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.The usual Hall effect equation for semiconductors applies if the concentration of carriers is undisturbed.
In a magnetic Geld, however, holes and electrons are swept to the same side of the conductor. A gradient of
carrier concentrations is thereby established, giving rise to.diffusion currents across the sample. The mag-
nitude of the diffusion currents depends on the recombination velocity at the surface and on the lifetime of-

excess carriers in the interior.
Partial differential equations governing the electric Geld and the variation of the carrier concentrations

across the transverse cross section of the Hall sample are obtained. These are applied to rectangular and
circular transverse cross sections. Equations for the Hall voltage as a function of both bulk lifetime and
surface recombination velocity are derived and discussed. The analysis considers only disturbances which
are linear in the applied magnetic Geld.

I. INTRODUCTION

~ 'N semiconductors two current carriers are present
~ - in variable proportions: electrons having energies
in the conduction band, acting as negative carriers; and
vacant states or "holes" in the valence band, acting as
positive carriers, %hen a current Rows, electrons and
holes move in opposite directions; however, a magnetic
6eld tends to deAect the oppositely moving and op-
positely charged carriers in the same direction. A
counteracting electric field, such as is usually set up in
the presence of a magnetic field by an initial movement
of charge, cannot simultaneously balance the magnetic
deRections of both carriers in view of the opposite
forces exerted by the electric fieM on the two particles.
Consequently, in the steady state, holes and electrons
will Row in equal numbers in the direction of magnetic
deflection. The equality of the two currents is required
in order that the net transverse current be zero, in
accordance with the principle of charge conservation.
The Hall field is then that electric field which insures
the necessary equality of transverse hole and electron
Aow.

Since the currents for the individual carriers perpen-
dicular to the imposed direction of net steady-state
current do not vanish, the particles themselves are not
conserved. In fact, hole-electron pairs must be con-
tinuously generated in the region or on the surfaces
from which the transverse current Rows and must
recombine in the region or on the surfaces to which it
Rows. If the processes of recombination and generation
are slow, requiring large deviations of the carrier con-
centrations from their equilibrium values in order to be
eGective, holes and electrons will tend to accumulate on
that side of the sample toward which they are deQected
by the magnetic field. Since they are deRected in equal
numbers, no space charge will result from this accu-
mulation. However, once a gradient in carrier conc'en-
tration is set up across the sample, further accumulation
will be opposed by the resulting diffusion currents. The
diffusion currents constitute a second means by which
the eGects of magnetic deRection may be balanced
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under steady-state conditions. In particular, when there
is no generation or recombination of carriers whatever,
the existence of diRusion currents makes possible the
simultaneous vanishing of both the hole and the electron
transverse currents.

The formula for the Hall constant usually quoted in
the literature is appropriate for the case of zero lifetime,
i.e., for the case in which any desired rate of generation
or recombination can be maintained without an appre-
ciable change in the carrier concentrations. This re-
striction upon the validity of the formula in question is
usually not explicitly stated. The derivation of the
formula is much simpler than that for the general case
since no concentration gradients, and hence no diGusion
currents, can exist when the lifetime is zero. Fowler' has
given a discussion for the extreme case of infinite life-
time, and Welker has, in addition, treated the inter-
mediate case for intrinsic semiconductors, Welker's
treatment neglects the surface recombination on two of
the four long surfaces of the usual rectangular HaH.
specimen. It is the purpose of this paper to derive and
discuss the more general equations needed for the inter-
pretation of Hall experiments. It is instructive to com-
pare the formulas for zero lifetime and inlnite lifetime
(no recombination). In Gaussian units they are

3x —b'mp
(zero lifetime),

Sec (p+be)'
aild

3~ p —be
(infinite lifetime) .

