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Band Structures of One-Dimensional Crystals with Square-Well Potentials
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The energy band structure for a one-dimensional periodic square-well potential is obtained in terms of
the well depth for the whole range of possible ratios of well width to hill width, This model bears a closer
resemblance to a real crystal since, as potential depth is varied for a 6xed ratio of well width to hill width,
the curves bounding distinct bands cross while in the case of a delta-function potential no such crossings
occur. The location of these crossings is derived. The number of times that a given pair of boundary curves
can cross is considered. For the set of boundary curves that belong to a given ratio of well-to-hill widths,
this number is unbounded.

I. INTRODUCTION

HE eigenspectrum of the Schrodinger equation for
the motion of an electron in a crystal with a

periodic potential is continuous except for certain
unallowed regions (band structure). Considerable infor-
mation about many properties of solids (e.g. , electrical
conductivity and cohesive energy) can be deduced from
the structure of the eigenspectrum. In general, approxi-
mate methods have to be applied in solving such
problems. In order to estimate the validity of a partic-
ular method, one can apply it to a one-dimensional
model in which the potential is reasonably similar to
that assumed for the three-dimensional case. The
determination of the band structure in the one-dimen-
sional case may also be useful in providing some insight
into the nature of a real crystal. '

Mathematically, one has the problem of finding the
allowed and unallowed regions of the solution of the
equation

~(dx'+ [E V(x)]P= 0, — (&)

where E is the total energy and V(x) is a periodic
function which in some way possesses properties similar
to those of the potential for real crystals. A particularly
simple form of V(x) is provided by the function VoS(x),
where Vo is the depth of the potential well (or height of
the potential hill) and S(x) is a periodic function like
that shown in Fig. 1 which takes on only the values 0
and 1. In Fig. 1, fz is one-half the width of the hill and
m is one-half the width of the well.

Equation (1) has been studied in detail for the case
where V(x) is sinusoidal, in which case the solutions
are Mathieu functions. For V(x) of the form VOS(x),
the allowed and unallowed regions of Eq. (1) have
previously been determined for the case' ' 0=x and for
the Kronig-Penney potential. 4 ' For the former case

curves of 8 vs Vo in the interior of a band have also
been calculated. ' We shall here undertake to treat the
case of arbitrary w/h, ' but we shall limit ourselves to
curves which bound the zones.

One very important feature of the band structure is
the existence of points of contact between different
allowed bands (a special type of band crossing). Aside
from its general mathematical interest, the question of
the distribution of these points of contact deserves
attention because of its connection with the problem of
surface states, as pointed out by Shockley. v The band
structures for both the Kronig-Penney and the sinus-
oidal potential are not qualitatively the same as that of
real crystals, since points of contact occur in those of
real crystals but not in these models. "As was shown
by Landauer, ' the band structure in the case of the
Kronig-Penney potential is dissimilar to that of real
crystals in yet another way. While in the former case,
the size of the forbidden regions approaches a constant
nonvanishing value as E approaches infinity, in actual
crystals if Vo is kept fixed, the forbidden ranges of E
approach zero as E approaches in6nity.

The band structure for the case of a finite rectangular
well potential, on the other hand, has the proper
behavior as E approaches infinity and (as will be
shown) has an infinite number of points of contact
whenever /z/0. However, in order to carry out a
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FIG. 1. The function S(x) for a potential function of period 27t.
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II. THE EIGENSPECTRUM

lit we shall confine ourselvesWithout loss of generality we s
to the case where S(x) has p

'
. es the eriod 2m. T en e

f E . (1) can always be representebounded solutions o q. ca
ro ertas combinations o ub' t' f functions having the proper y

P(x+2'-) =e'""f(x),

er and e an integer. "The value of
k can be determined from E and Uo when
the relation, "

' F. Block, Z. Physisik 52 555 (1928}."F. Seitz, The SIoderrI, Theory of o z s c
Company, Inc., New York» p.1940, . 282.

cos(2u) cos(2v)

K—ZO 'V

(2u) sin(2v) =cos(uk), (3)
2(vr w)wu

e u= v.—w)(E—Uo)', and v=wEl.
alid for all the points (E, Uo) forEquation (3) is v h

treme value, that is & . n es
Eq,3) is factorable and the equations or e ou
curves may be written

u tanu= —L(v.—w)/wjv tanv,

u cotu= —L(~—w)/w jv cotv,

(4c)u cotu= L(v —w)/w$v tanv,

u tanu= ((v.—w)/w$v co v,te (4d)

s. i4a, and (4b) are the factors of Eq. (3) when

t fo th bo d
ek = —1. An equation simi a

4 h 1 d
V and the equations or

curves are then identical with Eqs. wi
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by ig so- that hyperbolic functions replace the trigo-
nometric ones.

