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ANGULAR CORRELATION AND D I STRI 8 UTION DATA 6ii

in each crystal, we introduce the following notation.
The distance from the source to the front face of each
crystal is h, the thickness is t, and r is the radius of the
crystal. If x(P) is the distance traversed by the radia-
tion incident on the crystal at an angle P with the axis,
the absorption is proportional to (1—e ' ). Then the
measured correlation function would be

W(8) =
dn, dn, W(e') (1—e- '~) (1—e- '2)

I dfl, dftp(1 —e—~~~) (1 —e—'»)

(2)

and

I) )dQ, dQ——,P((cos8') (1—e—'») (1—e—'*&))

x(P) =t secP for 0&P & tan 'ter/(h+t))=P',

x(P) =r cosP —h secP for P' ~&P &&tan '(r/h) =p,

where x& and x& refer to the two crystals, dQ& and dQ&

are the solid angle elements for each radiation, and 0'
is the angle between their propagation vectors, while
8 is the angle between the cylinder axes.

The required integrals are of the form

TAsx.E I. Attenuation coeScients J~/Jo for angular distribu-
tion measurements. For angular correlation measurements these
coeKcients should be squared or a product of two coefficients
should be taken.

~ (cm 1)

0.123
0.130
0.150
0.200
0.300
1.00
2.00
3.00
5.00

10.0
40.0

l=2
k=7

0.95931
0.95927
0.95917
0.95887
0.95851
0.95565
0.95311
0.95172
0.95039
0.94925
0.94830

ttt =10

0.97823
0.97821
0.97818
0.97808
0.97790
0.97672
0.97567
0.97510
0.97457
0.97410
0.97373

0.86873
0.86862
0.86833
0.86758
0.86620
0.85737
0.84938
0.84508
0.84096
0.83746
0.83457

l=4
h =10

0.92865
0.92863
0.92850
0.92818
0.92759
0.92383
0.92049
0.91863
0.91695
0.91551
0.91432

Qi= (APo)' (6)

for similar detectors and for p rays with similar ab-
sorption coeKcients. For a single detector, as would be
used in an angular distribution measured, with the
data represented by Eq. (1), the attenuation factor
would be simply

regard to the angular dependence of the correlation
function. Of course, represents the angle between
detector axes. The attenuation factor is

where y is the half-angle subtended on the front face.
Using the addition theorem

4m

P~(cos8') = P I'i *(1)Vi (2),
2l+1 —

&

Qi= Ii/&o

For full absorption (xr-+op) we have

Jg Pg g(xp) —xpPg(xp)

(i+1) (1—xp)

(6a)

(6b)

the integration over y~, the azimuth of direction of
radiation 1. can be carried out since x~ is independent of
q». Then only the m= 0 term contributes and

fO V

I ~ 2or sinPdPPg(co—s—Pr) (1—e '*')

sin8d8dq&pPt (cos8) (1—e '*').

Here 8 is the angle between radiation 2 and the axis
of detector 1. Applying the addition theorem once
more to the spherical triangle formed by the axes of
the two detectors and the direction of radiation 2 so that

P((cos8) =P((cosPp)Pi(cos8)+ ' '

the dots indicating azimuth dependent terms, we have
on integration over q2, for which the azimuth de-
pendent terms do not contribute,

Ii= 4+'Pi(cos@)Ji(1)Ii(2),
where

J~= lt P~(cosP)(1—e '*'e') sinPdP
0

The result (4) confirms the statement made above with

where @0=cosy.
In Table I numerical results are given for the case

0=7 and 10 cm, 1=2.54 cm and r=1.9 cm, for /=2 and
4 (Qo

——1) and several values of the absorption coefli-
cient v ranging from O. i23 cm ' to 40 cm '. These
values are pertinent to the experiments of Klema and
Mcoowan. ' While the individual J& vary appreciably
with absorption coeRicient, the ratios J$/Jp are much
less sensitive.

In the sequel it will be assumed that these angular
resolution corrections have been made so that, for the
considerations given below, no further reference to this
eBect need be made.