Sec (p+be) (p+e)
(2)

Here e is the magnitude of the electronic charge, c the
velocity of light; p and e are, respectively, the concen-
trations of holes and electrons, and b is the ratio of
electron mobility to hole mobility. Equations (1) and
(2) assume that the energy band surfaces are spherical
and that holes and electrons are scattered by lattice

R. H. Fowler, Statistical Mechanics (Cambridge University
Press, Cambridge, 1936),p. 428.' H. Welker, Z. Naturforsch. 6a, 184 (1951).
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vibrations. Other cases are discussed by Shockley' and
Klahr. 4

When. the concentration of one carrier very greatly
exceeds that of the other, Eqs. (1) and (2) become
identical. However, the distinction becomes quite
important in the near-intrinsic region. In particular, the
point at which the Hall constant is zero is quite different
in the two cases. It is well known that the Hall coefFicient
for a P-type germanium or silicon sample reverses sign
when the temperature is raised sufficiently, because the
sample eventually becomes intrinsic; and when p is

equal to e, the Hall constant must be negative, since b

is greater than unity for silicon and germanium. The
above two formulas show that the temperature at which
this reversal occurs will be influenced by the lifetime of
excess carriers in the particular sample measured. Con-
siderations such as these indicate the possibility that
the lifetimes of excess carriers might be measured on
the basis of Hall e8ect experiments alone, without the
necessity of observing the decay times of injected
carriers. This possibility has in part motivated the
following derivation of the Hall constant for the general
case in which neither the bulk lifetime nor the surface
recombination velocity is assumed to have an extreme
value.

I= 1~+1D+lc, (3)

where iII is the deflection current, i~ is the di6usion
current, and ig is the conduction current. The direction
in which the net. steady-state current Qows will be
called the "longitudinal direction, " and will be desig-
nated by the subscript "l."Similarly, the subscript "t,"
standing for "transverse, "will designate the directions
contained in a plane perpendicular to the longitudinal
direction. It is not necessary that all transverse currents
lie along the direction of magnetic deflection; conse-

quently, equations to which the subscript "t" are
applied are two-dimensional vector equations.

Under steady-state conditions the transverse current
must be zero. It follows that

II. FUNDAMENTAL EQUATIONS

The total current density, i, is the sum of the current
densities due to the magnetic deflection, to the concen-
tration gradients, and to the electric fields present.
Symbolically, we may write

i~~ = (WIr~'ii&/c) y i

ia.= —(~a.A H/c)yi,

(6)

(7)

where yi is a unit vector along the y axis. In Eqs. (6)
(6) and (7), as throughout the paper, the subscripts
"p" and "e" refer to holes and electrons, respectively,
so that i~„and i~„are the deflection currents for the
two carriers, and i~„and i~„are the longitudinal currents.
The constants of proportionality pII„and @II are the
Hall mobilities defined by Shockley. s If the energy
surfaces at the top of the valence band and the bottom
of the conduction band are spherical, if Boltzmann
statistics apply, and if the scattering is primarily due
to the lattice vibrations, then the Hall mobilities are
related to the drift mobilities, p„and p„, in the following
way:

p~&= 3ll p&/8,

@I'.=3irp„/8.

(8)

However, these relations are not always valid, so that
no use of Eqs. (8) and (9) will be made in the subse-
quent derivations.

The longitudinal currents are conduction currents,
and hence

&ly = epypEi

1) = 8@~+8),

(10)

where Ei is the longitudinal electric field, which is
constant both across and along the specimen, and p and
e are the actual hole and electron concentrations as
distinguished from the equilibrium concentrations, to
be represented by po and eo. Thus (6) and (7) become

i'„=eIJii„u„E&Hpyi/c,

i&„=eIJ,II„p„E&Heyi/c.

(12)

(13)

In materials that are not excessively P type or
Ã type, both carriers obey Boltzmann statistics, so that
the diffusion currents are

at right angles to the longitudinal direction, and let a
right-handed Cartesian coordinate system be chosen

. such that the x axis lies along the longitudinal current
direction, and the negative s axis along the direction of
the magnetic field (i.e., ~

H
~

= H,—). Then both holes
and electrons will be deflected in the direction of the pos-

. itive y axis. The defIection currents are given by

&a~+ in'+ &c~= 0,

lgi= 1.