Equations (4) and the corresponding set for Z(VO
were used to obtain the plots of Figs. 2(a) to 2(i). In
these graphs the shaded regions represent allowed
regions, and the white ones, the unallowed regions.
For each interior point of the shaded (allowed) regions,
Eq. (1) has two linearly independent bounded solutions.
Along the boundary curves separating allowed from
unallowed regions, Eq. (1) has, in general, a unique
bounded solution. However, there exists a discrete set
of exceptional points for each of which Eq. (1) has
two linearly independent solutions corresponding to
two diferent boundary curves which, therefore, have
such points in common. In the standard treatment of
Hill's equation, it is shown that any two such curves
having one or more points in common in the 6nite
plane must both bound the same unallowed region, so
that the widths of the allowed bands there never vanish.
Those exceptional points which occur in the interior in
the finite part of the E—Vo plane correspond to a
crossing of the boundary curves. In addition to these,
there are junctions in which pairs of curves meet on the
E axis and at in6nity. In the latter case, the curves
meeting at in6nity both bound the same allowed band.

III. LOCATION OF THE EXCEPTIONAL POINTS

A. Crossings

The exact location of the crossings may be found by
considering Eqs. (4). Any values of I and n, such that
any two of these equations are satis6ed simultaneously,
determine a crossing. The crossings are found to occur
at the points

( E=e'm /4w',
! Vo/0, n&0, (5)
0 Vo =e'n'/4w' —[m'x'/4 (m

—w) 'j &

where e and re. are integers.
A similar consideration of the equations analogous

to Eqs. (4), when 8(Vo, shows that no pair of these
equations can be satis6ed simultaneously for 6nite I's
and n's. Hence, we conclude that crossings of the type
previously described can occur only when E& Vo, and
the location of these is given by Eq. (5).

B. Junctions on the E Axis

When Vo ——0, Eq. (1) becomes

d'P/dx'+ EP=0,

which has bounded solutions for all positive values of
E. Hence, there are no forbidden regions along the E
axis and each boundary curve ends in an exceptional
point. The location of these junctions is readily found
from Eq. (4). They are at the points

(E=N'/4 VO=O), NWO,

where e is an integer.

C. Asymptotic Junctions

Although no crossings occur in the 6nite plane when
E& Vo, it may be shown that pairs of boundary curves
share the vertical asymptotes

E =e'x'/4w' ~=1 2 3

These junctions are all between pairs of curves bounding
allowed regions.

IV. THE NUMBER OF EXCEPTIONAL POINTS

The number of junctions is clearly equal to the
number of boundary curves. We shall now establish
that, given any prescribed integer Ã, there exists for
any value of m a set of boundary curves which crosses
more than Ã times.

We first find the number of crossings in a right
triangle bounded by the E axis, the line E= Vo, and a
vertical line 8=I, 's'/4m', where e,„is an integer.
Every crossing within the triangle is located at the
intersection of a vertical line, E=N'~'/4w', and a line
of slope one, Vo ——E—m'n'/4(m —w)'. The number of
crossings is thus equal to the number of such inter-
sections of diagonal lines with vertical lines. There will
obviously be e, such vertical lines if we include the
boundary of the triangle as one of the lines. For large
e,„, , to a good approximation, the number of crossings
v will be given by

v=[(~—w)/2wfe . '. (8)

We next 6nd the number of pairs of boundary curves
among which these double points are distributed. We
know that a pair of boundary lines passes through the
base of the triangle at the points E=rP/4. Therefore,
there are at most m, „such boundary pairs. Since (as
can be shown) the slope of these curves is always
positive, no boundary curve which starts at V0=0
outside the triangle will enter it. Thus, the ratio of
the number of double points to the number of boundary
curves is directly proportional to m, for large e,„.

Now if there are p double points to be distributed
among q boundary pairs, there must be at least one
boundary pair having at least p/q double points along
it. Since p/q is a linear function of e, , a pair of
boundary curves can be found with any given number
of crossings.

Note that the preceding discussion does not exclude
the possibility that between two pairs of boundary
curves having a large number of crossings there are
sandwiched pairs of boundary curves having a smaller
number or, perhaps, no crossings at all.

ACKNOWLEDGMENTS

The author is indebted to Dr. Rolf W. Landauer,
now at International Business Machines Corporation,
Poughkeepsie, New York, for proposing this problem
and for stimulating discussions and valuable sugges-
tions, He would also like to thank Miss Laura Holden
and Miss Janet Kohl who performed the computations.