III. COUNTING RATE DETERMINATION

For both angular distribution and angular correlation
measurements one wishes to 6t a counting rate p, ;, de-
termined at each angle of observation 8,, by a function
of the form exhibited in Eq. (1).There are three main
questions: (1) the evaluation of the coeKcients n„,
(2) the evaluation of the errors in these coeKcients,
and (3) the determination of the maximum order of the
Legendre polynomial v, assuming that no u priori in-
formation on this point is available. The latter question
is best discussed after questions (1) and, (2) are clearly
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explored. The importance of the maximum v(= v ) in
angular distribution measurements is pointed up by
the dependence of v on the angular momentum of the
incident beam of particles. 4 Its importance for angular
correlations rests on the fact that v &~ 2j;, 2L~, 2L2,
where j;, Lj, L2 are, respectively, the intermediate
state angular momentum and the angular momenta of
radiations 1, 2.

For the determination of the counting rate p;, at a
fixed angle, we consider two possible procedures: (a)
The detector(s) is exposed to the radiation(s) for time
intervals ti, t2 t, and the number of counts (singles
or coincidences) obtained during each time interval is
recorded. (b) The detector records a given number of
counts e; and the time t, required for this is recorded.
For the angular distribution case we clearly deal with
a source of- constant strength. For certain correlation
experiments this assumption may be made with ex-
tremely negligible error. ' Consequently, the fact that
the detectors may not have 100 percent efficiency is a
trivial eGect: the counting rate given below is multi-
plied by 1/tv, where tt is the pertinent efficiency. We
consider the case of a decaying source in Sec. V. The
possible presence of an appreciable background count
would alter the results given below. This question is
considered elsewhere' and will not enter in the following.

(tj,t~)"''
Pt, (n, ) = e (7)

(n;) =pt;, (7a)

(7b)

(a) Fixed Time of Counting

If the true counting rate for the source of given
strength is p, the probability for rc; counts in a time
interval t, is given by the Poisson law:

P„(t)dt=dt I dt'P„, (t')E(t —t'); n&1, (11)
a

where the kernel E(t—t')dt is the probability that a
single count occurs in the time interval t t' to —t —t'+dt.
For a constant strength source this is

E(t—t') =tie "t' (12)

The solution of (11) with the condition Pi(t) =E(t) is

P (t) =ti"t" 'e &'/(n —1)!.
Clearly P„(t) is normalized to unity and

(t) = n/p,

'(t) =((t—(t))')= / '.

(13)

(13a)

(13b)

The least squares fit of the data now takes the form

g,m;(t, —n;/ti')' =minimum,

where ie;= 1/o'(t, ). This gives

tt'=g w, nP/Q w,n, t; =Q n, /P t, (14.)

In both cases (a) and (b) the most probable counting
rate (for the given finite number of counts) is given by
the ratio of total counts to total time.

In order to determine the weight to be associated
with this counting rate determination the probability
that a sequence of t, measurements shall give T=g, t;
= (P,n;)/ti' in an interval dT must be obtained. This
problem is slightly different from that considered in

(a) above since now the statistically varying quantities
t; are in the denominator of (14). The required proba-
bility is-

(b) Fixed Number of Counts

At the specified angle one measures the time t; re-
quired to accumulate n; counts. Let P„(t)dt be the
probability that the eth count is recorded in the time
interval t to t+dt Th.en

The data, represented by the numbers e, , t, are fitted
by least squares. That is, p' is determined so that

Px, (T) =tt~'
(N.—]) t

(15)

P,m;(n, —tt't;)'= minimum. (8)

4 C. N. Yang, Phys. Rev. 74, 764 (1948).

The weights w; are inversely proportional to tr2(n;) and
here, as well as in the following, the normalization of
the weights is irrelevant. We take w, = 1/o (n,) =1/ttt,
Then (8) gives

p'= P;w;t,n;/Q, w, t; =, Pn;/Pt;. (9)

The weight attached to this determination of the count-
ing rate can be taken to be

~(t,') = 1/~'( '') =N'/t *", (10)

using (7b). Here the index i refers to a particular
angle 8,.