(4)

(5)

ii)„= kTp, Vp= kTIJ,—,V,pi, —(14)

ii)~= kTIJ~V ii = kTp~V gpi& (15)
Before proceeding, it will be necessary to de6ne a

coordinate system. Let the magnetic field be oriented

'W. Shockley, Electrons and Holes in Semicondlci'ors (D. Van
Nostrand Company, Inc. , New York, 1950), p. 277.

4 C. N. Klahr, Phys. Rev. 82, 109 (1951), Scattering due to
sources other than lattice vibrations is considered by Klahr. Even
more serious modifications are required by the nonspherical
energy surfaces resulting from the calculations of Herman and
Callaway, Phys. Rev. 89. 518 (1953).

where k is Boltzmann's constant. In the right-hand
terms of these equations, pi is the deviation from
equilibrium of the two carriers:

pl p po '8 '80='Ni.

The deviations in n and p must be the same in order to

5 Reference 3, p. 209, 270.
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preserve space charge neutrality. The subscript "t" on
the inverted delta signifies that only the transverse
components of the gradient need be considered.

Formulas for the transverse conduction currents are
written similarly to (10) and (11), with E&, the trans-
verse electric field, replacing Ei.

ic„i eg„——pE~,

ic„, equi——„nE,

(17)

12 t= —
&mt (21)

Equations (19) and (20) express the total transverse
hole and electron currents in terms of the applied elec-
tric and magnetic 6elds, and the resultant transverse
electric field and concentration gradient. Except in the
diffusion current term, the hole and electron concen-
trations have been given their equilibrium values, since
the neglected products piH and piE& are of second order
in the applied magnetic field. Throughout this paper
we shall be concerned only with quantities which are
of 6rst order in the magnetic field. The discussion will,
therefore, apply to the Hall eRect in the limit of small
fields, and will not reveal anything about the variation
of the Hall constant with magnetic 6eld.

IIL PARTIAL DIFFERENTIAL EQUATIONS
FOR TRANSVERSE VARIATION

The Row of excess carriers obeys the continuity
equations

divi„+ epi/r = 0,

divi„—erii/r =0,

(22)

(23)

where v is the lifetime of excess carriers in the body of
semiconductor. If Eqs. (19) and (20) are substituted
in Eqs. (22) and (23), we find

divE& —(kT/epo) V Ppi+ pi/(ry~po) = 0, (24)

divEi+ (kT/eeo) V (Pi Pi/(rp„no) —=0. (25)

E& can be eliminated by subtracting Eq. (25) from Eq.
(24) leaving

V ppi —p'pi=0, (26)

where P and another quantity, ' D, which we shall need
later, are de6ned by

The consequences of Eqs. (12) to (18) are now
summed up in three equations:

i„&——ep„fpH EiHpoyi/C (kT/e) V—ipi+ poEi], (19)

i i=ey„g AH Et—Hrioyi/c+ (kT/e)V&Pi+rioE&], (20)

interior of the transverse cross section, if we have
boundary conditions available along the surface of the
sample. These boundary conditions are determined by
the rate of recombination at the surface and are given by7

Iy' lli =Sepi)

i 'lli= —$ePi,

(28)

(29)

kT~
divEi= —

I IV, pi.
e (n,p„+p,p, &

(31)

Now the potential V has the same variation in each
transverse cross section, while its longitudinal variation
is de6ned by E&, so that we can write

V= —Eix+ Vi,

where Ei———V~Vi, and hence

divE& ———V'Vi.

