nuoT{(r)XuoTnre*T/ (enT—1). (37)

For counter efficiency 71 one must replace the
probability function (32) by® ‘

uolV g™
m—1)YN—n)!
X[1—n(1—e ) V=" (38)

For n<<N and nuit<l this reduces to (13) with u
= Nug. The probability of the sequence of events: »
counts in 71 to 71+dr1- - -» counts in 7, to r.+dr, is
(per drid7s- - -d1,)

P(”) ]Vr n; t) = e""“(l—-— '—Mot)n—l

P(ri7e-- "TT)ZH P(”) N—sntmn,n; 7e)

s=1

7, nrN! r
= Ko 6"‘0‘H (1._ —uors)n—l
(m—1)I"(N—nr)! a=1

><IiIl [1—n(1—esoms)J¥=ns. (39)

Application of the conditions 8 /0N =0 and dP/du,=0"
and elimination of N again gives a determining equa-
tion for w,. While the procedure for obtaining a
numerical value for po from the ensuing result is essen-
tially no more difficult than in the case of unit effi-
ciency, the analytical form is even more cumbersome
and we need give no further details. Once po is found,

the source depletion in a time ¢ could be obtained from
1—egmt,

7R. Peierls, Proc. Roy. Soc. (London) 149, 467 (1935).