(tt ) = hatt;N, /(N, —1)=ti;, (16a)

=pPNP/(N, —1)'(N, —2) = tie/N;. (16b)

For the weight w(tt, ') we may take

w (p, ') =N, /tt, '2. (16c)

from (13), and N, = P,n; Then the. probability that a
measurement of the counting rate gives a value p' to
p,'+dtt' is

P(ti')dp'= Px, (T)
~
dT/dtj, 't = (N, /tj, ')'Px, (T), (16)

and T=N, /p . For convenience a subscript i is omitted
from tt' and tt here and above. From this (normalized)
probability function we obtain
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In (16b) and (16c) we consider that X,»1 at each
angle. Of course, for iV,~~ we obtain (ii')=p and
0'(p') =0. In fact, P(ii') is then equal to 5(p' —p), as
is to be expected. It will be noted that for large X;
there is essentially no di6erence between procedures
(a) and (b).

~,=~(+') = Zi~~A'~, (17)

where A,z= pi, (cos8~) and yz may be taken to be Pi,
or any other function. In (17) the left and right sides
are not equal but what is meant is that the right side
represents p(8,) as closely as possible. The prime on the
symbol p,

' has been dropped. The measurement of 8,, it
will be assumed, contains no error.

I et m be the number of angles at which data is taken
and l be the number of coefFicients n~ which one as-
sumes. Then I= v +1 in the angular distribution case
and in the angular correlation case, since v is even,
I= —',i' +1. In any case m &~ 3.

The coeKcients ~~, which are the most probable
values for the given data, are determined from

P,w, (ii,—P &,ni A, i )' =minimum,

yielding the normal equations

P;w, (p,—Qgu), A,i)A,,=O. (18)

Here w, is given by (10) or (16c). Equation (18) and
subsequent results are more 'compactly expressed by
introducing matrix notation. We define a square (lXl)
matrix C whose elements are

That is,
Ci„Q,w,A;),A,,= C——„i.

C= JwA,

IV. LEAST SQUARES FIT OF THE DATA

Once the counting rates are determined at each
angle, and thereby, the associated weights determined,
one may proceed to problems (1) and (2) mentioned
at the beginning of the previous section. A discussion
of problem (3) can then be given (see end of this section).

The determination of the coefficients n, is now to be
carried by replacing W(8) in Eq. (1) by p(6), or more
specifically,

where

we have
B~'=Z.C.i 'A'. ,

0'(ni, ) =Q,By w,'0'(pg)

=b Q,„,C„i, 'C„i, 'A—,„A,,w,

= &C'w. '.

Consequently, if we define a matrix G by

G),,=Q,A, ),A,,/(r'(p, ) =G„i„
then

~'(~i) =Gi,), '. (20)

That is, the mean square deviation of the coefFicient

n), is given by the X, ) diagonal matrix element of the
inverse of G and this does not depend- on the normaliza-
tion b 'Howev. er, o'(n&,) is linear homogeneous in the
0'(p,) as it should be.

Now the square error given by (20) is a measure of
the deviations to be expected on purely statistical
grounds. Of course, in an actual experiment other sources
of error may exist. A clue to the existence of extraneous
errors is provided by comparing (20) with the mean
square error defined in a diferent manner. This mean
square error, to which we now turn our attention, is
based on a comparison between the true coefFicients,
which we denote by o.&', and the least squares value o.&,

given by (19).
Consider the residuals E, between the measured

values of p, , and the true values represented by Pi,ni, 'A, i, .
For convenience we reduce the equations to the form
in which the weights are effectively unity by introduc-
ing the notation

minant
( C( and dividing by

~
C~. Note, that k like C

is symmetric.
Equation (19) gives the coefFicients ni, . It is seen

that the normalization of the weights does not enter;
that is, if w;=fi/0'(p;), the constant b cancels out.
From (19) we observe that e is a linear homogeneous
function of the counting rates p, . Hence, due to the
existence of a variation in p,;, expressed by the mean
square deviation 0'(p;), there will be a corresponding
mean square deviation in n), . Writing

~i =QiBi ~w~p~'&

where w is the diagonal (mXm) matrix with elements
w, and A is the mX/ matrix (nonsquare, in general).
The tilde means transposed. Further let ( be the f

component vector Then, the residual E; are given by

(21a)

(21b)

(22a)

where p is the m component vector with components
p;. Then

or, in detail,
Cn= g,

~~=Z~Civ 'kv (19)