Together with Eq. (31) this gives

kT( p —p„
vp Vg=

I Ivppi,
e Em,p.yp, p„j

or
kT t'

Ipi+v~,
e &mop„+pop, j

(32)

(33)

(34)

(35)

where Ul. is a solution of Laplace's equation (in the
transverse coordinates). The boundary condition on V&

may be obtained by adding Eqs. (28) and (29) and
substituting for the currents from (19) and (20) giving

where tt& is the unit outward normal along the surface,
and s is a quantity characteristic of the surface called
the surface recombination velocity. If we substitute
Eqs. (19) and (20) in Eqs. (28) and (29), the resulting
equations can be combined to give a boundary condi-
tion involving pi only

H (kT kT) dpi
(~H.+~H-)—&i(lli yi) —

I +
c Eejo etio/ dll

1 1
=$p

I + I. (30)
(lippo pnrio)

This boundary condition, in addition to Eq. (26),
serves to determine pi.

To find E„once we have found pi, either Eq. (24)
or Eq. (25) can be used, which can be written with the
use of Eq. (26) as

1 1 e 1i„eo+1i„po
2=

rD r kT p„p„(rio+po)
(27)

kT ( Pn Iiy p ~pl PHy1iypo PHe1iri+0
+

Bll e irioli +poli„i ~ll ('+o1i +pop )

Equation (26) will determine the variation of pi in the

'This is the same diffusion coefficient defined by Harvey
Brooks, Phys. Rev. 90, 336 (1951). ' Reference 3, p. 321. .

H
X—%yi lli. (36)
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Substituting (35) in (36) leaves

pIr p po Iir—r IJ 'rlo II
+gyp ' Hy.

Bn iioli ~+pop& c

1 (pa~Pypo Pr—rnid~'+o)
RL, —

ce (e po.+pop )'
(45)

where R~ is a measure of V~ and RI. is a measure of Vl, .
We then have

A solution of Laplace's equation which satisfies (37) is
given by

pHyliypo AHnIiriiio II'i'
Es,i= V—i&r.=— (38) where

(nop„+ pop, )' ce

Here E& has been replaced by

Ii(Pa)
RD- R,

(~/D)oI. (Po)+P~Ii'(&o)

(~- 1.—)(1 +~ -)popo 1
1.=

(mop +poIJ ) ('+o+po)

(46)

(47)

+l
e(mop +po~„)

(39)

The field given by Eq. (38) is the one given by the
usual Hall formula for zero lifetime. Hence V& can be
written as

where
«= &n+&r.,

&2 t' u —~~
I pi.

e Enp„+pol „)
(41)

V~ is the part of V~ which depends on surface and
volume recombination.

The general procedure that has been discussed has
been applied to circular and rectangular cross sections,
and the results will be described. In the limiting cases
in which the excess carrier lifetime is zero (representing
either zero bulk lifetime, or else an inGnite surface
recombination velocity) or infinite (representing infinite
bulk lifetime accompanied by zero surface recombina-
tion velocity), a transverse electric field is set up which
is independent of the shape of the transverse cross
section. This transverse electric field has only a y
component and is constant across the transverse cross
section. The Geld established in the case of zero carrier
lifetime is given by Eq. (38). The field established in
the case of inGnite carrier lifetime is

(PHypo PHeflo) oII—yi.
(NoII, „+pop~) (so+po) ec

(42)

Equations (38) and (42) lead to Eqs. (1) and (2)
under the assumptions of Eqs. (8) and (9).

R= Rn+Ez, (44)

IV. CIRCULAR CROSS SECTION

The voltage distribution around the circumference
of the transverse cross section turns out to be of the
form V&= Vo cos8, where 8 is the angle that the radius
makes with positive y-axis. A definition of the Hall
constant E, which is consistent with Eqs. (1) and (2), is

I

Vo= RIIiu, (43)

where c is the radius of the cylinder. R can best be
written in the form

and Ii(x) = —iJi(ix) is a Bessel function of an imaginary
argument, whose values can be found in tables. ' In the
case of zero carrier lifetime (s= oo or x=0) we find
En =0. In the case of infinite carrier lifetime (s=0 and
7 = ~) we find RD ——6t. For intermediate cases:

0&En/e. &1,

It should be noted that the Hall measurement on a
cylindrical conductor yields only one constant: the
value of Vo. If all the mobilities and carrier densities
are known and if one of the two quantities, s and r, is
known, the other one can be found directly from a Hall
measurement. If both s and v are unknown, their
values cannot be found from Hall measurements on a
single specimen. In actual practice it is likely that s is
not uniform over the surface of the sample. This will
be revealed by deviations from Vt, = V0 cos0.

V. RECTANGULAR CROSS SECTION

General Discussion

D I R EC T ION
OF POSITIVE

H

Z=—
2

A iQ

W
2

W
2

Z»
2

FIG. 1. Transverse cross section of rectangular Hall specimen.
The longitudinal current is considered positive if directed out of
paper.

8 E. Jahnke and F. Emde, Tables of Functions (Dover Publi-
cations, New York, 1945).

We shall assume that the Hall sample is oriented
with respect to the magnetic field as shown in Fig. 1.
Before discussing the detailed equations it will be in
order to point out that the voltage distribution over
the surface of the cross section depends on s and z in
diGerent ways. If s=0, all the transverse currents are
in the y direction, and the surfaces at y= Hie/2 are
equipotentials. If s is diGererit from zero, diffusion
currents Qow toward all surfaces, and most of the
quantities we are concerned with will show a variation
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with s as well as with y. Naturally, we still cannot find
both s and v from one Hall measurement. H, however,
two potential diRerences are measured, on the same
cross section, it will be possible to Gnd both s and v.,
providing all the mobilities and carrier concentrations
are already known. This could be done, for instance, by
measuring the potential between points A and C shown
in Fig. 1, as well as the potential between A and B.

0&g(», w/2) —g(», —w/2) &w, (51)

so that the Hall constant measured in the normal
manner by probes at A and 8 will be between EJ. and
Rz,+ (R, as in the cylindrical case.

In order to exhibit g(s, y), it is necessary to de6ne
a set of numbers y„which are positive roots of the
equation

y„ tan (T„t/2) = s/D.

Detailed Equations

The fieM distribution due to Vz, is speci6ed by Eq.
(38). This gives a potential difference between y=w/2
and y= —w/2:

(w 0 ( w $ lIIIrlIr pp @Irma n'—+p w+&
(49)

& 2 ) & 2 ) (l,pe+a, „mp)' ec

In addition to this, there is a potential distribution of
the form

V~=Hig(», y)(R, (SO)

where 8, is given by Eq. (47) and g(s, y) is still to be
de6ned. It is a quantity which satisfies

be given by9

2 (PwiR=R.+6l
Pw l29 (57)

4 sin (y„t/2)
gn= (60)

((s„/D) insh(n„/w2)+n„c sho(n /w2„)$

If we consider lifetime as a variable, Eq. (57) shows
that R makes the transition from Rr, to Rr,+(R when
the diffusion length, 1/P, is comparable to the width,
m, of the specimen.

In order that the concentration of carriers across the
thickness, f, of the sample (i.e., along the s direction)
be constant, it is not necessary that s vanish. If s is
small enough, diffusion can maintain equilibrium across
the sample. The condition for this is st&(D. Under this
condition only the term for st =0 in (55) is important.
In this case,

crp ——(1/Dr, )l,

where 7, is an eRective lifetime given by

1/r, = 1/7.+1/7.
and where r, is the lifetime which would be measured
if the surfaces at »=At/2 were the only place where
recombination. occurs. r, is in turn equal to f/2s.

The case in which one value of surface recombination
velocity, s„, applies for the surfaces at y=+w/2 and
another value, s„applies at s= &l/2, is treated almost
as easily as the case leading to (55) and (56). If s&Qs„,
(55) still holds, but instead of (56) we have

The roots are numbered in order of size; the lowest one
is labelled e=O. The roots then satisfy

where
X (sing„t+y„t)

~ =+(P'+v ')', (61)
2m~&~.«(2m+ 1)~.