Of course, C ' is constructed by forming a matrix tt'

whose ), v element is the cofactor of C),„ in the deter-

The residual between the measured values and the
least squares curve are

(22b)
' The result expressed by Eq. (20) is not new. However, it has

been reproduced here for two reasons. First, it seems not to be
widely known and secondly the customary derivations of the
result are somewhat beclouded by a cumbersome notation. The
same remark applies to the result given in {30)below.
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We make use of the following:

g,a,„e,=+AnAC„A 5—„=0,

Q~aixbyi Ziaix+vCvy aiv= ~xyv

P;e~b„=P;e,+„C„„'a;„=0,

where the last result follows from (23a).
Then, from (22a) and (22b),

g; (E,e; e)=—Q,A(aA' —vxA) a;Ae, =0,

by (23a). Also, using the above,

(23a)

(23b)

(23c)

Z'(E''-'E') =Z'(E"—e")
= ZA(~A' —~A)Z,E,a,A, (24)

Z, (E,-e )b„=Z,E,b„=Z,A(~AO- ~A)a, Ab„

((cx,—a„')')Av = «' P,l, i.
'= «'C„ (26)

To calculate the mean square residual ~', we have from

(24) and (25) that

E'(E,'—t ")=ZA;E,EjbA;a, A.

Then, taking averages in the above sense,

Z'«' —Z'(e )A. = «'ZA;bA;a;A-&«',

from (23b). Hence

"=2 ( ')./( —t) (27)

Since one does not carry out the large number of ex-

periments envisaged in the averaging process, the mean

square (ep)A„ is replaced by the sum of squares of the
actual residuals:

Qi(ev. )Av=+Pgi(ji, —QAnAA;&) =Q, t',
v

where uA are the most probable (least squares) co-
efBcients from (19). Inserting (19) in (28) we find

by (23c) and (23b).
If a large number of measurements of the coefficients

n„are carried out and the values of (««~' —n„) is

squared and averaged over this sequence of experi-

ments, . we would obtain the following for the mean

square difference of true and least squares coefficients

((««y ««y ) )Av
—gij(EiEj)Avb7ibyj

Here, and below, ( )A„ is used to denote the average
over a large number of experiments. Now, since E; and

E; are uncorrelated (if i'�)
(EiEj)Av= (EP)Av~ij = « ~ij

Hence

The mean square error in o.), is then

(( —")')"=Lr.' ''/( —t)jC- ', (3o)

where the result (29) is to be used. Since this result is
independent of a normalization constant b, one may
use u, =1/o-"(tA.;) throughout. It is clear that for the
purpose of quoting mean square errors like that given
in (30) one should have an excess of points of observa-
tion, i.e., m) I.

From the manner in which the result (30) is con-
structed it wouM seem that essentially all sources of
error are included and not just the statistical errors
o'(ji;). In fact ((nA —aA')')A„ is independent of the size
of the a'(ti, ) and depends only on ratios of these mean
square deviations. Thus, a comparison of (30) and
(20) would serve to indicate the importance of non-
statistical errors. A value of ~ appreciably greater than
unity implies that errors other than those due to a
finite number of counts, taken in the whole experiment,
are of importance. If one can be reasonably sure that
systematic errors are eliminated, a value of e much
greater than unity would presumably 'imply that the
function used in the least squares fit is incorrect. A
possible procedure would be to increase v by one unit,
or by two units for the correlation experiment, and re-
analyze the results. When n. =0, that is, when
n. '/o'(n. )=1 with the assumed v, one can take
the maximum v to be this value of v decreased by one
(or two) units. Of course, for most practical cases of
angular correlation it is necessary to distinguish only
between v =2 and 4.

pdt= N'tAoe ~'&&'dt (31)

For the moment we assume detector efficiency p=1.
The probability P(n, N; t) that the jtth count occurs
in the interval dt at t is obtained from the integro-
difference equation (11) with the kernel

&(t—t') = (N —it+1)ji e i "+'~"'&'

V. MEASUREMENTS WITH A DECAYING SOURCE

In the foregoing it was assumed that for an angular
correlation, the lifetime of the source is large compared
to the time of measurement. This assumption is well-
fulfilled, for example, in the cases studied by Klema
and McGowan. ' If this is not the case corrections must
be made for depletion of source strength during the
course of the measurements. The explicit problem con-
sidered in this section is the optimal procedure for de-
termining the lifetime of the source.