Furthermore, for each y„we'shall dedne an a„.
and instead of Eq. (52),
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y„ tan(y„l/2) = s,/D. (62)
--=+(~'+v.')-:

Then, g(s, y) is given by

with

. g (s, y) =Q g sinhcr„y cosy„», (55)

4 sin(y„l/2)
g~=

L (s/D) sinh (cr „w/2)+ n„cosh (ct„w/2) j
g (sing„t+y j)

Special Situations

(56)

The series given. by (SS) will be discussed in further
detail for a number of special situations. If s=0, only
the term for e=O is present. Furthermore, pp=O, so
that om.ly variation along the y-axis exists. In that case
the Hall coeKcient, determined in the usual way from
the potential difference between A and 3 in Fig. 1, will

It is interesting to note that g can be made arbitrarily
small by making s„ large enough. The value of g
cannot be made arbitrarily small by increasing s&

without limit. Physically this comes from the fact that
for very large values of s~ the rate at which recom-
bination occurs at y= + t/2 is not determined by s~ but
is limited by the time it takes the holes to diRuse to
y=+t/2 from the interior of the specimen. Diffusion
will determine the rate of recombination at y=&t/2,
if s~t&&D. (For room temperature germanium mobilities,
st is comparable to D if s= 750 cm/sec and t= 1 mm. )
If sgt))D, and if, furthermore, s &sg, m &t, and v =
then it is only the recombination at the surfaces at
y=~m that counts. In this case the series given by
Eq. (55) can easily be summed, and the Hall coeKcient,

9A formally very similar expression has been derived by H.
Welker, L'Onde Electrique 30, 309 (1950}.Welker's equation (33)
applies to a semiconductor with no recombination, but with an
alternating longitudinal current.
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determined in the usual way from the potential dif-
ference between A and 8 in Fig. 1, will be

2D
R =Br,+ (R.

S'N
(63)

Another case of interest occurs if s~ is zero. Then all
terms of the series but the first vanish, and we And

R=Ri,+s„w/2D+ (Pw/2) coth (8w/2)
-(R. (64)

It should be pointed out that an experimental ar-
rangement in which the voltage between two points on
the same surface at s=t/2 is measured allows one to
dispense with all terms of the series given by Eq. (56)
except the first one, even if s~ is not zero. In such ar-
rangements we rely on the fact that the hyperbolic
functions with larger values of o,„decay more rapidly
with y as we move away from y= &w/2.

VI. CONCLUDING REMARKS

In conclusion we wish to point out that a complete
interpretation of the experimental Hall e8ect in near-
intrinsic semiconductors requires a knowledge of the
precise nature of the probes used to detect the Hall
voltage. The voltage of a metal probe placed on the
surface of a semiconductor, is not a direct indication of
the electrostatic potential of the underlying semicon-

ductor unless the carrier concentrations have their

equilibrium values. This is because a metal contact acts
as a recombination center for excess carriers; and if
there is a barrier to holes or electrons associated with
the contact (as is usually the case), a potential change
across the barrier is required to equalize the fiow of
holes and electrons toward the contact. " In the hrst
approximation this extra contribution to the probe
voltage will be proportional to the excess carrier con-
centration. Since Vs [see Eq. (41)$ is also proportional
to the excess carrier concentration, one may take the
extra probe voltage into account by replacing the
constant (R, defined by Eq. (47), by an effective con-
stant R' in the subsequent equations. If one writes

(65)

then 0. will be a constant depending on the nature of the
probe. The maximum v'alue of a is (Nsji +ppli&)/
pp(p p&), corresponding to an infinitely high barrier
to electrons. The minimum value of n is —(npli +Pply&)/

ns(li„—p~), corresponding to an infinitely high contact
barrier to holes. The special case o.= —1 corresponds to
a contact having no barrier. Over the surface of such
a contact the recombination velocity is equal to thermal
velocity (10' cm/sec), and hence no appreciable devia-
tion of the carrier concentrations in the immediate
vicinity is possible.

The authors wish to thank I.. P. Hunter for pointing
out that the usual interpretation of Hall eGect data
leads to inconsistencies and also for many discussions.

'0 J. Bardeen, Bell System Tech J. 29, 4.69 (1950).