Consider a source which initially has X radioactive
nuclei. In most cases .V is essentially unknown and is
eventually eliminated from the Anal results. The pro-
cedure considered is that one records the time intervals
at which e, 2e, . re counts are obtained. For a source
with X' radioactive nuclei, the probability for a decay
between time t to t+dt is

Q;mP=Q, W, tAP
—n (. (29) The solution of (11) is subject to P(1, iV; t) =Nti«e ji&vi



ANGULAR CORRELATION AND DISTRIBUTION DATA 6as

Then the required probability is'

Mpp
P(n N t)=

(m —1)!(N —n)!

X[1 e-yo o]n—Ie—(N—o+I!opo (32)

Using this result and m= 1 in (36a) there results

1 1 1=-(r+1—(r)).
goT et —1 r

If we introduce

t,=Z r;,
1

(36b)

For n!toot«1 and n«N this reduces to (13) with to= Ntop.

For the sequence of events that e counts are col-
lected in r, to r,+dr„s=1 r, so that mr is the tota!
number of counts recorded, the probability is P(ri,
rs ' 'rr)driers' ' 'dr„and

P(ri, rs r,.)=g P(e, N sn+—n; r,)

&!po" r

exp[ —P (N ms+1)tj—pr,,]
(e 1)!"—(N nr)!—

r

Xg [1—e-""]"-'. (33)
s~l

=tio Z r =!JpT
"=i N v+1

(34a)

Poxs r
C—=P = ( r+P—

s=1 jt'0'e —1 e~l
(lY ns+ 1)to—pr, ) (34b).

Introducing

The most probable counting rate pp is obtained by
eliminating Ã from the equations

BP/8Ã =0, BP/Bto p
=0

These give

this becomes
1 1 1=—Z E (36c)

IJ0T e~~—1 rTs 1

Equation (36c) is in the form given for this case by Hole' and
Peierls. 7

Since nr is usually a very large number compared to
unity, the sum involved in (35) is rather difficult to
evaluate. Replacement of the sum by an integral is
permissible, leading to a comparatively simple result
for p, o, only if the summand never becomes large. This
corresponds to values of S&&mr. Then, vrith er»1,

(n 1)C—+r+mtjpT(r) tip Tmre»—r/(e&or 1). (37—)

For counter eQiciency p/1 one must replace the
probability function (32) bys

po
P(n, N, o!; t) = e—vo/(1 e goo)o I— —

(n-1)!(N- m)!

r!(1 e—voo)]N—~ (3g)

For m«N and ntopt«1 this reduces to (13) with to

=Epos. The probability of the sequence of events: e
counts in ri to ri+dri m counts in r„ to r,+dr„ is

(pei ~ri~rs' ' '8r )

P(r,r, r,)-g P(n, N sm+n—, o!; r,)

STs)
P s=1

the resulting equation, after elimination of )7 is,

nr

P [n!,T(r)+r+(n 1)C vt pT]- =1.— —
v~l

(35)

r
e—voo g (1 e vor8)o i- —

(n —1)!"(N mr)!—
r

XII [1—n(1 —e "'")]""' (»)
s 1

The given data fix T, (r) and 4 as a f. unction of top. Then
the root of (35) fixes the most probable counting rate top.

The result (35) may be considered in the case n= 1. Then we
obtain from (34b)

(r/vo 7') —P'+ 1)= —(r) (36a)

If in (34a) the sum is replaced by an integral (corresponding to
replacing X!by 1V loglV —Ã), one has

(N nr)/N~e vr—
Application of the conditions N'/BN =0 and BP/&to p

0"——
and elimination of X again gives a determining equa-
tion for p,o. While the procedure for obtaining a
numerical value for p, o from the ensuing result is essen-
tially no more difficult than in the case of unit effi

ciency, the analytical form is even more cumbersome
and ere need give no further details. Once po is found,
the source depletion in a time f could be obtained from

Po&

'This result has previously been given by N. Hole, Arkiv.
Mat. Astron. Fysik 34B, No, 12 (1948). r R. Peierls, Proc, Roy. Soc. (London) 149, 467 (1933).


